1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-26 16:09:27 -05:00
denoland-deno/cli/tsc/99_main_compiler.js
2020-10-14 10:52:49 +11:00

1398 lines
43 KiB
JavaScript

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
// This module is the entry point for "compiler" isolate, ie. the one
// that is created when Deno needs to compile TS/WASM to JS.
//
// It provides two functions that should be called by Rust:
// - `startup`
// This functions must be called when creating isolate
// to properly setup runtime.
// - `tsCompilerOnMessage`
// This function must be called when sending a request
// to the compiler.
// Removes the `__proto__` for security reasons. This intentionally makes
// Deno non compliant with ECMA-262 Annex B.2.2.1
//
delete Object.prototype.__proto__;
((window) => {
const core = window.Deno.core;
let logDebug = false;
let logSource = "JS";
/** Instructs the host to behave in a legacy fashion, with the legacy
* pipeline for handling code. Setting the value to `true` will cause the
* host to behave in the modern way. */
let legacy = true;
function setLogDebug(debug, source) {
logDebug = debug;
if (source) {
logSource = source;
}
}
function debug(...args) {
if (logDebug) {
const stringifiedArgs = args.map((arg) => JSON.stringify(arg)).join(" ");
core.print(`DEBUG ${logSource} - ${stringifiedArgs}\n`);
}
}
class AssertionError extends Error {
constructor(msg) {
super(msg);
this.name = "AssertionError";
}
}
function assert(cond, msg = "Assertion failed.") {
if (!cond) {
throw new AssertionError(msg);
}
}
/** @type {Map<string, ts.SourceFile>} */
const sourceFileCache = new Map();
/**
* @param {import("../dts/typescript").DiagnosticRelatedInformation} diagnostic
*/
function fromRelatedInformation({
start,
length,
file,
messageText: msgText,
...ri
}) {
let messageText;
let messageChain;
if (typeof msgText === "object") {
messageChain = msgText;
} else {
messageText = msgText;
}
if (start !== undefined && length !== undefined && file) {
const startPos = file.getLineAndCharacterOfPosition(start);
const sourceLine = file.getFullText().split("\n")[startPos.line];
const fileName = file.fileName;
return {
start: startPos,
end: file.getLineAndCharacterOfPosition(start + length),
fileName,
messageChain,
messageText,
sourceLine,
...ri,
};
} else {
return {
messageChain,
messageText,
...ri,
};
}
}
/**
* @param {import("../dts/typescript").Diagnostic[]} diagnostics
*/
function fromTypeScriptDiagnostic(diagnostics) {
return diagnostics.map(({ relatedInformation: ri, source, ...diag }) => {
const value = fromRelatedInformation(diag);
value.relatedInformation = ri
? ri.map(fromRelatedInformation)
: undefined;
value.source = source;
return value;
});
}
// We really don't want to depend on JSON dispatch during snapshotting, so
// this op exchanges strings with Rust as raw byte arrays.
function getAsset(name) {
const opId = core.ops()["op_fetch_asset"];
const sourceCodeBytes = core.dispatch(opId, core.encode(name));
return core.decode(sourceCodeBytes);
}
// Constants used by `normalizeString` and `resolvePath`
const CHAR_DOT = 46; /* . */
const CHAR_FORWARD_SLASH = 47; /* / */
// Using incremental compile APIs requires that all
// paths must be either relative or absolute. Since
// analysis in Rust operates on fully resolved URLs,
// it makes sense to use the same scheme here.
const ASSETS = "asset:///";
const OUT_DIR = "deno://";
const CACHE = "cache:///";
// This constant is passed to compiler settings when
// doing incremental compiles. Contents of this
// file are passed back to Rust and saved to $DENO_DIR.
const TS_BUILD_INFO = "cache:///tsbuildinfo.json";
const DEFAULT_COMPILE_OPTIONS = {
allowJs: false,
allowNonTsExtensions: true,
checkJs: false,
esModuleInterop: true,
jsx: ts.JsxEmit.React,
module: ts.ModuleKind.ESNext,
outDir: OUT_DIR,
sourceMap: true,
strict: true,
removeComments: true,
target: ts.ScriptTarget.ESNext,
};
const CompilerHostTarget = {
Main: "main",
Runtime: "runtime",
Worker: "worker",
};
// Warning! The values in this enum are duplicated in `cli/msg.rs`
// Update carefully!
const MediaType = {
0: "JavaScript",
1: "JSX",
2: "TypeScript",
3: "Dts",
4: "TSX",
5: "Json",
6: "Wasm",
7: "BuildInfo",
8: "Unknown",
JavaScript: 0,
JSX: 1,
TypeScript: 2,
Dts: 3,
TSX: 4,
Json: 5,
Wasm: 6,
BuildInfo: 7,
Unknown: 6,
};
function getExtension(fileName, mediaType) {
switch (mediaType) {
case MediaType.JavaScript:
return ts.Extension.Js;
case MediaType.JSX:
return ts.Extension.Jsx;
case MediaType.TypeScript:
return fileName.endsWith(".d.ts") ? ts.Extension.Dts : ts.Extension.Ts;
case MediaType.TSX:
return ts.Extension.Tsx;
case MediaType.Wasm:
// Custom marker for Wasm type.
return ts.Extension.Js;
case MediaType.Unknown:
default:
throw TypeError(
`Cannot resolve extension for "${fileName}" with mediaType "${
MediaType[mediaType]
}".`,
);
}
}
/** A global cache of module source files that have been loaded.
* This cache will be rewritten to be populated on compiler startup
* with files provided from Rust in request message.
*/
const SOURCE_FILE_CACHE = new Map();
/** A map of maps which cache resolved specifier for each import in a file.
* This cache is used so `resolveModuleNames` ops is called as few times
* as possible.
*
* First map's key is "referrer" URL ("file://a/b/c/mod.ts")
* Second map's key is "raw" import specifier ("./foo.ts")
* Second map's value is resolved import URL ("file:///a/b/c/foo.ts")
*/
const RESOLVED_SPECIFIER_CACHE = new Map();
function parseCompilerOptions(compilerOptions) {
const { options, errors } = ts.convertCompilerOptionsFromJson(
compilerOptions,
"",
"tsconfig.json",
);
return {
options,
diagnostics: errors.length ? errors : undefined,
};
}
class SourceFile {
constructor(json) {
this.processed = false;
Object.assign(this, json);
this.extension = getExtension(this.url, this.mediaType);
}
static addToCache(json) {
if (SOURCE_FILE_CACHE.has(json.url)) {
throw new TypeError("SourceFile already exists");
}
const sf = new SourceFile(json);
SOURCE_FILE_CACHE.set(sf.url, sf);
return sf;
}
static getCached(url) {
return SOURCE_FILE_CACHE.get(url);
}
static cacheResolvedUrl(resolvedUrl, rawModuleSpecifier, containingFile) {
containingFile = containingFile || "";
let innerCache = RESOLVED_SPECIFIER_CACHE.get(containingFile);
if (!innerCache) {
innerCache = new Map();
RESOLVED_SPECIFIER_CACHE.set(containingFile, innerCache);
}
innerCache.set(rawModuleSpecifier, resolvedUrl);
}
static getResolvedUrl(moduleSpecifier, containingFile) {
const containingCache = RESOLVED_SPECIFIER_CACHE.get(containingFile);
if (containingCache) {
return containingCache.get(moduleSpecifier);
}
return undefined;
}
}
function getAssetInternal(filename) {
const lastSegment = filename.split("/").pop();
const url = ts.libMap.has(lastSegment)
? ts.libMap.get(lastSegment)
: lastSegment;
const sourceFile = SourceFile.getCached(url);
if (sourceFile) {
return sourceFile;
}
const name = url.includes(".") ? url : `${url}.d.ts`;
const sourceCode = getAsset(name);
return SourceFile.addToCache({
url,
filename: `${ASSETS}/${name}`,
mediaType: MediaType.TypeScript,
versionHash: "1",
sourceCode,
});
}
/** There was some private state in the legacy host, that is moved out to
* here which can then be refactored out later. */
const legacyHostState = {
buildInfo: "",
target: CompilerHostTarget.Main,
writeFile: (_fileName, _data, _sourceFiles) => {},
};
/** @type {import("../dts/typescript").CompilerHost} */
const host = {
fileExists(fileName) {
debug(`host.fileExists("${fileName}")`);
return false;
},
readFile(specifier) {
debug(`host.readFile("${specifier}")`);
if (legacy) {
if (specifier == TS_BUILD_INFO) {
return legacyHostState.buildInfo;
}
return unreachable();
} else {
return core.jsonOpSync("op_load", { specifier }).data;
}
},
getSourceFile(
specifier,
languageVersion,
onError,
shouldCreateNewSourceFile,
) {
debug(
`host.getSourceFile("${specifier}", ${
ts.ScriptTarget[languageVersion]
})`,
);
if (legacy) {
try {
assert(!shouldCreateNewSourceFile);
const sourceFile = specifier.startsWith(ASSETS)
? getAssetInternal(specifier)
: SourceFile.getCached(specifier);
assert(sourceFile != null);
if (!sourceFile.tsSourceFile) {
assert(sourceFile.sourceCode != null);
const tsSourceFileName = specifier.startsWith(ASSETS)
? sourceFile.filename
: specifier;
sourceFile.tsSourceFile = ts.createSourceFile(
tsSourceFileName,
sourceFile.sourceCode,
languageVersion,
);
sourceFile.tsSourceFile.version = sourceFile.versionHash;
delete sourceFile.sourceCode;
// This code is to support transition from the "legacy" compiler
// to the new one, by populating the new source file cache.
if (
!sourceFileCache.has(specifier) && specifier.startsWith(ASSETS)
) {
sourceFileCache.set(specifier, sourceFile.tsSourceFile);
}
}
return sourceFile.tsSourceFile;
} catch (e) {
if (onError) {
onError(String(e));
} else {
throw e;
}
return undefined;
}
} else {
let sourceFile = sourceFileCache.get(specifier);
if (sourceFile) {
return sourceFile;
}
/** @type {{ data: string; hash: string; }} */
const { data, hash } = core.jsonOpSync(
"op_load",
{ specifier },
);
assert(data, `"data" is unexpectedly null for "${specifier}".`);
sourceFile = ts.createSourceFile(
specifier,
data,
languageVersion,
);
sourceFile.moduleName = specifier;
sourceFile.version = hash;
sourceFileCache.set(specifier, sourceFile);
return sourceFile;
}
},
getDefaultLibFileName() {
if (legacy) {
switch (legacyHostState.target) {
case CompilerHostTarget.Main:
case CompilerHostTarget.Runtime:
return `${ASSETS}/lib.deno.window.d.ts`;
case CompilerHostTarget.Worker:
return `${ASSETS}/lib.deno.worker.d.ts`;
}
} else {
return `${ASSETS}/lib.esnext.d.ts`;
}
},
getDefaultLibLocation() {
return ASSETS;
},
writeFile(fileName, data, _writeByteOrderMark, _onError, sourceFiles) {
debug(`host.writeFile("${fileName}")`);
if (legacy) {
legacyHostState.writeFile(fileName, data, sourceFiles);
} else {
let maybeSpecifiers;
if (sourceFiles) {
maybeSpecifiers = sourceFiles.map((sf) => sf.moduleName);
debug(` specifiers: ${maybeSpecifiers.join(", ")}`);
}
return core.jsonOpSync(
"op_emit",
{ maybeSpecifiers, fileName, data },
);
}
},
getCurrentDirectory() {
return CACHE;
},
getCanonicalFileName(fileName) {
return fileName;
},
useCaseSensitiveFileNames() {
return true;
},
getNewLine() {
return "\n";
},
resolveModuleNames(specifiers, base) {
debug(`host.resolveModuleNames()`);
debug(` base: ${base}`);
debug(` specifiers: ${specifiers.join(", ")}`);
if (legacy) {
const resolved = specifiers.map((specifier) => {
const maybeUrl = SourceFile.getResolvedUrl(specifier, base);
debug("compiler::host.resolveModuleNames maybeUrl", {
specifier,
maybeUrl,
});
let sourceFile = undefined;
if (specifier.startsWith(ASSETS)) {
sourceFile = getAssetInternal(specifier);
} else if (typeof maybeUrl !== "undefined") {
sourceFile = SourceFile.getCached(maybeUrl);
}
if (!sourceFile) {
return undefined;
}
return {
resolvedFileName: sourceFile.url,
isExternalLibraryImport: specifier.startsWith(ASSETS),
extension: sourceFile.extension,
};
});
debug(resolved);
return resolved;
} else {
/** @type {Array<[string, import("../dts/typescript").Extension]>} */
const resolved = core.jsonOpSync("op_resolve", {
specifiers,
base,
});
return resolved.map(([resolvedFileName, extension]) => ({
resolvedFileName,
extension,
isExternalLibraryImport: false,
}));
}
},
createHash(data) {
return core.jsonOpSync("op_create_hash", { data }).hash;
},
};
// This is a hacky way of adding our libs to the libs available in TypeScript()
// as these are internal APIs of TypeScript which maintain valid libs
ts.libs.push("deno.ns", "deno.window", "deno.worker", "deno.shared_globals");
ts.libMap.set("deno.ns", "lib.deno.ns.d.ts");
ts.libMap.set("deno.web", "lib.deno.web.d.ts");
ts.libMap.set("deno.fetch", "lib.deno.fetch.d.ts");
ts.libMap.set("deno.window", "lib.deno.window.d.ts");
ts.libMap.set("deno.worker", "lib.deno.worker.d.ts");
ts.libMap.set("deno.shared_globals", "lib.deno.shared_globals.d.ts");
ts.libMap.set("deno.unstable", "lib.deno.unstable.d.ts");
// this pre-populates the cache at snapshot time of our library files, so they
// are available in the future when needed.
host.getSourceFile(
`${ASSETS}lib.deno.ns.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.web.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.fetch.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.window.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.worker.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.shared_globals.d.ts`,
ts.ScriptTarget.ESNext,
);
host.getSourceFile(
`${ASSETS}lib.deno.unstable.d.ts`,
ts.ScriptTarget.ESNext,
);
// We never use this program; it's only created
// during snapshotting to hydrate and populate
// source file cache with lib declaration files.
const _TS_SNAPSHOT_PROGRAM = ts.createProgram({
rootNames: [`${ASSETS}bootstrap.ts`],
options: DEFAULT_COMPILE_OPTIONS,
host,
});
// This function is called only during snapshotting process
const SYSTEM_LOADER = getAsset("system_loader.js");
const SYSTEM_LOADER_ES5 = getAsset("system_loader_es5.js");
function buildLocalSourceFileCache(sourceFileMap) {
for (const entry of Object.values(sourceFileMap)) {
assert(entry.sourceCode.length > 0);
SourceFile.addToCache({
url: entry.url,
filename: entry.url,
mediaType: entry.mediaType,
sourceCode: entry.sourceCode,
versionHash: entry.versionHash,
});
for (const importDesc of entry.imports) {
let mappedUrl = importDesc.resolvedSpecifier;
const importedFile = sourceFileMap[importDesc.resolvedSpecifier];
assert(importedFile);
const isJsOrJsx = importedFile.mediaType === MediaType.JavaScript ||
importedFile.mediaType === MediaType.JSX;
// If JS or JSX perform substitution for types if available
if (isJsOrJsx) {
// @deno-types has highest precedence, followed by
// X-TypeScript-Types header
if (importDesc.resolvedTypeDirective) {
mappedUrl = importDesc.resolvedTypeDirective;
} else if (importedFile.typeHeaders.length > 0) {
const typeHeaders = importedFile.typeHeaders[0];
mappedUrl = typeHeaders.resolvedSpecifier;
} else if (importedFile.typesDirectives.length > 0) {
const typeDirective = importedFile.typesDirectives[0];
mappedUrl = typeDirective.resolvedSpecifier;
}
}
mappedUrl = mappedUrl.replace("memory://", "");
SourceFile.cacheResolvedUrl(mappedUrl, importDesc.specifier, entry.url);
}
for (const fileRef of entry.referencedFiles) {
SourceFile.cacheResolvedUrl(
fileRef.resolvedSpecifier.replace("memory://", ""),
fileRef.specifier,
entry.url,
);
}
for (const fileRef of entry.libDirectives) {
SourceFile.cacheResolvedUrl(
fileRef.resolvedSpecifier.replace("memory://", ""),
fileRef.specifier,
entry.url,
);
}
}
}
function buildSourceFileCache(sourceFileMap) {
for (const entry of Object.values(sourceFileMap)) {
SourceFile.addToCache({
url: entry.url,
filename: entry.url,
mediaType: entry.mediaType,
sourceCode: entry.sourceCode,
versionHash: entry.versionHash,
});
for (const importDesc of entry.imports) {
let mappedUrl = importDesc.resolvedSpecifier;
const importedFile = sourceFileMap[importDesc.resolvedSpecifier];
// IMPORTANT: due to HTTP redirects we might end up in situation
// where URL points to a file with completely different URL.
// In that case we take value of `redirect` field and cache
// resolved specifier pointing to the value of the redirect.
// It's not very elegant solution and should be rethinked.
assert(importedFile);
if (importedFile.redirect) {
mappedUrl = importedFile.redirect;
}
const isJsOrJsx = importedFile.mediaType === MediaType.JavaScript ||
importedFile.mediaType === MediaType.JSX;
// If JS or JSX perform substitution for types if available
if (isJsOrJsx) {
// @deno-types has highest precedence, followed by
// X-TypeScript-Types header
if (importDesc.resolvedTypeDirective) {
mappedUrl = importDesc.resolvedTypeDirective;
} else if (importedFile.typeHeaders.length > 0) {
const typeHeaders = importedFile.typeHeaders[0];
mappedUrl = typeHeaders.resolvedSpecifier;
} else if (importedFile.typesDirectives.length > 0) {
const typeDirective = importedFile.typesDirectives[0];
mappedUrl = typeDirective.resolvedSpecifier;
}
}
SourceFile.cacheResolvedUrl(mappedUrl, importDesc.specifier, entry.url);
}
for (const fileRef of entry.referencedFiles) {
SourceFile.cacheResolvedUrl(
fileRef.resolvedSpecifier,
fileRef.specifier,
entry.url,
);
}
for (const fileRef of entry.libDirectives) {
SourceFile.cacheResolvedUrl(
fileRef.resolvedSpecifier,
fileRef.specifier,
entry.url,
);
}
}
}
// Warning! The values in this enum are duplicated in `cli/msg.rs`
// Update carefully!
const CompilerRequestType = {
Compile: 0,
Bundle: 1,
RuntimeCompile: 2,
RuntimeBundle: 3,
RuntimeTranspile: 4,
};
function createBundleWriteFile(state) {
return function writeFile(_fileName, data, sourceFiles) {
assert(sourceFiles != null);
assert(state.options);
// we only support single root names for bundles
assert(state.rootNames.length === 1);
state.bundleOutput = buildBundle(
state.rootNames[0],
data,
sourceFiles,
state.options.target ?? ts.ScriptTarget.ESNext,
);
};
}
function createCompileWriteFile(state) {
return function writeFile(fileName, data, sourceFiles) {
const isBuildInfo = fileName === TS_BUILD_INFO;
if (isBuildInfo) {
assert(isBuildInfo);
state.buildInfo = data;
return;
}
assert(sourceFiles);
assert(sourceFiles.length === 1);
state.emitMap[fileName] = {
filename: sourceFiles[0].fileName,
contents: data,
};
};
}
function createRuntimeCompileWriteFile(state) {
return function writeFile(fileName, data, sourceFiles) {
assert(sourceFiles);
assert(sourceFiles.length === 1);
state.emitMap[fileName] = {
filename: sourceFiles[0].fileName,
contents: data,
};
};
}
const IGNORED_DIAGNOSTICS = [
// TS2306: File 'file:///Users/rld/src/deno/cli/tests/subdir/amd_like.js' is
// not a module.
2306,
// TS1375: 'await' expressions are only allowed at the top level of a file
// when that file is a module, but this file has no imports or exports.
// Consider adding an empty 'export {}' to make this file a module.
1375,
// TS1103: 'for-await-of' statement is only allowed within an async function
// or async generator.
1103,
// TS2691: An import path cannot end with a '.ts' extension. Consider
// importing 'bad-module' instead.
2691,
// TS5009: Cannot find the common subdirectory path for the input files.
5009,
// TS5055: Cannot write file
// 'http://localhost:4545/cli/tests/subdir/mt_application_x_javascript.j4.js'
// because it would overwrite input file.
5055,
// TypeScript is overly opinionated that only CommonJS modules kinds can
// support JSON imports. Allegedly this was fixed in
// Microsoft/TypeScript#26825 but that doesn't seem to be working here,
// so we will ignore complaints about this compiler setting.
5070,
// TS7016: Could not find a declaration file for module '...'. '...'
// implicitly has an 'any' type. This is due to `allowJs` being off by
// default but importing of a JavaScript module.
7016,
];
const IGNORED_COMPILE_DIAGNOSTICS = [
// TS1208: All files must be modules when the '--isolatedModules' flag is
// provided. We can ignore because we guarantuee that all files are
// modules.
1208,
];
/** @type {Array<{ key: string, value: number }>} */
const stats = [];
let statsStart = 0;
function performanceStart() {
stats.length = 0;
// TODO(kitsonk) replace with performance.mark() when landed
statsStart = new Date();
ts.performance.enable();
}
function performanceProgram({ program, fileCount }) {
if (program) {
if ("getProgram" in program) {
program = program.getProgram();
}
stats.push({ key: "Files", value: program.getSourceFiles().length });
stats.push({ key: "Nodes", value: program.getNodeCount() });
stats.push({ key: "Identifiers", value: program.getIdentifierCount() });
stats.push({ key: "Symbols", value: program.getSymbolCount() });
stats.push({ key: "Types", value: program.getTypeCount() });
stats.push({
key: "Instantiations",
value: program.getInstantiationCount(),
});
} else if (fileCount != null) {
stats.push({ key: "Files", value: fileCount });
}
const programTime = ts.performance.getDuration("Program");
const bindTime = ts.performance.getDuration("Bind");
const checkTime = ts.performance.getDuration("Check");
const emitTime = ts.performance.getDuration("Emit");
stats.push({ key: "Parse time", value: programTime });
stats.push({ key: "Bind time", value: bindTime });
stats.push({ key: "Check time", value: checkTime });
stats.push({ key: "Emit time", value: emitTime });
stats.push({
key: "Total TS time",
value: programTime + bindTime + checkTime + emitTime,
});
}
function performanceEnd() {
const duration = new Date() - statsStart;
stats.push({ key: "Compile time", value: duration });
return stats;
}
function normalizeString(path) {
let res = "";
let lastSegmentLength = 0;
let lastSlash = -1;
let dots = 0;
let code;
for (let i = 0, len = path.length; i <= len; ++i) {
if (i < len) code = path.charCodeAt(i);
else if (code === CHAR_FORWARD_SLASH) break;
else code = CHAR_FORWARD_SLASH;
if (code === CHAR_FORWARD_SLASH) {
if (lastSlash === i - 1 || dots === 1) {
// NOOP
} else if (lastSlash !== i - 1 && dots === 2) {
if (
res.length < 2 ||
lastSegmentLength !== 2 ||
res.charCodeAt(res.length - 1) !== CHAR_DOT ||
res.charCodeAt(res.length - 2) !== CHAR_DOT
) {
if (res.length > 2) {
const lastSlashIndex = res.lastIndexOf("/");
if (lastSlashIndex === -1) {
res = "";
lastSegmentLength = 0;
} else {
res = res.slice(0, lastSlashIndex);
lastSegmentLength = res.length - 1 - res.lastIndexOf("/");
}
lastSlash = i;
dots = 0;
continue;
} else if (res.length === 2 || res.length === 1) {
res = "";
lastSegmentLength = 0;
lastSlash = i;
dots = 0;
continue;
}
}
} else {
if (res.length > 0) res += "/" + path.slice(lastSlash + 1, i);
else res = path.slice(lastSlash + 1, i);
lastSegmentLength = i - lastSlash - 1;
}
lastSlash = i;
dots = 0;
} else if (code === CHAR_DOT && dots !== -1) {
++dots;
} else {
dots = -1;
}
}
return res;
}
function commonPath(paths, sep = "/") {
const [first = "", ...remaining] = paths;
if (first === "" || remaining.length === 0) {
return first.substring(0, first.lastIndexOf(sep) + 1);
}
const parts = first.split(sep);
let endOfPrefix = parts.length;
for (const path of remaining) {
const compare = path.split(sep);
for (let i = 0; i < endOfPrefix; i++) {
if (compare[i] !== parts[i]) {
endOfPrefix = i;
}
}
if (endOfPrefix === 0) {
return "";
}
}
const prefix = parts.slice(0, endOfPrefix).join(sep);
return prefix.endsWith(sep) ? prefix : `${prefix}${sep}`;
}
let rootExports;
function normalizeUrl(rootName) {
const match = /^(\S+:\/{2,3})(.+)$/.exec(rootName);
if (match) {
const [, protocol, path] = match;
return `${protocol}${normalizeString(path)}`;
} else {
return rootName;
}
}
function buildBundle(rootName, data, sourceFiles, target) {
// when outputting to AMD and a single outfile, TypeScript makes up the module
// specifiers which are used to define the modules, and doesn't expose them
// publicly, so we have to try to replicate
const sources = sourceFiles.map((sf) => sf.fileName);
const sharedPath = commonPath(sources);
rootName = normalizeUrl(rootName)
.replace(sharedPath, "")
.replace(/\.\w+$/i, "");
// If one of the modules requires support for top-level-await, TypeScript will
// emit the execute function as an async function. When this is the case we
// need to bubble up the TLA to the instantiation, otherwise we instantiate
// synchronously.
const hasTla = data.match(/execute:\sasync\sfunction\s/);
let instantiate;
if (rootExports && rootExports.length) {
instantiate = hasTla
? `const __exp = await __instantiate("${rootName}", true);\n`
: `const __exp = __instantiate("${rootName}", false);\n`;
for (const rootExport of rootExports) {
if (rootExport === "default") {
instantiate += `export default __exp["${rootExport}"];\n`;
} else {
instantiate +=
`export const ${rootExport} = __exp["${rootExport}"];\n`;
}
}
} else {
instantiate = hasTla
? `await __instantiate("${rootName}", true);\n`
: `__instantiate("${rootName}", false);\n`;
}
const es5Bundle = target === ts.ScriptTarget.ES3 ||
target === ts.ScriptTarget.ES5 ||
target === ts.ScriptTarget.ES2015 ||
target === ts.ScriptTarget.ES2016;
return `${
es5Bundle ? SYSTEM_LOADER_ES5 : SYSTEM_LOADER
}\n${data}\n${instantiate}`;
}
function setRootExports(program, rootModule) {
// get a reference to the type checker, this will let us find symbols from
// the AST.
const checker = program.getTypeChecker();
// get a reference to the main source file for the bundle
const mainSourceFile = program.getSourceFile(rootModule);
assert(mainSourceFile);
// retrieve the internal TypeScript symbol for this AST node
const mainSymbol = checker.getSymbolAtLocation(mainSourceFile);
if (!mainSymbol) {
return;
}
rootExports = checker
.getExportsOfModule(mainSymbol)
// .getExportsOfModule includes type only symbols which are exported from
// the module, so we need to try to filter those out. While not critical
// someone looking at the bundle would think there is runtime code behind
// that when there isn't. There appears to be no clean way of figuring that
// out, so inspecting SymbolFlags that might be present that are type only
.filter(
(sym) =>
sym.flags & ts.SymbolFlags.Class ||
!(
sym.flags & ts.SymbolFlags.Interface ||
sym.flags & ts.SymbolFlags.TypeLiteral ||
sym.flags & ts.SymbolFlags.Signature ||
sym.flags & ts.SymbolFlags.TypeParameter ||
sym.flags & ts.SymbolFlags.TypeAlias ||
sym.flags & ts.SymbolFlags.Type ||
sym.flags & ts.SymbolFlags.Namespace ||
sym.flags & ts.SymbolFlags.InterfaceExcludes ||
sym.flags & ts.SymbolFlags.TypeParameterExcludes ||
sym.flags & ts.SymbolFlags.TypeAliasExcludes
),
)
.map((sym) => sym.getName());
}
function compile({
buildInfo,
compilerOptions,
rootNames,
target,
sourceFileMap,
type,
performance,
}) {
if (performance) {
performanceStart();
}
debug(">>> compile start", { rootNames, type: CompilerRequestType[type] });
// When a programme is emitted, TypeScript will call `writeFile` with
// each file that needs to be emitted. The Deno compiler host delegates
// this, to make it easier to perform the right actions, which vary
// based a lot on the request.
const state = {
rootNames,
emitMap: {},
};
let diagnostics = [];
const { options, diagnostics: diags } = parseCompilerOptions(
compilerOptions,
);
diagnostics = diags.filter(
({ code }) => code != 5023 && !IGNORED_DIAGNOSTICS.includes(code),
);
// TODO(bartlomieju): this options is excluded by `ts.convertCompilerOptionsFromJson`
// however stuff breaks if it's not passed (type_directives_js_main.js, compiler_js_error.ts)
options.allowNonTsExtensions = true;
legacyHostState.target = target;
legacyHostState.writeFile = createCompileWriteFile(state);
legacyHostState.buildInfo = buildInfo;
buildSourceFileCache(sourceFileMap);
// if there was a configuration and no diagnostics with it, we will continue
// to generate the program and possibly emit it.
if (diagnostics.length === 0) {
const program = ts.createIncrementalProgram({
rootNames,
options,
host,
});
// TODO(bartlomieju): check if this is ok
diagnostics = [
...program.getConfigFileParsingDiagnostics(),
...program.getSyntacticDiagnostics(),
...program.getOptionsDiagnostics(),
...program.getGlobalDiagnostics(),
...program.getSemanticDiagnostics(),
];
diagnostics = diagnostics.filter(
({ code }) =>
!IGNORED_DIAGNOSTICS.includes(code) &&
!IGNORED_COMPILE_DIAGNOSTICS.includes(code),
);
// We will only proceed with the emit if there are no diagnostics.
if (diagnostics.length === 0) {
const emitResult = program.emit();
// If `checkJs` is off we still might be compiling entry point JavaScript file
// (if it has `.ts` imports), but it won't be emitted. In that case we skip
// assertion.
if (options.checkJs) {
assert(
emitResult.emitSkipped === false,
"Unexpected skip of the emit.",
);
}
// emitResult.diagnostics is `readonly` in TS3.5+ and can't be assigned
// without casting.
diagnostics = emitResult.diagnostics;
}
performanceProgram({ program });
}
debug("<<< compile end", { rootNames, type: CompilerRequestType[type] });
const stats = performance ? performanceEnd() : undefined;
return {
emitMap: state.emitMap,
buildInfo: state.buildInfo,
diagnostics: fromTypeScriptDiagnostic(diagnostics),
stats,
};
}
function bundle({
compilerOptions,
rootNames,
target,
sourceFileMap,
type,
performance,
}) {
if (performance) {
performanceStart();
}
debug(">>> bundle start", {
rootNames,
type: CompilerRequestType[type],
});
// When a programme is emitted, TypeScript will call `writeFile` with
// each file that needs to be emitted. The Deno compiler host delegates
// this, to make it easier to perform the right actions, which vary
// based a lot on the request.
const state = {
rootNames,
bundleOutput: undefined,
};
const { options, diagnostics: diags } = parseCompilerOptions(
compilerOptions,
);
diagnostics = diags.filter(
({ code }) => code != 5023 && !IGNORED_DIAGNOSTICS.includes(code),
);
// TODO(bartlomieju): this options is excluded by `ts.convertCompilerOptionsFromJson`
// however stuff breaks if it's not passed (type_directives_js_main.js)
options.allowNonTsExtensions = true;
legacyHostState.target = target;
legacyHostState.writeFile = createBundleWriteFile(state);
state.options = options;
buildSourceFileCache(sourceFileMap);
// if there was a configuration and no diagnostics with it, we will continue
// to generate the program and possibly emit it.
if (diagnostics.length === 0) {
const program = ts.createProgram({
rootNames,
options,
host,
});
diagnostics = ts
.getPreEmitDiagnostics(program)
.filter(({ code }) => !IGNORED_DIAGNOSTICS.includes(code));
// We will only proceed with the emit if there are no diagnostics.
if (diagnostics.length === 0) {
// we only support a single root module when bundling
assert(rootNames.length === 1);
setRootExports(program, rootNames[0]);
const emitResult = program.emit();
assert(
emitResult.emitSkipped === false,
"Unexpected skip of the emit.",
);
// emitResult.diagnostics is `readonly` in TS3.5+ and can't be assigned
// without casting.
diagnostics = emitResult.diagnostics;
}
if (performance) {
performanceProgram({ program });
}
}
let bundleOutput;
if (diagnostics.length === 0) {
assert(state.bundleOutput);
bundleOutput = state.bundleOutput;
}
const stats = performance ? performanceEnd() : undefined;
const result = {
bundleOutput,
diagnostics: fromTypeScriptDiagnostic(diagnostics),
stats,
};
debug("<<< bundle end", {
rootNames,
type: CompilerRequestType[type],
});
return result;
}
function runtimeCompile(request) {
const { compilerOptions, rootNames, target, sourceFileMap } = request;
debug(">>> runtime compile start", {
rootNames,
});
// if there are options, convert them into TypeScript compiler options,
// and resolve any external file references
const result = parseCompilerOptions(
compilerOptions,
);
const options = result.options;
// TODO(bartlomieju): this options is excluded by `ts.convertCompilerOptionsFromJson`
// however stuff breaks if it's not passed (type_directives_js_main.js, compiler_js_error.ts)
options.allowNonTsExtensions = true;
buildLocalSourceFileCache(sourceFileMap);
const state = {
rootNames,
emitMap: {},
};
legacyHostState.target = target;
legacyHostState.writeFile = createRuntimeCompileWriteFile(state);
const program = ts.createProgram({
rootNames,
options,
host,
});
const diagnostics = ts
.getPreEmitDiagnostics(program)
.filter(({ code }) =>
!IGNORED_DIAGNOSTICS.includes(code) &&
!IGNORED_COMPILE_DIAGNOSTICS.includes(code)
);
const emitResult = program.emit();
assert(emitResult.emitSkipped === false, "Unexpected skip of the emit.");
debug("<<< runtime compile finish", {
rootNames,
emitMap: Object.keys(state.emitMap),
});
const maybeDiagnostics = diagnostics.length
? fromTypeScriptDiagnostic(diagnostics)
: [];
return {
diagnostics: maybeDiagnostics,
emitMap: state.emitMap,
};
}
function runtimeBundle(request) {
const { compilerOptions, rootNames, target, sourceFileMap } = request;
debug(">>> runtime bundle start", {
rootNames,
});
// if there are options, convert them into TypeScript compiler options,
// and resolve any external file references
const result = parseCompilerOptions(
compilerOptions,
);
const options = result.options;
// TODO(bartlomieju): this options is excluded by `ts.convertCompilerOptionsFromJson`
// however stuff breaks if it's not passed (type_directives_js_main.js, compiler_js_error.ts)
options.allowNonTsExtensions = true;
buildLocalSourceFileCache(sourceFileMap);
const state = {
rootNames,
bundleOutput: undefined,
};
legacyHostState.target = target;
legacyHostState.writeFile = createBundleWriteFile(state);
state.options = options;
const program = ts.createProgram({
rootNames,
options,
host,
});
setRootExports(program, rootNames[0]);
const diagnostics = ts
.getPreEmitDiagnostics(program)
.filter(({ code }) => !IGNORED_DIAGNOSTICS.includes(code));
const emitResult = program.emit();
assert(emitResult.emitSkipped === false, "Unexpected skip of the emit.");
debug("<<< runtime bundle finish", {
rootNames,
});
const maybeDiagnostics = diagnostics.length
? fromTypeScriptDiagnostic(diagnostics)
: [];
return {
diagnostics: maybeDiagnostics,
output: state.bundleOutput,
};
}
function runtimeTranspile(request) {
const result = {};
const { sources, compilerOptions } = request;
const parseResult = parseCompilerOptions(
compilerOptions,
);
const options = parseResult.options;
// TODO(bartlomieju): this options is excluded by `ts.convertCompilerOptionsFromJson`
// however stuff breaks if it's not passed (type_directives_js_main.js, compiler_js_error.ts)
options.allowNonTsExtensions = true;
for (const [fileName, inputText] of Object.entries(sources)) {
const { outputText: source, sourceMapText: map } = ts.transpileModule(
inputText,
{
fileName,
compilerOptions: options,
},
);
result[fileName] = { source, map };
}
return result;
}
function opCompilerRespond(msg) {
core.jsonOpSync("op_compiler_respond", msg);
}
function tsCompilerOnMessage(msg) {
const request = msg.data;
switch (request.type) {
case CompilerRequestType.Compile: {
const result = compile(request);
opCompilerRespond(result);
break;
}
case CompilerRequestType.Bundle: {
const result = bundle(request);
opCompilerRespond(result);
break;
}
case CompilerRequestType.RuntimeCompile: {
const result = runtimeCompile(request);
opCompilerRespond(result);
break;
}
case CompilerRequestType.RuntimeBundle: {
const result = runtimeBundle(request);
opCompilerRespond(result);
break;
}
case CompilerRequestType.RuntimeTranspile: {
const result = runtimeTranspile(request);
opCompilerRespond(result);
break;
}
default:
throw new Error(
`!!! unhandled CompilerRequestType: ${request.type} (${
CompilerRequestType[request.type]
})`,
);
}
}
/**
* @typedef {object} Request
* @property {Record<string, any>} config
* @property {boolean} debug
* @property {string[]} rootNames
*/
/** The API that is called by Rust when executing a request.
* @param {Request} request
*/
function exec({ config, debug: debugFlag, rootNames }) {
setLogDebug(debugFlag, "TS");
performanceStart();
debug(">>> exec start", { rootNames });
debug(config);
const { options, errors: configFileParsingDiagnostics } = ts
.convertCompilerOptionsFromJson(config, "", "tsconfig.json");
const program = ts.createIncrementalProgram({
rootNames,
options,
host,
configFileParsingDiagnostics,
});
const { diagnostics: emitDiagnostics } = program.emit();
const diagnostics = [
...program.getConfigFileParsingDiagnostics(),
...program.getSyntacticDiagnostics(),
...program.getOptionsDiagnostics(),
...program.getGlobalDiagnostics(),
...program.getSemanticDiagnostics(),
...emitDiagnostics,
].filter(({ code }) =>
!IGNORED_DIAGNOSTICS.includes(code) &&
!IGNORED_COMPILE_DIAGNOSTICS.includes(code)
);
performanceProgram({ program });
// TODO(@kitsonk) when legacy stats are removed, convert to just tuples
let stats = performanceEnd().map(({ key, value }) => [key, value]);
core.jsonOpSync("op_respond", {
diagnostics: fromTypeScriptDiagnostic(diagnostics),
stats,
});
debug("<<< exec stop");
}
let hasStarted = false;
/** Startup the runtime environment, setting various flags.
* @param {{ debugFlag?: boolean; legacyFlag?: boolean; }} msg
*/
function startup({ debugFlag = false, legacyFlag = true }) {
if (hasStarted) {
throw new Error("The compiler runtime already started.");
}
hasStarted = true;
core.ops();
core.registerErrorClass("Error", Error);
setLogDebug(!!debugFlag, "TS");
legacy = legacyFlag;
}
globalThis.startup = startup;
globalThis.exec = exec;
// TODO(@kitsonk) remove when converted from legacy tsc
globalThis.tsCompilerOnMessage = tsCompilerOnMessage;
})(this);