1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-02 04:19:10 -05:00
denoland-deno/core/isolate.rs

1200 lines
37 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
// Do not add any dependency to modules.rs!
// modules.rs is complex and should remain decoupled from isolate.rs to keep the
// Isolate struct from becoming too bloating for users who do not need
// asynchronous module loading.
use rusty_v8 as v8;
use crate::any_error::ErrBox;
use crate::bindings;
use crate::js_errors::CoreJSError;
use crate::js_errors::V8Exception;
use crate::ops::*;
use crate::shared_queue::SharedQueue;
use crate::shared_queue::RECOMMENDED_SIZE;
use futures::future::FutureExt;
use futures::future::TryFutureExt;
use futures::stream::FuturesUnordered;
use futures::stream::StreamExt;
use futures::task::AtomicWaker;
use libc::c_void;
use std::collections::HashMap;
use std::convert::From;
use std::future::Future;
use std::ops::{Deref, DerefMut};
use std::option::Option;
use std::pin::Pin;
use std::ptr::NonNull;
use std::slice;
use std::sync::{Arc, Mutex, Once};
use std::task::Context;
use std::task::Poll;
/// Size of `ArrayBuffer` that will be allocated and shared
/// between responses. If response is bigger a new one-off
/// `ArrayBuffer` will be allocated.
pub const SHARED_RESPONSE_BUF_SIZE: usize = 1024 * 1024;
/// A PinnedBuf encapsulates a slice that's been borrowed from a JavaScript
/// ArrayBuffer object. JavaScript objects can normally be garbage collected,
/// but the existence of a PinnedBuf inhibits this until it is dropped. It
/// behaves much like an Arc<[u8]>, although a PinnedBuf currently can't be
/// cloned.
pub struct PinnedBuf {
data_ptr: NonNull<u8>,
data_len: usize,
#[allow(unused)]
backing_store: v8::SharedRef<v8::BackingStore>,
}
unsafe impl Send for PinnedBuf {}
impl PinnedBuf {
pub fn new(view: v8::Local<v8::ArrayBufferView>) -> Self {
let mut backing_store = view.buffer().unwrap().get_backing_store();
let backing_store_ptr = backing_store.data() as *mut _ as *mut u8;
let view_ptr = unsafe { backing_store_ptr.add(view.byte_offset()) };
let view_len = view.byte_length();
Self {
data_ptr: NonNull::new(view_ptr).unwrap(),
data_len: view_len,
backing_store,
}
}
}
impl Deref for PinnedBuf {
type Target = [u8];
fn deref(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.data_ptr.as_ptr(), self.data_len) }
}
}
impl DerefMut for PinnedBuf {
fn deref_mut(&mut self) -> &mut [u8] {
unsafe { slice::from_raw_parts_mut(self.data_ptr.as_ptr(), self.data_len) }
}
}
impl AsRef<[u8]> for PinnedBuf {
fn as_ref(&self) -> &[u8] {
&*self
}
}
impl AsMut<[u8]> for PinnedBuf {
fn as_mut(&mut self) -> &mut [u8] {
&mut *self
}
}
pub enum SnapshotConfig {
Borrowed(v8::StartupData<'static>),
Owned(v8::OwnedStartupData),
}
impl From<&'static [u8]> for SnapshotConfig {
fn from(sd: &'static [u8]) -> Self {
Self::Borrowed(v8::StartupData::new(sd))
}
}
impl From<v8::OwnedStartupData> for SnapshotConfig {
fn from(sd: v8::OwnedStartupData) -> Self {
Self::Owned(sd)
}
}
impl Deref for SnapshotConfig {
type Target = v8::StartupData<'static>;
fn deref(&self) -> &Self::Target {
match self {
Self::Borrowed(sd) => sd,
Self::Owned(sd) => &*sd,
}
}
}
/// Stores a script used to initalize a Isolate
pub struct Script<'a> {
pub source: &'a str,
pub filename: &'a str,
}
// TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we
// wouldn't expose such twiddly complexity.
struct OwnedScript {
pub source: String,
pub filename: String,
}
impl From<Script<'_>> for OwnedScript {
fn from(s: Script) -> OwnedScript {
OwnedScript {
source: s.source.to_string(),
filename: s.filename.to_string(),
}
}
}
/// Represents data used to initialize isolate at startup
/// either a binary snapshot or a javascript source file
/// in the form of the StartupScript struct.
pub enum StartupData<'a> {
Script(Script<'a>),
Snapshot(&'static [u8]),
OwnedSnapshot(v8::OwnedStartupData),
None,
}
type JSErrorCreateFn = dyn Fn(V8Exception) -> ErrBox;
type IsolateErrorHandleFn = dyn FnMut(ErrBox) -> Result<(), ErrBox>;
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. An Isolate is a Future that can be used with
/// Tokio. The Isolate future complete when there is an error or when all
/// pending ops have completed.
///
/// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust
/// by implementing dispatcher function that takes control buffer and optional zero copy buffer
/// as arguments. An async Op corresponds exactly to a Promise in JavaScript.
#[allow(unused)]
pub struct Isolate {
pub(crate) v8_isolate: Option<v8::OwnedIsolate>,
snapshot_creator: Option<v8::SnapshotCreator>,
has_snapshotted: bool,
snapshot: Option<SnapshotConfig>,
pub(crate) last_exception: Option<String>,
pub(crate) last_exception_handle: v8::Global<v8::Value>,
pub(crate) global_context: v8::Global<v8::Context>,
pub(crate) shared_ab: v8::Global<v8::SharedArrayBuffer>,
pub(crate) js_recv_cb: v8::Global<v8::Function>,
pub(crate) pending_promise_map: HashMap<i32, v8::Global<v8::Value>>,
pub(crate) shared_response_buf: v8::Global<v8::ArrayBuffer>,
shared_isolate_handle: Arc<Mutex<Option<*mut v8::Isolate>>>,
js_error_create: Arc<JSErrorCreateFn>,
needs_init: bool,
pub(crate) shared: SharedQueue,
pending_ops: FuturesUnordered<PendingOpFuture>,
have_unpolled_ops: bool,
startup_script: Option<OwnedScript>,
pub op_registry: Arc<OpRegistry>,
waker: AtomicWaker,
error_handler: Option<Box<IsolateErrorHandleFn>>,
}
unsafe impl Send for Isolate {}
impl Drop for Isolate {
fn drop(&mut self) {
// remove shared_libdeno_isolate reference
*self.shared_isolate_handle.lock().unwrap() = None;
// TODO Too much boiler plate.
// <Boilerplate>
let isolate = self.v8_isolate.take().unwrap();
// Clear persistent handles we own.
{
let mut locker = v8::Locker::new(&isolate);
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
// </Boilerplate>
self.global_context.reset(scope);
self.shared_ab.reset(scope);
self.shared_response_buf.reset(scope);
self.last_exception_handle.reset(scope);
self.js_recv_cb.reset(scope);
for (_key, handle) in self.pending_promise_map.iter_mut() {
handle.reset(scope);
}
}
if let Some(creator) = self.snapshot_creator.take() {
// TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from
// being deallocated if it hasn't created a snapshot yet.
// https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603
// If that assert is removed, this if guard could be removed.
// WARNING: There may be false positive LSAN errors here.
std::mem::forget(isolate);
if self.has_snapshotted {
drop(creator);
}
} else {
drop(isolate);
}
}
}
static DENO_INIT: Once = Once::new();
#[allow(clippy::missing_safety_doc)]
pub unsafe fn v8_init() {
let platform = v8::platform::new_default_platform();
v8::V8::initialize_platform(platform);
v8::V8::initialize();
// TODO(ry) This makes WASM compile synchronously. Eventually we should
// remove this to make it work asynchronously too. But that requires getting
// PumpMessageLoop and RunMicrotasks setup correctly.
// See https://github.com/denoland/deno/issues/2544
let argv = vec![
"".to_string(),
"--no-wasm-async-compilation".to_string(),
"--harmony-top-level-await".to_string(),
];
v8::V8::set_flags_from_command_line(argv);
}
impl Isolate {
/// startup_data defines the snapshot or script used at startup to initialize
/// the isolate.
pub fn new(startup_data: StartupData, will_snapshot: bool) -> Box<Self> {
DENO_INIT.call_once(|| {
unsafe { v8_init() };
});
let mut load_snapshot: Option<SnapshotConfig> = None;
let mut startup_script: Option<OwnedScript> = None;
// Separate into Option values for each startup type
match startup_data {
StartupData::Script(d) => {
startup_script = Some(d.into());
}
StartupData::Snapshot(d) => {
load_snapshot = Some(d.into());
}
StartupData::OwnedSnapshot(d) => {
load_snapshot = Some(d.into());
}
StartupData::None => {}
};
let mut global_context = v8::Global::<v8::Context>::new();
let (mut isolate, maybe_snapshot_creator) = if will_snapshot {
// TODO(ry) Support loading snapshots before snapshotting.
assert!(load_snapshot.is_none());
let mut creator =
v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES));
let isolate = unsafe { creator.get_owned_isolate() };
let isolate = Isolate::setup_isolate(isolate);
let mut locker = v8::Locker::new(&isolate);
{
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
let context = v8::Context::new(scope);
// context.enter();
global_context.set(scope, context);
creator.set_default_context(context);
bindings::initialize_context(scope, context);
// context.exit();
}
(isolate, Some(creator))
} else {
let mut params = v8::Isolate::create_params();
params.set_array_buffer_allocator(v8::new_default_allocator());
params.set_external_references(&bindings::EXTERNAL_REFERENCES);
if let Some(ref mut snapshot) = load_snapshot {
params.set_snapshot_blob(snapshot);
}
let load_snapshot_is_null = load_snapshot.is_none();
let isolate = v8::Isolate::new(params);
let isolate = Isolate::setup_isolate(isolate);
{
let mut locker = v8::Locker::new(&isolate);
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
let context = v8::Context::new(scope);
if load_snapshot_is_null {
// If no snapshot is provided, we initialize the context with empty
// main source code and source maps.
bindings::initialize_context(scope, context);
}
global_context.set(scope, context);
}
(isolate, None)
};
let shared = SharedQueue::new(RECOMMENDED_SIZE);
let needs_init = true;
let core_isolate = Self {
v8_isolate: None,
last_exception: None,
last_exception_handle: v8::Global::<v8::Value>::new(),
global_context,
pending_promise_map: HashMap::new(),
shared_ab: v8::Global::<v8::SharedArrayBuffer>::new(),
js_recv_cb: v8::Global::<v8::Function>::new(),
shared_response_buf: v8::Global::<v8::ArrayBuffer>::new(),
snapshot_creator: maybe_snapshot_creator,
snapshot: load_snapshot,
has_snapshotted: false,
shared_isolate_handle: Arc::new(Mutex::new(None)),
js_error_create: Arc::new(CoreJSError::from_v8_exception),
shared,
needs_init,
pending_ops: FuturesUnordered::new(),
have_unpolled_ops: false,
startup_script,
op_registry: Arc::new(OpRegistry::new()),
waker: AtomicWaker::new(),
error_handler: None,
};
let mut boxed_isolate = Box::new(core_isolate);
{
let core_isolate_ptr: *mut Self = Box::into_raw(boxed_isolate);
unsafe { isolate.set_data(0, core_isolate_ptr as *mut c_void) };
boxed_isolate = unsafe { Box::from_raw(core_isolate_ptr) };
let shared_handle_ptr = &mut *isolate;
*boxed_isolate.shared_isolate_handle.lock().unwrap() =
Some(shared_handle_ptr);
boxed_isolate.v8_isolate = Some(isolate);
}
boxed_isolate
}
pub fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate {
isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10);
isolate.set_promise_reject_callback(bindings::promise_reject_callback);
isolate.add_message_listener(bindings::message_callback);
isolate
}
pub fn handle_exception<'a>(
&mut self,
scope: &mut impl v8::ToLocal<'a>,
context: v8::Local<'a, v8::Context>,
exception: v8::Local<'a, v8::Value>,
) {
// TerminateExecution was called
if scope.isolate().is_execution_terminating() {
// cancel exception termination so that the exception can be created
scope.isolate().cancel_terminate_execution();
// maybe make a new exception object
let exception = if exception.is_null_or_undefined() {
let exception_str =
v8::String::new(scope, "execution terminated").unwrap();
v8::error(scope, exception_str)
} else {
exception
};
// handle the exception as if it is a regular exception
self.handle_exception(scope, context, exception);
// re-enable exception termination
scope.isolate().terminate_execution();
return;
}
let json_str = self.encode_exception_as_json(scope, context, exception);
self.last_exception = Some(json_str);
self.last_exception_handle.set(scope, exception);
}
pub fn encode_exception_as_json<'a>(
&mut self,
scope: &mut impl v8::ToLocal<'a>,
context: v8::Local<'a, v8::Context>,
exception: v8::Local<'a, v8::Value>,
) -> String {
let message = v8::create_message(scope, exception);
self.encode_message_as_json(scope, context, message)
}
pub fn encode_message_as_json<'a>(
&mut self,
s: &mut impl v8::ToLocal<'a>,
context: v8::Local<v8::Context>,
message: v8::Local<v8::Message>,
) -> String {
let json_obj = bindings::encode_message_as_object(s, context, message);
let json_string = v8::json::stringify(context, json_obj.into()).unwrap();
json_string.to_rust_string_lossy(s)
}
#[allow(dead_code)]
pub fn run_microtasks(&mut self) {
let isolate = self.v8_isolate.as_mut().unwrap();
let _locker = v8::Locker::new(isolate);
isolate.enter();
isolate.run_microtasks();
isolate.exit();
}
pub fn set_error_handler(&mut self, handler: Box<IsolateErrorHandleFn>) {
self.error_handler = Some(handler);
}
/// Defines the how Deno.core.dispatch() acts.
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
///
/// Requires runtime to explicitly ask for op ids before using any of the ops.
pub fn register_op<F>(&self, name: &str, op: F) -> OpId
where
F: Fn(&[u8], Option<PinnedBuf>) -> CoreOp + Send + Sync + 'static,
{
self.op_registry.register(name, op)
}
/// Allows a callback to be set whenever a V8 exception is made. This allows
/// the caller to wrap the V8Exception into an error. By default this callback
/// is set to CoreJSError::from_v8_exception.
pub fn set_js_error_create<F>(&mut self, f: F)
where
F: Fn(V8Exception) -> ErrBox + 'static,
{
self.js_error_create = Arc::new(f);
}
/// Get a thread safe handle on the isolate.
pub fn shared_isolate_handle(&mut self) -> IsolateHandle {
IsolateHandle {
shared_isolate: self.shared_isolate_handle.clone(),
}
}
/// Executes a bit of built-in JavaScript to provide Deno.sharedQueue.
pub(crate) fn shared_init(&mut self) {
if self.needs_init {
self.needs_init = false;
js_check(
self.execute("shared_queue.js", include_str!("shared_queue.js")),
);
// Maybe execute the startup script.
if let Some(s) = self.startup_script.take() {
self.execute(&s.filename, &s.source).unwrap()
}
}
}
pub fn dispatch_op(
&mut self,
op_id: OpId,
control_buf: &[u8],
zero_copy_buf: Option<PinnedBuf>,
) -> Option<(OpId, Box<[u8]>)> {
let maybe_op = self.op_registry.call(op_id, control_buf, zero_copy_buf);
let op = match maybe_op {
Some(op) => op,
None => {
self.throw_exception(&format!("Unknown op id: {}", op_id));
return None;
}
};
debug_assert_eq!(self.shared.size(), 0);
match op {
Op::Sync(buf) => {
// For sync messages, we always return the response via Deno.core.send's
// return value. Sync messages ignore the op_id.
let op_id = 0;
Some((op_id, buf))
}
Op::Async(fut) => {
let fut2 = fut.map_ok(move |buf| (op_id, buf));
self.pending_ops.push(fut2.boxed());
self.have_unpolled_ops = true;
None
}
}
}
/// Executes traditional JavaScript code (traditional = not ES modules)
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is CoreJSError, however it may be a
/// different type if Isolate::set_js_error_create() has been used.
pub fn execute(
&mut self,
js_filename: &str,
js_source: &str,
) -> Result<(), ErrBox> {
self.shared_init();
let isolate = self.v8_isolate.as_ref().unwrap();
let mut locker = v8::Locker::new(isolate);
assert!(!self.global_context.is_empty());
let mut hs = v8::HandleScope::new(&mut locker);
let s = hs.enter();
let mut context = self.global_context.get(s).unwrap();
context.enter();
let source = v8::String::new(s, js_source).unwrap();
let name = v8::String::new(s, js_filename).unwrap();
let mut try_catch = v8::TryCatch::new(s);
let tc = try_catch.enter();
let origin = bindings::script_origin(s, name);
let mut script =
v8::Script::compile(s, context, source, Some(&origin)).unwrap();
let result = script.run(s, context);
if result.is_none() {
assert!(tc.has_caught());
let exception = tc.exception().unwrap();
self.handle_exception(s, context, exception);
}
context.exit();
self.check_last_exception()
}
pub(crate) fn check_last_exception(&mut self) -> Result<(), ErrBox> {
if self.last_exception.is_none() {
return Ok(());
}
let json_str = self.last_exception.clone().unwrap();
let js_error_create = &*self.js_error_create;
if self.error_handler.is_some() {
// We need to clear last exception to avoid double handling.
self.last_exception = None;
let v8_exception = V8Exception::from_json(&json_str).unwrap();
let js_error = js_error_create(v8_exception);
let handler = self.error_handler.as_mut().unwrap();
handler(js_error)
} else {
let v8_exception = V8Exception::from_json(&json_str).unwrap();
let js_error = js_error_create(v8_exception);
Err(js_error)
}
}
fn check_promise_errors(&mut self) {
let isolate = self.v8_isolate.as_ref().unwrap();
if self.pending_promise_map.is_empty() {
return;
}
let mut locker = v8::Locker::new(isolate);
assert!(!self.global_context.is_empty());
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
let mut context = self.global_context.get(scope).unwrap();
context.enter();
let pending_promises: Vec<(i32, v8::Global<v8::Value>)> =
self.pending_promise_map.drain().collect();
for (_promise_id, mut handle) in pending_promises {
let error = handle.get(scope).expect("Empty error handle");
self.handle_exception(scope, context, error);
handle.reset(scope);
}
context.exit();
}
fn throw_exception(&mut self, text: &str) {
let isolate = self.v8_isolate.as_ref().unwrap();
let mut locker = v8::Locker::new(isolate);
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
let msg = v8::String::new(scope, text).unwrap();
isolate.throw_exception(msg.into());
}
fn async_op_response2(&mut self, op_id: OpId, buf: Box<[u8]>) {
let isolate = self.v8_isolate.as_ref().unwrap();
// println!("deno_execute -> Isolate ptr {:?}", isolate);
let mut locker = v8::Locker::new(isolate);
assert!(!self.global_context.is_empty());
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
let mut context = self.global_context.get(scope).unwrap();
context.enter();
let mut try_catch = v8::TryCatch::new(scope);
let tc = try_catch.enter();
let js_recv_cb = self.js_recv_cb.get(scope);
if js_recv_cb.is_none() {
let msg = "Deno.core.recv has not been called.".to_string();
self.last_exception = Some(msg);
return;
}
let mut argc = 0;
let mut args: Vec<v8::Local<v8::Value>> = vec![];
if !buf.is_empty() {
argc = 2;
let op_id = v8::Integer::new(scope, op_id as i32);
args.push(op_id.into());
let buf = unsafe { bindings::slice_to_uint8array(self, scope, &buf) };
args.push(buf.into());
}
let global = context.global(scope);
let maybe_value =
js_recv_cb
.unwrap()
.call(scope, context, global.into(), argc, args);
if tc.has_caught() {
assert!(maybe_value.is_none());
self.handle_exception(scope, context, tc.exception().unwrap());
}
context.exit();
}
fn async_op_response(
&mut self,
maybe_buf: Option<(OpId, Box<[u8]>)>,
) -> Result<(), ErrBox> {
let (op_id, buf) = match maybe_buf {
None => (0, Vec::with_capacity(0).into_boxed_slice()),
Some((op_id, r)) => (op_id, r),
};
self.async_op_response2(op_id, buf);
self.check_last_exception()
}
/// Takes a snapshot. The isolate should have been created with will_snapshot
/// set to true.
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is CoreJSError, however it may be a
/// different type if Isolate::set_js_error_create() has been used.
pub fn snapshot(&mut self) -> Result<v8::OwnedStartupData, ErrBox> {
assert!(self.snapshot_creator.is_some());
let isolate = self.v8_isolate.as_ref().unwrap();
let mut locker = v8::Locker::new(isolate);
let mut hs = v8::HandleScope::new(&mut locker);
let scope = hs.enter();
self.global_context.reset(scope);
self.shared_response_buf.reset(scope);
let snapshot_creator = self.snapshot_creator.as_mut().unwrap();
let snapshot = snapshot_creator
.create_blob(v8::FunctionCodeHandling::Keep)
.unwrap();
self.has_snapshotted = true;
match self.check_last_exception() {
Ok(..) => Ok(snapshot),
Err(err) => Err(err),
}
}
}
impl Future for Isolate {
type Output = Result<(), ErrBox>;
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let inner = self.get_mut();
inner.waker.register(cx.waker());
inner.shared_init();
let mut overflow_response: Option<(OpId, Buf)> = None;
loop {
// Now handle actual ops.
inner.have_unpolled_ops = false;
#[allow(clippy::match_wild_err_arm)]
match inner.pending_ops.poll_next_unpin(cx) {
Poll::Ready(Some(Err(_))) => panic!("unexpected op error"),
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some(Ok((op_id, buf)))) => {
let successful_push = inner.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
}
}
if inner.shared.size() > 0 {
inner.async_op_response(None)?;
// The other side should have shifted off all the messages.
assert_eq!(inner.shared.size(), 0);
}
if overflow_response.is_some() {
let (op_id, buf) = overflow_response.take().unwrap();
inner.async_op_response(Some((op_id, buf)))?;
}
inner.check_promise_errors();
inner.check_last_exception()?;
// We're idle if pending_ops is empty.
if inner.pending_ops.is_empty() {
Poll::Ready(Ok(()))
} else {
if inner.have_unpolled_ops {
inner.waker.wake();
}
Poll::Pending
}
}
}
/// IsolateHandle is a thread safe handle on an Isolate. It exposed thread safe V8 functions.
#[derive(Clone)]
pub struct IsolateHandle {
shared_isolate: Arc<Mutex<Option<*mut v8::Isolate>>>,
}
unsafe impl Send for IsolateHandle {}
impl IsolateHandle {
/// Terminate the execution of any currently running javascript.
/// After terminating execution it is probably not wise to continue using
/// the isolate.
pub fn terminate_execution(&self) {
if let Some(isolate) = *self.shared_isolate.lock().unwrap() {
let isolate = unsafe { &mut *isolate };
isolate.terminate_execution();
}
}
}
pub fn js_check<T>(r: Result<T, ErrBox>) -> T {
if let Err(e) = r {
panic!(e.to_string());
}
r.unwrap()
}
#[cfg(test)]
pub mod tests {
use super::*;
use futures::future::lazy;
use std::ops::FnOnce;
use std::sync::atomic::{AtomicUsize, Ordering};
pub fn run_in_task<F>(f: F)
where
F: FnOnce(&mut Context) + Send + 'static,
{
futures::executor::block_on(lazy(move |cx| f(cx)));
}
fn poll_until_ready<F>(future: &mut F, max_poll_count: usize) -> F::Output
where
F: Future + Unpin,
{
let mut cx = Context::from_waker(futures::task::noop_waker_ref());
for _ in 0..max_poll_count {
match future.poll_unpin(&mut cx) {
Poll::Pending => continue,
Poll::Ready(val) => return val,
}
}
panic!(
"Isolate still not ready after polling {} times.",
max_poll_count
)
}
pub enum Mode {
Async,
OverflowReqSync,
OverflowResSync,
OverflowReqAsync,
OverflowResAsync,
}
pub fn setup(mode: Mode) -> (Box<Isolate>, Arc<AtomicUsize>) {
let dispatch_count = Arc::new(AtomicUsize::new(0));
let dispatch_count_ = dispatch_count.clone();
let mut isolate = Isolate::new(StartupData::None, false);
let dispatcher =
move |control: &[u8], _zero_copy: Option<PinnedBuf>| -> CoreOp {
dispatch_count_.fetch_add(1, Ordering::Relaxed);
match mode {
Mode::Async => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let buf = vec![43u8, 0, 0, 0].into_boxed_slice();
Op::Async(futures::future::ok(buf).boxed())
}
Mode::OverflowReqSync => {
assert_eq!(control.len(), 100 * 1024 * 1024);
let buf = vec![43u8, 0, 0, 0].into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowResSync => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 99;
let buf = vec.into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowReqAsync => {
assert_eq!(control.len(), 100 * 1024 * 1024);
let buf = vec![43u8, 0, 0, 0].into_boxed_slice();
Op::Async(futures::future::ok(buf).boxed())
}
Mode::OverflowResAsync => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 4;
let buf = vec.into_boxed_slice();
Op::Async(futures::future::ok(buf).boxed())
}
}
};
isolate.register_op("test", dispatcher);
js_check(isolate.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
(isolate, dispatch_count)
}
#[test]
fn test_dispatch() {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"filename.js",
r#"
let control = new Uint8Array([42]);
Deno.core.send(1, control);
async function main() {
Deno.core.send(1, control);
}
main();
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
}
#[test]
fn test_poll_async_delayed_ops() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
nrecv++;
});
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
js_check(isolate.execute(
"check1.js",
r#"
assert(nrecv == 0);
let control = new Uint8Array([42]);
Deno.core.send(1, control);
assert(nrecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
js_check(isolate.execute(
"check2.js",
r#"
assert(nrecv == 1);
Deno.core.send(1, control);
assert(nrecv == 1);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
js_check(isolate.execute("check3.js", "assert(nrecv == 2)"));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
// We are idle, so the next poll should be the last.
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
});
}
#[test]
fn terminate_execution() {
let (tx, rx) = std::sync::mpsc::channel::<bool>();
let tx_clone = tx.clone();
let (mut isolate, _dispatch_count) = setup(Mode::Async);
let shared = isolate.shared_isolate_handle();
let t1 = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
shared.terminate_execution();
// allow shutdown
std::thread::sleep(std::time::Duration::from_millis(200));
// unless reported otherwise the test should fail after this point
tx_clone.send(false).ok();
});
let t2 = std::thread::spawn(move || {
// run an infinite loop
let res = isolate.execute(
"infinite_loop.js",
r#"
let i = 0;
while (true) { i++; }
"#,
);
// execute() terminated, which means terminate_execution() was successful.
tx.send(true).ok();
if let Err(e) = res {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated");
} else {
panic!("should return an error");
}
// make sure the isolate is still unusable
let res = isolate.execute("simple.js", "1+1;");
if let Err(e) = res {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated");
} else {
panic!("should return an error");
}
});
if !rx.recv().unwrap() {
panic!("should have terminated")
}
t1.join().unwrap();
t2.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
let shared = {
// isolate is dropped at the end of this block
let (mut isolate, _dispatch_count) = setup(Mode::Async);
isolate.shared_isolate_handle()
};
// this should not SEGFAULT
shared.terminate_execution();
}
#[test]
fn overflow_req_sync() {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync);
js_check(isolate.execute(
"overflow_req_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 4);
assert(response[0] == 43);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_res_sync() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync);
js_check(isolate.execute(
"overflow_res_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 100 * 1024 * 1024);
assert(response[0] == 99);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_req_async() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync);
js_check(isolate.execute(
"overflow_req_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 4);
assert(buf[0] === 43);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
// Async messages always have null response.
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_async() {
run_in_task(|_cx| {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_multiple_dispatch_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
run_in_task(|_cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_multiple_dispatch_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
// Dispatch another message to verify that pending ops
// are done even if shared space overflows
Deno.core.dispatch(1, control);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 2);"));
});
}
#[test]
fn test_pre_dispatch() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"bad_op_id.js",
r#"
let thrown;
try {
Deno.core.dispatch(100, []);
} catch (e) {
thrown = e;
}
assert(thrown == "Unknown op id: 100");
"#,
));
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn test_js() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
js_check(
isolate.execute(
"shared_queue_test.js",
include_str!("shared_queue_test.js"),
),
);
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn will_snapshot() {
let snapshot = {
let mut isolate = Isolate::new(StartupData::None, true);
js_check(isolate.execute("a.js", "a = 1 + 2"));
let s = isolate.snapshot().unwrap();
drop(isolate);
s
};
let startup_data = StartupData::OwnedSnapshot(snapshot);
let mut isolate2 = Isolate::new(startup_data, false);
js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')"));
}
}