1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-29 10:39:10 -05:00
denoland-deno/core/core_isolate.rs
2020-07-19 01:47:45 +02:00

1191 lines
37 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
// Do not add any dependency to modules.rs!
// modules.rs is complex and should remain decoupled from isolate.rs to keep the
// Isolate struct from becoming too bloating for users who do not need
// asynchronous module loading.
use rusty_v8 as v8;
use crate::bindings;
use crate::ops::*;
use crate::shared_queue::SharedQueue;
use crate::shared_queue::RECOMMENDED_SIZE;
use crate::ErrBox;
use crate::JSError;
use crate::ResourceTable;
use crate::ZeroCopyBuf;
use futures::future::FutureExt;
use futures::stream::FuturesUnordered;
use futures::stream::StreamExt;
use futures::task::AtomicWaker;
use futures::Future;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::From;
use std::mem::forget;
use std::ops::Deref;
use std::ops::DerefMut;
use std::option::Option;
use std::pin::Pin;
use std::rc::Rc;
use std::sync::Once;
use std::task::Context;
use std::task::Poll;
type PendingOpFuture = Pin<Box<dyn Future<Output = (OpId, Buf)>>>;
/// Stores a script used to initialize a Isolate
pub struct Script<'a> {
pub source: &'a str,
pub filename: &'a str,
}
// TODO(ry) It's ugly that we have both Script and OwnedScript. Ideally we
// wouldn't expose such twiddly complexity.
struct OwnedScript {
pub source: String,
pub filename: String,
}
impl From<Script<'_>> for OwnedScript {
fn from(s: Script) -> OwnedScript {
OwnedScript {
source: s.source.to_string(),
filename: s.filename.to_string(),
}
}
}
pub enum Snapshot {
Static(&'static [u8]),
JustCreated(v8::StartupData),
Boxed(Box<[u8]>),
}
/// Represents data used to initialize an isolate at startup, either
/// in the form of a binary snapshot or a JavaScript source file.
pub enum StartupData<'a> {
Script(Script<'a>),
Snapshot(Snapshot),
None,
}
type JSErrorCreateFn = dyn Fn(JSError) -> ErrBox;
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. An CoreIsolate is a Future that can be used with
/// Tokio. The CoreIsolate future completes when there is an error or when all
/// pending ops have completed.
///
/// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust
/// by implementing dispatcher function that takes control buffer and optional zero copy buffer
/// as arguments. An async Op corresponds exactly to a Promise in JavaScript.
pub struct CoreIsolate {
// This is an Option<OwnedIsolate> instead of just OwnedIsolate to workaround
// an safety issue with SnapshotCreator. See CoreIsolate::drop.
v8_isolate: Option<v8::OwnedIsolate>,
snapshot_creator: Option<v8::SnapshotCreator>,
has_snapshotted: bool,
needs_init: bool,
startup_script: Option<OwnedScript>,
}
/// Internal state for CoreIsolate which is stored in one of v8::Isolate's
/// embedder slots.
pub struct CoreIsolateState {
pub resource_table: Rc<RefCell<ResourceTable>>,
pub global_context: Option<v8::Global<v8::Context>>,
pub(crate) shared_ab: Option<v8::Global<v8::SharedArrayBuffer>>,
pub(crate) js_recv_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_macrotask_cb: Option<v8::Global<v8::Function>>,
pub(crate) pending_promise_exceptions: HashMap<i32, v8::Global<v8::Value>>,
pub(crate) js_error_create_fn: Box<JSErrorCreateFn>,
pub(crate) shared: SharedQueue,
pending_ops: FuturesUnordered<PendingOpFuture>,
pending_unref_ops: FuturesUnordered<PendingOpFuture>,
have_unpolled_ops: bool,
pub op_registry: OpRegistry,
waker: AtomicWaker,
}
impl Deref for CoreIsolate {
type Target = v8::Isolate;
fn deref(&self) -> &v8::Isolate {
self.v8_isolate.as_ref().unwrap()
}
}
impl DerefMut for CoreIsolate {
fn deref_mut(&mut self) -> &mut v8::Isolate {
self.v8_isolate.as_mut().unwrap()
}
}
impl Drop for CoreIsolate {
fn drop(&mut self) {
if let Some(creator) = self.snapshot_creator.take() {
// TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns
// a `struct OwnedIsolate` which is not actually owned, hence the need
// here to leak the `OwnedIsolate` in order to avoid a double free and
// the segfault that it causes.
let v8_isolate = self.v8_isolate.take().unwrap();
forget(v8_isolate);
// TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from
// being deallocated if it hasn't created a snapshot yet.
// https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603
// If that assert is removed, this if guard could be removed.
// WARNING: There may be false positive LSAN errors here.
if self.has_snapshotted {
drop(creator);
}
}
}
}
#[allow(clippy::missing_safety_doc)]
pub unsafe fn v8_init() {
let platform = v8::new_default_platform().unwrap();
v8::V8::initialize_platform(platform);
v8::V8::initialize();
// TODO(ry) This makes WASM compile synchronously. Eventually we should
// remove this to make it work asynchronously too. But that requires getting
// PumpMessageLoop and RunMicrotasks setup correctly.
// See https://github.com/denoland/deno/issues/2544
let argv = vec![
"".to_string(),
"--no-wasm-async-compilation".to_string(),
"--harmony-top-level-await".to_string(),
"--experimental-wasm-bigint".to_string(),
];
v8::V8::set_flags_from_command_line(argv);
}
impl CoreIsolate {
/// startup_data defines the snapshot or script used at startup to initialize
/// the isolate.
pub fn new(startup_data: StartupData, will_snapshot: bool) -> Self {
static DENO_INIT: Once = Once::new();
DENO_INIT.call_once(|| {
unsafe { v8_init() };
});
let (startup_script, startup_snapshot) = match startup_data {
StartupData::Script(script) => (Some(script.into()), None),
StartupData::Snapshot(snapshot) => (None, Some(snapshot)),
StartupData::None => (None, None),
};
let global_context;
let (mut isolate, maybe_snapshot_creator) = if will_snapshot {
// TODO(ry) Support loading snapshots before snapshotting.
assert!(startup_snapshot.is_none());
let mut creator =
v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES));
let isolate = unsafe { creator.get_owned_isolate() };
let mut isolate = CoreIsolate::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = bindings::initialize_context(scope);
global_context = v8::Global::new(scope, context);
creator.set_default_context(context);
}
(isolate, Some(creator))
} else {
let mut params = v8::Isolate::create_params()
.external_references(&**bindings::EXTERNAL_REFERENCES);
let snapshot_loaded = if let Some(snapshot) = startup_snapshot {
params = match snapshot {
Snapshot::Static(data) => params.snapshot_blob(data),
Snapshot::JustCreated(data) => params.snapshot_blob(data),
Snapshot::Boxed(data) => params.snapshot_blob(data),
};
true
} else {
false
};
let isolate = v8::Isolate::new(params);
let mut isolate = CoreIsolate::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = if snapshot_loaded {
v8::Context::new(scope)
} else {
// If no snapshot is provided, we initialize the context with empty
// main source code and source maps.
bindings::initialize_context(scope)
};
global_context = v8::Global::new(scope, context);
}
(isolate, None)
};
isolate.set_slot(Rc::new(RefCell::new(CoreIsolateState {
global_context: Some(global_context),
resource_table: Rc::new(RefCell::new(ResourceTable::default())),
pending_promise_exceptions: HashMap::new(),
shared_ab: None,
js_recv_cb: None,
js_macrotask_cb: None,
js_error_create_fn: Box::new(JSError::create),
shared: SharedQueue::new(RECOMMENDED_SIZE),
pending_ops: FuturesUnordered::new(),
pending_unref_ops: FuturesUnordered::new(),
have_unpolled_ops: false,
op_registry: OpRegistry::new(),
waker: AtomicWaker::new(),
})));
Self {
v8_isolate: Some(isolate),
snapshot_creator: maybe_snapshot_creator,
has_snapshotted: false,
needs_init: true,
startup_script,
}
}
fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate {
isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10);
isolate.set_promise_reject_callback(bindings::promise_reject_callback);
isolate
}
pub fn state(isolate: &v8::Isolate) -> Rc<RefCell<CoreIsolateState>> {
let s = isolate.get_slot::<Rc<RefCell<CoreIsolateState>>>().unwrap();
s.clone()
}
/// Executes a bit of built-in JavaScript to provide Deno.sharedQueue.
pub(crate) fn shared_init(&mut self) {
if self.needs_init {
self.needs_init = false;
js_check(self.execute("core.js", include_str!("core.js")));
// Maybe execute the startup script.
if let Some(s) = self.startup_script.take() {
self.execute(&s.filename, &s.source).unwrap()
}
}
}
/// Executes traditional JavaScript code (traditional = not ES modules)
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is JSError, however it may be a
/// different type if CoreIsolate::set_js_error_create_fn() has been used.
pub fn execute(
&mut self,
js_filename: &str,
js_source: &str,
) -> Result<(), ErrBox> {
self.shared_init();
let state_rc = Self::state(self);
let state = state_rc.borrow();
let scope = &mut v8::HandleScope::with_context(
self.v8_isolate.as_mut().unwrap(),
state.global_context.as_ref().unwrap(),
);
drop(state);
let source = v8::String::new(scope, js_source).unwrap();
let name = v8::String::new(scope, js_filename).unwrap();
let origin = bindings::script_origin(scope, name);
let tc_scope = &mut v8::TryCatch::new(scope);
let script = match v8::Script::compile(tc_scope, source, Some(&origin)) {
Some(script) => script,
None => {
let exception = tc_scope.exception().unwrap();
return exception_to_err_result(tc_scope, exception);
}
};
match script.run(tc_scope) {
Some(_) => Ok(()),
None => {
assert!(tc_scope.has_caught());
let exception = tc_scope.exception().unwrap();
exception_to_err_result(tc_scope, exception)
}
}
}
/// Takes a snapshot. The isolate should have been created with will_snapshot
/// set to true.
///
/// ErrBox can be downcast to a type that exposes additional information about
/// the V8 exception. By default this type is JSError, however it may be a
/// different type if CoreIsolate::set_js_error_create_fn() has been used.
pub fn snapshot(&mut self) -> v8::StartupData {
assert!(self.snapshot_creator.is_some());
let state = Self::state(self);
// Note: create_blob() method must not be called from within a HandleScope.
// TODO(piscisaureus): The rusty_v8 type system should enforce this.
state.borrow_mut().global_context.take();
let snapshot_creator = self.snapshot_creator.as_mut().unwrap();
let snapshot = snapshot_creator
.create_blob(v8::FunctionCodeHandling::Keep)
.unwrap();
self.has_snapshotted = true;
snapshot
}
/// Defines the how Deno.core.dispatch() acts.
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
///
/// Requires runtime to explicitly ask for op ids before using any of the ops.
pub fn register_op(
&mut self,
name: &str,
op: impl OpDispatcher + 'static,
) -> OpId {
let state_rc = Self::state(self);
let mut state = state_rc.borrow_mut();
state.op_registry.register(name, op)
}
}
impl Future for CoreIsolate {
type Output = Result<(), ErrBox>;
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let core_isolate = self.get_mut();
core_isolate.shared_init();
let state_rc = Self::state(core_isolate);
{
let state = state_rc.borrow();
state.waker.register(cx.waker());
}
let scope = &mut v8::HandleScope::with_context(
&mut **core_isolate,
state_rc.borrow().global_context.as_ref().unwrap(),
);
check_promise_exceptions(scope)?;
let mut overflow_response: Option<(OpId, Buf)> = None;
loop {
let mut state = state_rc.borrow_mut();
// Now handle actual ops.
state.have_unpolled_ops = false;
let pending_r = state.pending_ops.poll_next_unpin(cx);
match pending_r {
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
loop {
let mut state = state_rc.borrow_mut();
let unref_r = state.pending_unref_ops.poll_next_unpin(cx);
#[allow(clippy::match_wild_err_arm)]
match unref_r {
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
{
let state = state_rc.borrow();
if state.shared.size() > 0 {
drop(state);
async_op_response(scope, None)?;
// The other side should have shifted off all the messages.
let state = state_rc.borrow();
assert_eq!(state.shared.size(), 0);
}
}
{
if let Some((op_id, buf)) = overflow_response.take() {
async_op_response(scope, Some((op_id, buf)))?;
}
drain_macrotasks(scope)?;
check_promise_exceptions(scope)?;
}
let state = state_rc.borrow();
// We're idle if pending_ops is empty.
if state.pending_ops.is_empty() {
Poll::Ready(Ok(()))
} else {
if state.have_unpolled_ops {
state.waker.wake();
}
Poll::Pending
}
}
}
impl CoreIsolateState {
/// Defines the how Deno.core.dispatch() acts.
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
///
/// Requires runtime to explicitly ask for op ids before using any of the ops.
pub fn register_op<F>(&mut self, name: &str, op: F) -> OpId
where
F: OpDispatcher + 'static,
{
self.op_registry.register(name, op)
}
/// Allows a callback to be set whenever a V8 exception is made. This allows
/// the caller to wrap the JSError into an error. By default this callback
/// is set to JSError::create.
pub fn set_js_error_create_fn(
&mut self,
f: impl Fn(JSError) -> ErrBox + 'static,
) {
self.js_error_create_fn = Box::new(f);
}
pub fn dispatch_op<'s>(
&mut self,
scope: &mut v8::HandleScope<'s>,
op_id: OpId,
zero_copy_bufs: &mut [ZeroCopyBuf],
) -> Option<(OpId, Box<[u8]>)> {
let op = if let Some(dispatcher) = self.op_registry.get(op_id) {
dispatcher.dispatch(self, zero_copy_bufs)
} else {
let message =
v8::String::new(scope, &format!("Unknown op id: {}", op_id)).unwrap();
let exception = v8::Exception::type_error(scope, message);
scope.throw_exception(exception);
return None;
};
debug_assert_eq!(self.shared.size(), 0);
match op {
Op::Sync(buf) => {
// For sync messages, we always return the response via Deno.core.send's
// return value. Sync messages ignore the op_id.
let op_id = 0;
Some((op_id, buf))
}
Op::Async(fut) => {
let fut2 = fut.map(move |buf| (op_id, buf));
self.pending_ops.push(fut2.boxed_local());
self.have_unpolled_ops = true;
None
}
Op::AsyncUnref(fut) => {
let fut2 = fut.map(move |buf| (op_id, buf));
self.pending_unref_ops.push(fut2.boxed_local());
self.have_unpolled_ops = true;
None
}
}
}
}
fn async_op_response<'s>(
scope: &mut v8::HandleScope<'s>,
maybe_buf: Option<(OpId, Box<[u8]>)>,
) -> Result<(), ErrBox> {
let context = scope.get_current_context();
let global: v8::Local<v8::Value> = context.global(scope).into();
let js_recv_cb = CoreIsolate::state(scope)
.borrow()
.js_recv_cb
.as_ref()
.map(|cb| v8::Local::new(scope, cb))
.expect("Deno.core.recv has not been called.");
let tc_scope = &mut v8::TryCatch::new(scope);
match maybe_buf {
Some((op_id, buf)) => {
let op_id: v8::Local<v8::Value> =
v8::Integer::new(tc_scope, op_id as i32).into();
let ui8: v8::Local<v8::Value> =
bindings::boxed_slice_to_uint8array(tc_scope, buf).into();
js_recv_cb.call(tc_scope, global, &[op_id, ui8])
}
None => js_recv_cb.call(tc_scope, global, &[]),
};
match tc_scope.exception() {
None => Ok(()),
Some(exception) => exception_to_err_result(tc_scope, exception),
}
}
fn drain_macrotasks<'s>(scope: &mut v8::HandleScope<'s>) -> Result<(), ErrBox> {
let context = scope.get_current_context();
let global: v8::Local<v8::Value> = context.global(scope).into();
let js_macrotask_cb = match CoreIsolate::state(scope)
.borrow_mut()
.js_macrotask_cb
.as_ref()
{
Some(cb) => v8::Local::new(scope, cb),
None => return Ok(()),
};
// Repeatedly invoke macrotask callback until it returns true (done),
// such that ready microtasks would be automatically run before
// next macrotask is processed.
let tc_scope = &mut v8::TryCatch::new(scope);
loop {
let is_done = js_macrotask_cb.call(tc_scope, global, &[]);
if let Some(exception) = tc_scope.exception() {
return exception_to_err_result(tc_scope, exception);
}
let is_done = is_done.unwrap();
if is_done.is_true() {
break;
}
}
Ok(())
}
pub(crate) fn exception_to_err_result<'s, T>(
scope: &mut v8::HandleScope<'s>,
exception: v8::Local<v8::Value>,
) -> Result<T, ErrBox> {
// TODO(piscisaureus): in rusty_v8, `is_execution_terminating()` should
// also be implemented on `struct Isolate`.
let is_terminating_exception =
scope.thread_safe_handle().is_execution_terminating();
let mut exception = exception;
if is_terminating_exception {
// TerminateExecution was called. Cancel exception termination so that the
// exception can be created..
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
scope.thread_safe_handle().cancel_terminate_execution();
// Maybe make a new exception object.
if exception.is_null_or_undefined() {
let message = v8::String::new(scope, "execution terminated").unwrap();
exception = v8::Exception::error(scope, message);
}
}
let js_error = JSError::from_v8_exception(scope, exception);
let state_rc = CoreIsolate::state(scope);
let state = state_rc.borrow();
let js_error = (state.js_error_create_fn)(js_error);
if is_terminating_exception {
// Re-enable exception termination.
// TODO(piscisaureus): in rusty_v8, `terminate_execution()` should also
// be implemented on `struct Isolate`.
scope.thread_safe_handle().terminate_execution();
}
Err(js_error)
}
fn check_promise_exceptions<'s>(
scope: &mut v8::HandleScope<'s>,
) -> Result<(), ErrBox> {
let state_rc = CoreIsolate::state(scope);
let mut state = state_rc.borrow_mut();
if let Some(&key) = state.pending_promise_exceptions.keys().next() {
let handle = state.pending_promise_exceptions.remove(&key).unwrap();
drop(state);
let exception = v8::Local::new(scope, handle);
exception_to_err_result(scope, exception)
} else {
Ok(())
}
}
pub fn js_check<T>(r: Result<T, ErrBox>) -> T {
if let Err(e) = r {
panic!(e.to_string());
}
r.unwrap()
}
#[cfg(test)]
pub mod tests {
use super::*;
use futures::future::lazy;
use std::ops::FnOnce;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
pub fn run_in_task<F>(f: F)
where
F: FnOnce(&mut Context) + Send + 'static,
{
futures::executor::block_on(lazy(move |cx| f(cx)));
}
fn poll_until_ready<F>(future: &mut F, max_poll_count: usize) -> F::Output
where
F: Future + Unpin,
{
let mut cx = Context::from_waker(futures::task::noop_waker_ref());
for _ in 0..max_poll_count {
match future.poll_unpin(&mut cx) {
Poll::Pending => continue,
Poll::Ready(val) => return val,
}
}
panic!(
"CoreIsolate still not ready after polling {} times.",
max_poll_count
)
}
pub enum Mode {
Async,
AsyncUnref,
AsyncZeroCopy(u8),
OverflowReqSync,
OverflowResSync,
OverflowReqAsync,
OverflowResAsync,
}
pub fn setup(mode: Mode) -> (CoreIsolate, Arc<AtomicUsize>) {
let dispatch_count = Arc::new(AtomicUsize::new(0));
let dispatch_count_ = dispatch_count.clone();
let mut isolate = CoreIsolate::new(StartupData::None, false);
let dispatcher = move |_state: &mut CoreIsolateState,
zero_copy: &mut [ZeroCopyBuf]|
-> Op {
dispatch_count_.fetch_add(1, Ordering::Relaxed);
match mode {
Mode::Async => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::AsyncUnref => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let fut = async {
// This future never finish.
futures::future::pending::<()>().await;
vec![43u8].into_boxed_slice()
};
Op::AsyncUnref(fut.boxed())
}
Mode::AsyncZeroCopy(count) => {
assert_eq!(zero_copy.len(), count as usize);
zero_copy.iter().enumerate().for_each(|(idx, buf)| {
assert_eq!(buf.len(), 1);
assert_eq!(idx, buf[0] as usize);
});
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowReqSync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowResSync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 99;
let buf = vec.into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowReqAsync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowResAsync => {
assert_eq!(zero_copy.len(), 1);
assert_eq!(zero_copy[0].len(), 1);
assert_eq!(zero_copy[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 4;
let buf = vec.into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
}
};
isolate.register_op("test", dispatcher);
js_check(isolate.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
(isolate, dispatch_count)
}
#[test]
fn test_dispatch() {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"filename.js",
r#"
let control = new Uint8Array([42]);
Deno.core.send(1, control);
async function main() {
Deno.core.send(1, control);
}
main();
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
}
#[test]
fn test_dispatch_no_zero_copy_buf() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(0));
js_check(isolate.execute(
"filename.js",
r#"
Deno.core.send(1);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_stack_zero_copy_bufs() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(2));
js_check(isolate.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
Deno.core.send(1, zero_copy_a, zero_copy_b);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_heap_zero_copy_bufs() {
let (mut isolate, dispatch_count) = setup(Mode::AsyncZeroCopy(5));
js_check(isolate.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
let zero_copy_c = new Uint8Array([2]);
let zero_copy_d = new Uint8Array([3]);
let zero_copy_e = new Uint8Array([4]);
Deno.core.send(1, zero_copy_a, zero_copy_b, zero_copy_c, zero_copy_d, zero_copy_e);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_poll_async_delayed_ops() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
nrecv++;
});
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
js_check(isolate.execute(
"check1.js",
r#"
assert(nrecv == 0);
let control = new Uint8Array([42]);
Deno.core.send(1, control);
assert(nrecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
js_check(isolate.execute(
"check2.js",
r#"
assert(nrecv == 1);
Deno.core.send(1, control);
assert(nrecv == 1);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
js_check(isolate.execute("check3.js", "assert(nrecv == 2)"));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
// We are idle, so the next poll should be the last.
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
});
}
#[test]
fn test_poll_async_optional_ops() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::AsyncUnref);
js_check(isolate.execute(
"check1.js",
r#"
Deno.core.setAsyncHandler(1, (buf) => {
// This handler will never be called
assert(false);
});
let control = new Uint8Array([42]);
Deno.core.send(1, control);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
// The above op never finish, but isolate can finish
// because the op is an unreffed async op.
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
})
}
#[test]
fn terminate_execution() {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
let v8_isolate_handle =
isolate.v8_isolate.as_mut().unwrap().thread_safe_handle();
let terminator_thread = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
let ok = v8_isolate_handle.terminate_execution();
assert!(ok);
});
// Rn an infinite loop, which should be terminated.
match isolate.execute("infinite_loop.js", "for(;;) {}") {
Ok(_) => panic!("execution should be terminated"),
Err(e) => {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated")
}
};
// Cancel the execution-terminating exception in order to allow script
// execution again.
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
let ok = isolate
.v8_isolate
.as_mut()
.unwrap()
.thread_safe_handle()
.cancel_terminate_execution();
assert!(ok);
// Verify that the isolate usable again.
isolate
.execute("simple.js", "1 + 1")
.expect("execution should be possible again");
terminator_thread.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
let v8_isolate_handle = {
// isolate is dropped at the end of this block
let (mut isolate, _dispatch_count) = setup(Mode::Async);
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
isolate.v8_isolate.as_mut().unwrap().thread_safe_handle()
};
// this should not SEGFAULT
v8_isolate_handle.terminate_execution();
}
#[test]
fn overflow_req_sync() {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqSync);
js_check(isolate.execute(
"overflow_req_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 1);
assert(response[0] == 43);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_res_sync() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResSync);
js_check(isolate.execute(
"overflow_res_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 100 * 1024 * 1024);
assert(response[0] == 99);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_req_async() {
run_in_task(|cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowReqAsync);
js_check(isolate.execute(
"overflow_req_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 1);
assert(buf[0] === 43);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
// Async messages always have null response.
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(match isolate.poll_unpin(cx) {
Poll::Ready(Ok(_)) => true,
_ => false,
});
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_async() {
run_in_task(|_cx| {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
});
}
#[test]
fn overflow_res_multiple_dispatch_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
run_in_task(|_cx| {
let (mut isolate, dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_multiple_dispatch_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
// Dispatch another message to verify that pending ops
// are done even if shared space overflows
Deno.core.dispatch(1, control);
"#,
));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
poll_until_ready(&mut isolate, 3).unwrap();
js_check(isolate.execute("check.js", "assert(asyncRecv == 2);"));
});
}
#[test]
fn test_pre_dispatch() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::OverflowResAsync);
js_check(isolate.execute(
"bad_op_id.js",
r#"
let thrown;
try {
Deno.core.dispatch(100);
} catch (e) {
thrown = e;
}
assert(String(thrown) === "TypeError: Unknown op id: 100");
"#,
));
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn core_test_js() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
js_check(isolate.execute("core_test.js", include_str!("core_test.js")));
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn syntax_error() {
let mut isolate = CoreIsolate::new(StartupData::None, false);
let src = "hocuspocus(";
let r = isolate.execute("i.js", src);
let e = r.unwrap_err();
let js_error = e.downcast::<JSError>().unwrap();
assert_eq!(js_error.end_column, Some(11));
}
#[test]
fn test_encode_decode() {
run_in_task(|mut cx| {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
js_check(isolate.execute(
"encode_decode_test.js",
include_str!("encode_decode_test.js"),
));
if let Poll::Ready(Err(_)) = isolate.poll_unpin(&mut cx) {
unreachable!();
}
});
}
#[test]
fn will_snapshot() {
let snapshot = {
let mut isolate = CoreIsolate::new(StartupData::None, true);
js_check(isolate.execute("a.js", "a = 1 + 2"));
isolate.snapshot()
};
let startup_data = StartupData::Snapshot(Snapshot::JustCreated(snapshot));
let mut isolate2 = CoreIsolate::new(startup_data, false);
js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')"));
}
#[test]
fn test_from_boxed_snapshot() {
let snapshot = {
let mut isolate = CoreIsolate::new(StartupData::None, true);
js_check(isolate.execute("a.js", "a = 1 + 2"));
let snap: &[u8] = &*isolate.snapshot();
Vec::from(snap).into_boxed_slice()
};
let startup_data = StartupData::Snapshot(Snapshot::Boxed(snapshot));
let mut isolate2 = CoreIsolate::new(startup_data, false);
js_check(isolate2.execute("check.js", "if (a != 3) throw Error('x')"));
}
}