1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-01 09:24:20 -04:00
denoland-deno/src/isolate.rs
F001 60c008d23b Isolate::from_raw_ptr and other cleanups.
`Isolate::from_void_ptr` is renamed to `from_raw_ptr`, to keep
consistency with std libs.

It is changed to `unsafe` function, because it can't guarantee that the
input is valid. This guarantee should be provided by the caller.

Its return type is changed to `&Isolate`, because `&mut Isolate` type
requires that no other aliases co-exist in this period of time, this
does not seem true. So I changed most of the methods to accept shared
reference `&Isolate`. It is easier to reason about the correctness of
`unsafe` blocks. As long as these shared references are in the same
thread, these `unsafe` codes are probably correct.
2018-12-05 00:14:53 -08:00

524 lines
15 KiB
Rust

// Copyright 2018 the Deno authors. All rights reserved. MIT license.
// Do not use FlatBuffers in this module.
// TODO Currently this module uses Tokio, but it would be nice if they were
// decoupled.
use deno_dir;
use errors::DenoError;
use errors::DenoResult;
use flags;
use libdeno;
use permissions::DenoPermissions;
use futures::Future;
use libc::c_void;
use std;
use std::cell::Cell;
use std::env;
use std::ffi::CStr;
use std::ffi::CString;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc;
use std::sync::Arc;
use std::time::Duration;
use std::time::Instant;
use tokio;
use tokio_util;
type DenoException<'a> = &'a str;
// Buf represents a byte array returned from a "Op".
// The message might be empty (which will be translated into a null object on
// the javascript side) or it is a heap allocated opaque sequence of bytes.
// Usually a flatbuffer message.
pub type Buf = Box<[u8]>;
// JS promises in Deno map onto a specific Future
// which yields either a DenoError or a byte array.
pub type Op = Future<Item = Buf, Error = DenoError> + Send;
// Returns (is_sync, op)
pub type Dispatch =
fn(isolate: &Isolate, buf: libdeno::deno_buf, data_buf: libdeno::deno_buf)
-> (bool, Box<Op>);
pub struct Isolate {
libdeno_isolate: *const libdeno::isolate,
dispatch: Dispatch,
rx: mpsc::Receiver<(i32, Buf)>,
tx: mpsc::Sender<(i32, Buf)>,
ntasks: Cell<i32>,
timeout_due: Cell<Option<Instant>>,
pub state: Arc<IsolateState>,
}
// Isolate cannot be passed between threads but IsolateState can.
// IsolateState satisfies Send and Sync.
// So any state that needs to be accessed outside the main V8 thread should be
// inside IsolateState.
#[cfg_attr(feature = "cargo-clippy", allow(stutter))]
pub struct IsolateState {
pub dir: deno_dir::DenoDir,
pub argv: Vec<String>,
pub permissions: DenoPermissions,
pub flags: flags::DenoFlags,
pub metrics: Metrics,
}
impl IsolateState {
pub fn new(flags: flags::DenoFlags, argv_rest: Vec<String>) -> Self {
let custom_root = env::var("DENO_DIR").map(|s| s.into()).ok();
Self {
dir: deno_dir::DenoDir::new(flags.reload, custom_root).unwrap(),
argv: argv_rest,
permissions: DenoPermissions::new(&flags),
flags,
metrics: Metrics::default(),
}
}
#[inline]
pub fn check_write(&self, filename: &str) -> DenoResult<()> {
self.permissions.check_write(filename)
}
#[inline]
pub fn check_env(&self) -> DenoResult<()> {
self.permissions.check_env()
}
#[inline]
pub fn check_net(&self, filename: &str) -> DenoResult<()> {
self.permissions.check_net(filename)
}
#[inline]
pub fn check_run(&self) -> DenoResult<()> {
self.permissions.check_run()
}
fn metrics_op_dispatched(
&self,
bytes_sent_control: usize,
bytes_sent_data: usize,
) {
self.metrics.ops_dispatched.fetch_add(1, Ordering::SeqCst);
self
.metrics
.bytes_sent_control
.fetch_add(bytes_sent_control, Ordering::SeqCst);
self
.metrics
.bytes_sent_data
.fetch_add(bytes_sent_data, Ordering::SeqCst);
}
fn metrics_op_completed(&self, bytes_received: usize) {
self.metrics.ops_completed.fetch_add(1, Ordering::SeqCst);
self
.metrics
.bytes_received
.fetch_add(bytes_received, Ordering::SeqCst);
}
}
// AtomicU64 is currently unstable
#[derive(Default)]
pub struct Metrics {
pub ops_dispatched: AtomicUsize,
pub ops_completed: AtomicUsize,
pub bytes_sent_control: AtomicUsize,
pub bytes_sent_data: AtomicUsize,
pub bytes_received: AtomicUsize,
}
static DENO_INIT: std::sync::Once = std::sync::ONCE_INIT;
impl Isolate {
pub fn new(
snapshot: libdeno::deno_buf,
state: Arc<IsolateState>,
dispatch: Dispatch,
) -> Self {
DENO_INIT.call_once(|| {
unsafe { libdeno::deno_init() };
});
let config = libdeno::deno_config {
shared: libdeno::deno_buf::empty(), // TODO Use for message passing.
recv_cb: pre_dispatch,
};
let libdeno_isolate = unsafe { libdeno::deno_new(snapshot, config) };
// This channel handles sending async messages back to the runtime.
let (tx, rx) = mpsc::channel::<(i32, Buf)>();
Self {
libdeno_isolate,
dispatch,
rx,
tx,
ntasks: Cell::new(0),
timeout_due: Cell::new(None),
state,
}
}
#[inline]
pub fn as_raw_ptr(&self) -> *const c_void {
self as *const _ as *const c_void
}
#[inline]
pub unsafe fn from_raw_ptr<'a>(ptr: *const c_void) -> &'a Self {
let ptr = ptr as *const _;
&*ptr
}
#[inline]
pub fn get_timeout_due(&self) -> Option<Instant> {
self.timeout_due.clone().into_inner()
}
#[inline]
pub fn set_timeout_due(&self, inst: Option<Instant>) {
self.timeout_due.set(inst);
}
pub fn execute(
&self,
js_filename: &str,
js_source: &str,
) -> Result<(), DenoException> {
let filename = CString::new(js_filename).unwrap();
let source = CString::new(js_source).unwrap();
let r = unsafe {
libdeno::deno_execute(
self.libdeno_isolate,
self.as_raw_ptr(),
filename.as_ptr(),
source.as_ptr(),
)
};
if r == 0 {
let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) };
let cstr = unsafe { CStr::from_ptr(ptr) };
return Err(cstr.to_str().unwrap());
}
Ok(())
}
pub fn respond(&self, req_id: i32, buf: Buf) {
self.state.metrics_op_completed(buf.len());
// deno_respond will memcpy the buf into V8's heap,
// so borrowing a reference here is sufficient.
unsafe {
libdeno::deno_respond(
self.libdeno_isolate,
self.as_raw_ptr(),
req_id,
buf.as_ref().into(),
)
}
}
fn complete_op(&self, req_id: i32, buf: Buf) {
// Receiving a message on rx exactly corresponds to an async task
// completing.
self.ntasks_decrement();
// Call into JS with the buf.
self.respond(req_id, buf);
}
fn timeout(&self) {
let dummy_buf = libdeno::deno_buf::empty();
unsafe {
libdeno::deno_respond(
self.libdeno_isolate,
self.as_raw_ptr(),
-1,
dummy_buf,
)
}
}
fn check_promise_errors(&self) {
unsafe {
libdeno::deno_check_promise_errors(self.libdeno_isolate);
}
}
// TODO Use Park abstraction? Note at time of writing Tokio default runtime
// does not have new_with_park().
pub fn event_loop(&self) {
// Main thread event loop.
while !self.is_idle() {
match recv_deadline(&self.rx, self.get_timeout_due()) {
Ok((req_id, buf)) => self.complete_op(req_id, buf),
Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
Err(e) => panic!("recv_deadline() failed: {:?}", e),
}
self.check_promise_errors();
}
// Check on done
self.check_promise_errors();
}
#[inline]
fn ntasks_increment(&self) {
assert!(self.ntasks.get() >= 0);
self.ntasks.set(self.ntasks.get() + 1);
}
#[inline]
fn ntasks_decrement(&self) {
self.ntasks.set(self.ntasks.get() - 1);
assert!(self.ntasks.get() >= 0);
}
#[inline]
fn is_idle(&self) -> bool {
self.ntasks.get() == 0 && self.get_timeout_due().is_none()
}
}
impl Drop for Isolate {
fn drop(&mut self) {
unsafe { libdeno::deno_delete(self.libdeno_isolate) }
}
}
// Dereferences the C pointer into the Rust Isolate object.
extern "C" fn pre_dispatch(
user_data: *mut c_void,
req_id: i32,
control_buf: libdeno::deno_buf,
data_buf: libdeno::deno_buf,
) {
// for metrics
let bytes_sent_control = control_buf.len();
let bytes_sent_data = data_buf.len();
// We should ensure that there is no other `&mut Isolate` exists.
// And also, it should be in the same thread with other `&Isolate`s.
let isolate = unsafe { Isolate::from_raw_ptr(user_data) };
let dispatch = isolate.dispatch;
let (is_sync, op) = dispatch(isolate, control_buf, data_buf);
isolate
.state
.metrics_op_dispatched(bytes_sent_control, bytes_sent_data);
if is_sync {
// Execute op synchronously.
let buf = tokio_util::block_on(op).unwrap();
let buf_size = buf.len();
if buf_size == 0 {
// FIXME
isolate.state.metrics_op_completed(buf.len());
} else {
// Set the synchronous response, the value returned from isolate.send().
isolate.respond(req_id, buf);
}
} else {
// Execute op asynchronously.
let tx = isolate.tx.clone();
// TODO Ideally Tokio would could tell us how many tasks are executing, but
// it cannot currently. Therefore we track top-level promises/tasks
// manually.
isolate.ntasks_increment();
let task = op
.and_then(move |buf| {
let sender = tx; // tx is moved to new thread
sender.send((req_id, buf)).expect("tx.send error");
Ok(())
}).map_err(|_| ());
tokio::spawn(task);
}
}
fn recv_deadline<T>(
rx: &mpsc::Receiver<T>,
maybe_due: Option<Instant>,
) -> Result<T, mpsc::RecvTimeoutError> {
match maybe_due {
None => rx.recv().map_err(|e| e.into()),
Some(due) => {
// Subtracting two Instants causes a panic if the resulting duration
// would become negative. Avoid this.
let now = Instant::now();
let timeout = if due > now {
due - now
} else {
Duration::new(0, 0)
};
// TODO: use recv_deadline() instead of recv_timeout() when this
// feature becomes stable/available.
rx.recv_timeout(timeout)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures;
#[test]
fn test_dispatch_sync() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
let state = Arc::new(IsolateState::new(flags, rest_argv));
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, dispatch_sync);
tokio_util::init(|| {
isolate
.execute(
"y.js",
r#"
const m = new Uint8Array([4, 5, 6]);
let n = libdeno.send(m);
if (!(n.byteLength === 3 &&
n[0] === 1 &&
n[1] === 2 &&
n[2] === 3)) {
throw Error("assert error");
}
"#,
).expect("execute error");
isolate.event_loop();
});
}
fn dispatch_sync(
_isolate: &Isolate,
control: libdeno::deno_buf,
data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
assert_eq!(control[0], 4);
assert_eq!(control[1], 5);
assert_eq!(control[2], 6);
assert_eq!(data.len(), 0);
// Send back some sync response.
let vec: Vec<u8> = vec![1, 2, 3];
let control = vec.into_boxed_slice();
let op = Box::new(futures::future::ok(control));
(true, op)
}
#[test]
fn test_metrics_sync() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
let state = Arc::new(IsolateState::new(flags, rest_argv));
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, metrics_dispatch_sync);
tokio_util::init(|| {
// Verify that metrics have been properly initialized.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 0);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 0);
}
isolate
.execute(
"y.js",
r#"
const control = new Uint8Array([4, 5, 6]);
const data = new Uint8Array([42, 43, 44, 45, 46]);
libdeno.send(control, data);
"#,
).expect("execute error");
isolate.event_loop();
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 4);
});
}
#[test]
fn test_metrics_async() {
let argv = vec![String::from("./deno"), String::from("hello.js")];
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
let state = Arc::new(IsolateState::new(flags, rest_argv));
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, metrics_dispatch_async);
tokio_util::init(|| {
// Verify that metrics have been properly initialized.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 0);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 0);
}
isolate
.execute(
"y.js",
r#"
const control = new Uint8Array([4, 5, 6]);
const data = new Uint8Array([42, 43, 44, 45, 46]);
let r = libdeno.send(control, data);
if (r != null) throw Error("expected null");
"#,
).expect("execute error");
// Make sure relevant metrics are updated before task is executed.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
// Note we cannot check ops_completed nor bytes_received because that
// would be a race condition. It might be nice to have use a oneshot
// with metrics_dispatch_async() to properly validate them.
}
isolate.event_loop();
// Make sure relevant metrics are updated after task is executed.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 4);
}
});
}
fn metrics_dispatch_sync(
_isolate: &Isolate,
_control: libdeno::deno_buf,
_data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
// Send back some sync response
let vec: Box<[u8]> = vec![1, 2, 3, 4].into_boxed_slice();
let op = Box::new(futures::future::ok(vec));
(true, op)
}
fn metrics_dispatch_async(
_isolate: &Isolate,
_control: libdeno::deno_buf,
_data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
// Send back some sync response
let vec: Box<[u8]> = vec![1, 2, 3, 4].into_boxed_slice();
let op = Box::new(futures::future::ok(vec));
(false, op)
}
}