1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-15 02:20:15 -05:00
denoland-deno/ext/crypto/x25519.rs

160 lines
4.1 KiB
Rust

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use curve25519_dalek::montgomery::MontgomeryPoint;
use deno_core::op2;
use deno_core::ToJsBuffer;
use elliptic_curve::pkcs8::PrivateKeyInfo;
use elliptic_curve::subtle::ConstantTimeEq;
use rand::rngs::OsRng;
use rand::RngCore;
use spki::der::asn1::BitString;
use spki::der::Decode;
use spki::der::Encode;
#[derive(Debug, thiserror::Error)]
pub enum X25519Error {
#[error("Failed to export key")]
FailedExport,
#[error(transparent)]
Der(#[from] spki::der::Error),
}
#[op2(fast)]
pub fn op_crypto_generate_x25519_keypair(
#[buffer] pkey: &mut [u8],
#[buffer] pubkey: &mut [u8],
) {
// u-coordinate of the base point.
const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
];
let mut rng = OsRng;
rng.fill_bytes(pkey);
// https://www.rfc-editor.org/rfc/rfc7748#section-6.1
// pubkey = x25519(a, 9) which is constant-time Montgomery ladder.
// https://eprint.iacr.org/2014/140.pdf page 4
// https://eprint.iacr.org/2017/212.pdf algorithm 8
// pubkey is in LE order.
let pkey: [u8; 32] = pkey.try_into().expect("Expected byteLength 32");
pubkey.copy_from_slice(&x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES));
}
const MONTGOMERY_IDENTITY: MontgomeryPoint = MontgomeryPoint([0; 32]);
#[op2(fast)]
pub fn op_crypto_derive_bits_x25519(
#[buffer] k: &[u8],
#[buffer] u: &[u8],
#[buffer] secret: &mut [u8],
) -> bool {
let k: [u8; 32] = k.try_into().expect("Expected byteLength 32");
let u: [u8; 32] = u.try_into().expect("Expected byteLength 32");
let sh_sec = x25519_dalek::x25519(k, u);
let point = MontgomeryPoint(sh_sec);
if point.ct_eq(&MONTGOMERY_IDENTITY).unwrap_u8() == 1 {
return true;
}
secret.copy_from_slice(&sh_sec);
false
}
// id-X25519 OBJECT IDENTIFIER ::= { 1 3 101 110 }
pub const X25519_OID: const_oid::ObjectIdentifier =
const_oid::ObjectIdentifier::new_unwrap("1.3.101.110");
#[op2(fast)]
pub fn op_crypto_import_spki_x25519(
#[buffer] key_data: &[u8],
#[buffer] out: &mut [u8],
) -> bool {
// 2-3.
let pk_info = match spki::SubjectPublicKeyInfoRef::try_from(key_data) {
Ok(pk_info) => pk_info,
Err(_) => return false,
};
// 4.
let alg = pk_info.algorithm.oid;
if alg != X25519_OID {
return false;
}
// 5.
if pk_info.algorithm.parameters.is_some() {
return false;
}
out.copy_from_slice(pk_info.subject_public_key.raw_bytes());
true
}
#[op2(fast)]
pub fn op_crypto_import_pkcs8_x25519(
#[buffer] key_data: &[u8],
#[buffer] out: &mut [u8],
) -> bool {
// 2-3.
// This should probably use OneAsymmetricKey instead
let pk_info = match PrivateKeyInfo::from_der(key_data) {
Ok(pk_info) => pk_info,
Err(_) => return false,
};
// 4.
let alg = pk_info.algorithm.oid;
if alg != X25519_OID {
return false;
}
// 5.
if pk_info.algorithm.parameters.is_some() {
return false;
}
// 6.
// CurvePrivateKey ::= OCTET STRING
if pk_info.private_key.len() != 34 {
return false;
}
out.copy_from_slice(&pk_info.private_key[2..]);
true
}
#[op2]
#[serde]
pub fn op_crypto_export_spki_x25519(
#[buffer] pubkey: &[u8],
) -> Result<ToJsBuffer, X25519Error> {
let key_info = spki::SubjectPublicKeyInfo {
algorithm: spki::AlgorithmIdentifierRef {
// id-X25519
oid: X25519_OID,
parameters: None,
},
subject_public_key: BitString::from_bytes(pubkey)?,
};
Ok(
key_info
.to_der()
.map_err(|_| X25519Error::FailedExport)?
.into(),
)
}
#[op2]
#[serde]
pub fn op_crypto_export_pkcs8_x25519(
#[buffer] pkey: &[u8],
) -> Result<ToJsBuffer, X25519Error> {
use rsa::pkcs1::der::Encode;
// This should probably use OneAsymmetricKey instead
let pk_info = rsa::pkcs8::PrivateKeyInfo {
public_key: None,
algorithm: rsa::pkcs8::AlgorithmIdentifierRef {
// id-X25519
oid: X25519_OID,
parameters: None,
},
private_key: pkey, // OCTET STRING
};
let mut buf = Vec::new();
pk_info.encode_to_vec(&mut buf)?;
Ok(buf.into())
}