1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-01 16:51:13 -05:00
denoland-deno/ext/node/ops/crypto/mod.rs
Levente Kurusa b15cc76aba
feat(node/crypto): Diffie Hellman Support (#18943)
Support crypto.DiffieHellman class in ext/node/crypto
2023-05-18 17:05:02 +02:00

1096 lines
28 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use deno_core::error::generic_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::op;
use deno_core::serde_v8;
use deno_core::task::spawn_blocking;
use deno_core::OpState;
use deno_core::ResourceId;
use deno_core::StringOrBuffer;
use deno_core::ZeroCopyBuf;
use hkdf::Hkdf;
use num_bigint::BigInt;
use num_bigint_dig::BigUint;
use num_traits::FromPrimitive;
use rand::distributions::Distribution;
use rand::distributions::Uniform;
use rand::thread_rng;
use rand::Rng;
use std::future::Future;
use std::rc::Rc;
use p224::NistP224;
use p256::NistP256;
use p384::NistP384;
use rsa::padding::PaddingScheme;
use rsa::pkcs8::DecodePrivateKey;
use rsa::pkcs8::DecodePublicKey;
use rsa::PublicKey;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
use secp256k1::ecdh::SharedSecret;
use secp256k1::Secp256k1;
use secp256k1::SecretKey;
mod cipher;
mod dh;
mod digest;
mod primes;
pub mod x509;
#[op]
pub fn op_node_check_prime(num: serde_v8::BigInt, checks: usize) -> bool {
primes::is_probably_prime(&num, checks)
}
#[op]
pub fn op_node_check_prime_bytes(
bytes: &[u8],
checks: usize,
) -> Result<bool, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
Ok(primes::is_probably_prime(&candidate, checks))
}
#[op]
pub async fn op_node_check_prime_async(
num: serde_v8::BigInt,
checks: usize,
) -> Result<bool, AnyError> {
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(spawn_blocking(move || primes::is_probably_prime(&num, checks)).await?)
}
#[op]
pub fn op_node_check_prime_bytes_async(
bytes: &[u8],
checks: usize,
) -> Result<impl Future<Output = Result<bool, AnyError>> + 'static, AnyError> {
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
// TODO(@littledivy): use rayon for CPU-bound tasks
Ok(async move {
Ok(
spawn_blocking(move || primes::is_probably_prime(&candidate, checks))
.await?,
)
})
}
#[op(fast)]
pub fn op_node_create_hash(state: &mut OpState, algorithm: &str) -> u32 {
state
.resource_table
.add(match digest::Context::new(algorithm) {
Ok(context) => context,
Err(_) => return 0,
})
}
#[op(fast)]
pub fn op_node_hash_update(state: &mut OpState, rid: u32, data: &[u8]) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data);
true
}
#[op(fast)]
pub fn op_node_hash_update_str(
state: &mut OpState,
rid: u32,
data: &str,
) -> bool {
let context = match state.resource_table.get::<digest::Context>(rid) {
Ok(context) => context,
_ => return false,
};
context.update(data.as_bytes());
true
}
#[op]
pub fn op_node_hash_digest(
state: &mut OpState,
rid: ResourceId,
) -> Result<ZeroCopyBuf, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
Ok(context.digest()?.into())
}
#[op]
pub fn op_node_hash_digest_hex(
state: &mut OpState,
rid: ResourceId,
) -> Result<String, AnyError> {
let context = state.resource_table.take::<digest::Context>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Hash context is already in use"))?;
let digest = context.digest()?;
Ok(hex::encode(digest))
}
#[op]
pub fn op_node_hash_clone(
state: &mut OpState,
rid: ResourceId,
) -> Result<ResourceId, AnyError> {
let context = state.resource_table.get::<digest::Context>(rid)?;
Ok(state.resource_table.add(context.as_ref().clone()))
}
#[op]
pub fn op_node_private_encrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op]
pub fn op_node_private_decrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
match padding {
1 => Ok(
key
.decrypt(PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.decrypt(PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op]
pub fn op_node_public_encrypt(
key: StringOrBuffer,
msg: StringOrBuffer,
padding: u32,
) -> Result<ZeroCopyBuf, AnyError> {
let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?;
let mut rng = rand::thread_rng();
match padding {
1 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
.into(),
),
4 => Ok(
key
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
.into(),
),
_ => Err(type_error("Unknown padding")),
}
}
#[op(fast)]
pub fn op_node_create_cipheriv(
state: &mut OpState,
algorithm: &str,
key: &[u8],
iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::CipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op(fast)]
pub fn op_node_cipheriv_encrypt(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.encrypt(input, output);
true
}
#[op]
pub fn op_node_cipheriv_final(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::CipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op(fast)]
pub fn op_node_create_decipheriv(
state: &mut OpState,
algorithm: &str,
key: &[u8],
iv: &[u8],
) -> u32 {
state.resource_table.add(
match cipher::DecipherContext::new(algorithm, key, iv) {
Ok(context) => context,
Err(_) => return 0,
},
)
}
#[op(fast)]
pub fn op_node_decipheriv_decrypt(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> bool {
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
Ok(context) => context,
Err(_) => return false,
};
context.decrypt(input, output);
true
}
#[op]
pub fn op_node_decipheriv_final(
state: &mut OpState,
rid: u32,
input: &[u8],
output: &mut [u8],
) -> Result<(), AnyError> {
let context = state.resource_table.take::<cipher::DecipherContext>(rid)?;
let context = Rc::try_unwrap(context)
.map_err(|_| type_error("Cipher context is already in use"))?;
context.r#final(input, output)
}
#[op]
pub fn op_node_sign(
digest: &[u8],
digest_type: &str,
key: StringOrBuffer,
key_type: &str,
key_format: &str,
) -> Result<ZeroCopyBuf, AnyError> {
match key_type {
"rsa" => {
use rsa::pkcs1v15::SigningKey;
use signature::hazmat::PrehashSigner;
let key = match key_format {
"pem" => RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)
.map_err(|_| type_error("Invalid RSA private key"))?,
// TODO(kt3k): Support der and jwk formats
_ => {
return Err(type_error(format!(
"Unsupported key format: {}",
key_format
)))
}
};
Ok(
match digest_type {
"sha224" => {
let signing_key = SigningKey::<sha2::Sha224>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha256" => {
let signing_key = SigningKey::<sha2::Sha256>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha384" => {
let signing_key = SigningKey::<sha2::Sha384>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
"sha512" => {
let signing_key = SigningKey::<sha2::Sha512>::new_with_prefix(key);
signing_key.sign_prehash(digest)?.to_vec()
}
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
}
.into(),
)
}
_ => Err(type_error(format!(
"Signing with {} keys is not supported yet",
key_type
))),
}
}
#[op]
fn op_node_verify(
digest: &[u8],
digest_type: &str,
key: StringOrBuffer,
key_type: &str,
key_format: &str,
signature: &[u8],
) -> Result<bool, AnyError> {
match key_type {
"rsa" => {
use rsa::pkcs1v15::VerifyingKey;
use signature::hazmat::PrehashVerifier;
let key = match key_format {
"pem" => RsaPublicKey::from_public_key_pem((&key).try_into()?)
.map_err(|_| type_error("Invalid RSA public key"))?,
// TODO(kt3k): Support der and jwk formats
_ => {
return Err(type_error(format!(
"Unsupported key format: {}",
key_format
)))
}
};
Ok(match digest_type {
"sha224" => VerifyingKey::<sha2::Sha224>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha256" => VerifyingKey::<sha2::Sha256>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha384" => VerifyingKey::<sha2::Sha384>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
"sha512" => VerifyingKey::<sha2::Sha512>::new_with_prefix(key)
.verify_prehash(digest, &signature.to_vec().try_into()?)
.is_ok(),
_ => {
return Err(type_error(format!(
"Unknown digest algorithm: {}",
digest_type
)))
}
})
}
_ => Err(type_error(format!(
"Verifying with {} keys is not supported yet",
key_type
))),
}
}
fn pbkdf2_sync(
password: &[u8],
salt: &[u8],
iterations: u32,
digest: &str,
derived_key: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! pbkdf2_hmac {
($digest:ty) => {{
pbkdf2::pbkdf2_hmac::<$digest>(password, salt, iterations, derived_key)
}};
}
match digest {
"md4" => pbkdf2_hmac!(md4::Md4),
"md5" => pbkdf2_hmac!(md5::Md5),
"ripemd160" => pbkdf2_hmac!(ripemd::Ripemd160),
"sha1" => pbkdf2_hmac!(sha1::Sha1),
"sha224" => pbkdf2_hmac!(sha2::Sha224),
"sha256" => pbkdf2_hmac!(sha2::Sha256),
"sha384" => pbkdf2_hmac!(sha2::Sha384),
"sha512" => pbkdf2_hmac!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op]
pub fn op_node_pbkdf2(
password: StringOrBuffer,
salt: StringOrBuffer,
iterations: u32,
digest: &str,
derived_key: &mut [u8],
) -> bool {
pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok()
}
#[op]
pub async fn op_node_pbkdf2_async(
password: StringOrBuffer,
salt: StringOrBuffer,
iterations: u32,
digest: String,
keylen: usize,
) -> Result<ZeroCopyBuf, AnyError> {
spawn_blocking(move || {
let mut derived_key = vec![0; keylen];
pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key)
.map(|_| derived_key.into())
})
.await?
}
#[op]
pub fn op_node_generate_secret(buf: &mut [u8]) {
rand::thread_rng().fill(buf);
}
#[op]
pub async fn op_node_generate_secret_async(len: i32) -> ZeroCopyBuf {
spawn_blocking(move || {
let mut buf = vec![0u8; len as usize];
rand::thread_rng().fill(&mut buf[..]);
buf.into()
})
.await
.unwrap()
}
fn hkdf_sync(
hash: &str,
ikm: &[u8],
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
macro_rules! hkdf {
($hash:ty) => {{
let hk = Hkdf::<$hash>::new(Some(salt), ikm);
hk.expand(info, okm)
.map_err(|_| type_error("HKDF-Expand failed"))?;
}};
}
match hash {
"md4" => hkdf!(md4::Md4),
"md5" => hkdf!(md5::Md5),
"ripemd160" => hkdf!(ripemd::Ripemd160),
"sha1" => hkdf!(sha1::Sha1),
"sha224" => hkdf!(sha2::Sha224),
"sha256" => hkdf!(sha2::Sha256),
"sha384" => hkdf!(sha2::Sha384),
"sha512" => hkdf!(sha2::Sha512),
_ => return Err(type_error("Unknown digest")),
}
Ok(())
}
#[op]
pub fn op_node_hkdf(
hash: &str,
ikm: &[u8],
salt: &[u8],
info: &[u8],
okm: &mut [u8],
) -> Result<(), AnyError> {
hkdf_sync(hash, ikm, salt, info, okm)
}
#[op]
pub async fn op_node_hkdf_async(
hash: String,
ikm: ZeroCopyBuf,
salt: ZeroCopyBuf,
info: ZeroCopyBuf,
okm_len: usize,
) -> Result<ZeroCopyBuf, AnyError> {
spawn_blocking(move || {
let mut okm = vec![0u8; okm_len];
hkdf_sync(&hash, &ikm, &salt, &info, &mut okm)?;
Ok(okm.into())
})
.await?
}
use rsa::pkcs1::EncodeRsaPrivateKey;
use rsa::pkcs1::EncodeRsaPublicKey;
use self::primes::Prime;
fn generate_rsa(
modulus_length: usize,
public_exponent: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
let mut rng = rand::thread_rng();
let private_key = RsaPrivateKey::new_with_exp(
&mut rng,
modulus_length,
&rsa::BigUint::from_usize(public_exponent).unwrap(),
)?;
let public_key = private_key.to_public_key();
let private_key_der = private_key.to_pkcs1_der()?.as_bytes().to_vec();
let public_key_der = public_key.to_pkcs1_der()?.to_vec();
Ok((private_key_der.into(), public_key_der.into()))
}
#[op]
pub fn op_node_generate_rsa(
modulus_length: usize,
public_exponent: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
generate_rsa(modulus_length, public_exponent)
}
#[op]
pub async fn op_node_generate_rsa_async(
modulus_length: usize,
public_exponent: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(move || generate_rsa(modulus_length, public_exponent)).await?
}
fn dsa_generate(
modulus_length: usize,
divisor_length: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
let mut rng = rand::thread_rng();
use dsa::pkcs8::EncodePrivateKey;
use dsa::pkcs8::EncodePublicKey;
use dsa::Components;
use dsa::KeySize;
use dsa::SigningKey;
let key_size = match (modulus_length, divisor_length) {
#[allow(deprecated)]
(1024, 160) => KeySize::DSA_1024_160,
(2048, 224) => KeySize::DSA_2048_224,
(2048, 256) => KeySize::DSA_2048_256,
(3072, 256) => KeySize::DSA_3072_256,
_ => return Err(type_error("Invalid modulus_length or divisor_length")),
};
let components = Components::generate(&mut rng, key_size);
let signing_key = SigningKey::generate(&mut rng, components);
let verifying_key = signing_key.verifying_key();
Ok((
signing_key
.to_pkcs8_der()
.map_err(|_| type_error("Not valid pkcs8"))?
.as_bytes()
.to_vec()
.into(),
verifying_key
.to_public_key_der()
.map_err(|_| type_error("Not valid spki"))?
.to_vec()
.into(),
))
}
#[op]
pub fn op_node_dsa_generate(
modulus_length: usize,
divisor_length: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
dsa_generate(modulus_length, divisor_length)
}
#[op]
pub async fn op_node_dsa_generate_async(
modulus_length: usize,
divisor_length: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(move || dsa_generate(modulus_length, divisor_length)).await?
}
fn ec_generate(
named_curve: &str,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
use ring::signature::EcdsaKeyPair;
use ring::signature::KeyPair;
let curve = match named_curve {
"P-256" => &ring::signature::ECDSA_P256_SHA256_FIXED_SIGNING,
"P-384" => &ring::signature::ECDSA_P384_SHA384_FIXED_SIGNING,
_ => return Err(type_error("Unsupported named curve")),
};
let rng = ring::rand::SystemRandom::new();
let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng)
.map_err(|_| type_error("Failed to generate EC key"))?;
let public_key = EcdsaKeyPair::from_pkcs8(curve, pkcs8.as_ref())
.map_err(|_| type_error("Failed to generate EC key"))?
.public_key()
.as_ref()
.to_vec();
Ok((pkcs8.as_ref().to_vec().into(), public_key.into()))
}
#[op]
pub fn op_node_ec_generate(
named_curve: &str,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
ec_generate(named_curve)
}
#[op]
pub async fn op_node_ec_generate_async(
named_curve: String,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(move || ec_generate(&named_curve)).await?
}
fn ed25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
use ring::signature::Ed25519KeyPair;
use ring::signature::KeyPair;
let mut rng = thread_rng();
let mut seed = vec![0u8; 32];
rng.fill(seed.as_mut_slice());
let pair = Ed25519KeyPair::from_seed_unchecked(&seed)
.map_err(|_| type_error("Failed to generate Ed25519 key"))?;
let public_key = pair.public_key().as_ref().to_vec();
Ok((seed.into(), public_key.into()))
}
#[op]
pub fn op_node_ed25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError>
{
ed25519_generate()
}
#[op]
pub async fn op_node_ed25519_generate_async(
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(ed25519_generate).await?
}
fn x25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
// u-coordinate of the base point.
const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
];
let mut pkey = [0; 32];
let mut rng = thread_rng();
rng.fill(pkey.as_mut_slice());
let pkey_copy = pkey.to_vec();
// https://www.rfc-editor.org/rfc/rfc7748#section-6.1
// pubkey = x25519(a, 9) which is constant-time Montgomery ladder.
// https://eprint.iacr.org/2014/140.pdf page 4
// https://eprint.iacr.org/2017/212.pdf algorithm 8
// pubkey is in LE order.
let pubkey = x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES);
Ok((pkey_copy.into(), pubkey.to_vec().into()))
}
#[op]
pub fn op_node_x25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError>
{
x25519_generate()
}
#[op]
pub async fn op_node_x25519_generate_async(
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(x25519_generate).await?
}
fn dh_generate_group(
group_name: &str,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
let dh = match group_name {
"modp5" => dh::DiffieHellman::group::<dh::Modp1536>(),
"modp14" => dh::DiffieHellman::group::<dh::Modp2048>(),
"modp15" => dh::DiffieHellman::group::<dh::Modp3072>(),
"modp16" => dh::DiffieHellman::group::<dh::Modp4096>(),
"modp17" => dh::DiffieHellman::group::<dh::Modp6144>(),
"modp18" => dh::DiffieHellman::group::<dh::Modp8192>(),
_ => return Err(type_error("Unsupported group name")),
};
Ok((
dh.private_key.into_vec().into(),
dh.public_key.into_vec().into(),
))
}
#[op]
pub fn op_node_dh_generate_group(
group_name: &str,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
dh_generate_group(group_name)
}
#[op]
pub async fn op_node_dh_generate_group_async(
group_name: String,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(move || dh_generate_group(&group_name)).await?
}
fn dh_generate(
prime: Option<&[u8]>,
prime_len: usize,
generator: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
let prime = prime
.map(|p| p.into())
.unwrap_or_else(|| Prime::generate(prime_len));
let dh = dh::DiffieHellman::new(prime, generator);
Ok((
dh.private_key.into_vec().into(),
dh.public_key.into_vec().into(),
))
}
#[op]
pub fn op_node_dh_generate(
prime: Option<&[u8]>,
prime_len: usize,
generator: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
dh_generate(prime, prime_len, generator)
}
// TODO(lev): This duplication should be avoided.
#[op]
pub fn op_node_dh_generate2(
prime: ZeroCopyBuf,
prime_len: usize,
generator: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
dh_generate(Some(prime).as_deref(), prime_len, generator)
}
#[op]
pub fn op_node_dh_compute_secret(
prime: ZeroCopyBuf,
private_key: ZeroCopyBuf,
their_public_key: ZeroCopyBuf,
) -> Result<ZeroCopyBuf, AnyError> {
let pubkey: BigUint = BigUint::from_bytes_be(their_public_key.as_ref());
let privkey: BigUint = BigUint::from_bytes_be(private_key.as_ref());
let primei: BigUint = BigUint::from_bytes_be(prime.as_ref());
let shared_secret: BigUint = pubkey.modpow(&privkey, &primei);
Ok(shared_secret.to_bytes_be().into())
}
#[op]
pub async fn op_node_dh_generate_async(
prime: Option<ZeroCopyBuf>,
prime_len: usize,
generator: usize,
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
spawn_blocking(move || dh_generate(prime.as_deref(), prime_len, generator))
.await?
}
#[op]
pub fn op_node_random_int(min: i32, max: i32) -> Result<i32, AnyError> {
let mut rng = rand::thread_rng();
// Uniform distribution is required to avoid Modulo Bias
// https://en.wikipedia.org/wiki/FisherYates_shuffle#Modulo_bias
let dist = Uniform::from(min..max);
Ok(dist.sample(&mut rng))
}
#[allow(clippy::too_many_arguments)]
fn scrypt(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
_maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
// Construct Params
let params = scrypt::Params::new(
cost as u8,
block_size,
parallelization,
keylen as usize,
)
.unwrap();
// Call into scrypt
let res = scrypt::scrypt(&password, &salt, &params, output_buffer);
if res.is_ok() {
Ok(())
} else {
// TODO(lev): key derivation failed, so what?
Err(generic_error("scrypt key derivation failed"))
}
}
#[op]
pub fn op_node_scrypt_sync(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
maxmem: u32,
output_buffer: &mut [u8],
) -> Result<(), AnyError> {
scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
output_buffer,
)
}
#[op]
pub async fn op_node_scrypt_async(
password: StringOrBuffer,
salt: StringOrBuffer,
keylen: u32,
cost: u32,
block_size: u32,
parallelization: u32,
maxmem: u32,
) -> Result<ZeroCopyBuf, AnyError> {
spawn_blocking(move || {
let mut output_buffer = vec![0u8; keylen as usize];
let res = scrypt(
password,
salt,
keylen,
cost,
block_size,
parallelization,
maxmem,
&mut output_buffer,
);
if res.is_ok() {
Ok(output_buffer.into())
} else {
// TODO(lev): rethrow the error?
Err(generic_error("scrypt failure"))
}
})
.await?
}
#[op]
pub fn op_node_ecdh_generate_keys(
curve: &str,
pubbuf: &mut [u8],
privbuf: &mut [u8],
) -> Result<ResourceId, AnyError> {
let mut rng = rand::thread_rng();
match curve {
"secp256k1" => {
let secp = Secp256k1::new();
let (privkey, pubkey) = secp.generate_keypair(&mut rng);
pubbuf.copy_from_slice(&pubkey.serialize_uncompressed());
privbuf.copy_from_slice(&privkey.secret_bytes());
Ok(0)
}
"prime256v1" | "secp256r1" => {
let privkey = elliptic_curve::SecretKey::<NistP256>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
"secp384r1" => {
let privkey = elliptic_curve::SecretKey::<NistP384>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
"secp224r1" => {
let privkey = elliptic_curve::SecretKey::<NistP224>::random(&mut rng);
let pubkey = privkey.public_key();
pubbuf.copy_from_slice(pubkey.to_sec1_bytes().as_ref());
privbuf.copy_from_slice(privkey.to_nonzero_scalar().to_bytes().as_ref());
Ok(0)
}
&_ => todo!(),
}
}
#[op]
pub fn op_node_ecdh_compute_secret(
curve: &str,
this_priv: Option<ZeroCopyBuf>,
their_pub: &mut [u8],
secret: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let this_secret_key = SecretKey::from_slice(
this_priv.expect("no private key provided?").as_ref(),
)
.unwrap();
let their_public_key =
secp256k1::PublicKey::from_slice(their_pub).unwrap();
let shared_secret =
SharedSecret::new(&their_public_key, &this_secret_key);
secret.copy_from_slice(&shared_secret.secret_bytes());
Ok(())
}
"prime256v1" | "secp256r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP256>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP256>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp384r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP384>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP384>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
"secp224r1" => {
let their_public_key =
elliptic_curve::PublicKey::<NistP224>::from_sec1_bytes(their_pub)
.expect("bad public key");
let this_private_key = elliptic_curve::SecretKey::<NistP224>::from_slice(
&this_priv.expect("must supply private key"),
)
.expect("bad private key");
let shared_secret = elliptic_curve::ecdh::diffie_hellman(
this_private_key.to_nonzero_scalar(),
their_public_key.as_affine(),
);
secret.copy_from_slice(shared_secret.raw_secret_bytes());
Ok(())
}
&_ => todo!(),
}
}
#[op]
pub fn op_node_ecdh_compute_public_key(
curve: &str,
privkey: &[u8],
pubkey: &mut [u8],
) -> Result<(), AnyError> {
match curve {
"secp256k1" => {
let secp = Secp256k1::new();
let secret_key = SecretKey::from_slice(privkey).unwrap();
let public_key =
secp256k1::PublicKey::from_secret_key(&secp, &secret_key);
pubkey.copy_from_slice(&public_key.serialize_uncompressed());
Ok(())
}
"prime256v1" | "secp256r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP256>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp384r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP384>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
"secp224r1" => {
let this_private_key =
elliptic_curve::SecretKey::<NistP224>::from_slice(privkey)
.expect("bad private key");
let public_key = this_private_key.public_key();
pubkey.copy_from_slice(public_key.to_sec1_bytes().as_ref());
Ok(())
}
&_ => todo!(),
}
}
#[inline]
fn gen_prime(size: usize) -> ZeroCopyBuf {
primes::Prime::generate(size).0.to_bytes_be().into()
}
#[op]
pub fn op_node_gen_prime(size: usize) -> ZeroCopyBuf {
gen_prime(size)
}
#[op]
pub async fn op_node_gen_prime_async(
size: usize,
) -> Result<ZeroCopyBuf, AnyError> {
Ok(spawn_blocking(move || gen_prime(size)).await?)
}