1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-27 09:39:08 -05:00
denoland-deno/ext/ffi/lib.rs
2022-08-23 09:16:43 +05:30

2449 lines
73 KiB
Rust

// Copyright 2018-2022 the Deno authors. All rights reserved. MIT license.
use core::ptr::NonNull;
use deno_core::anyhow::anyhow;
use deno_core::error::generic_error;
use deno_core::error::range_error;
use deno_core::error::type_error;
use deno_core::error::AnyError;
use deno_core::futures::channel::mpsc;
use deno_core::futures::Future;
use deno_core::include_js_files;
use deno_core::op;
use deno_core::serde_json::json;
use deno_core::serde_json::Value;
use deno_core::serde_v8;
use deno_core::v8;
use deno_core::v8::fast_api;
use deno_core::Extension;
use deno_core::OpState;
use deno_core::Resource;
use deno_core::ResourceId;
use deno_core::ZeroCopyBuf;
use dlopen::raw::Library;
use libffi::middle::Arg;
use libffi::middle::Cif;
use libffi::raw::*;
use serde::Deserialize;
use serde::Serialize;
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::HashMap;
use std::ffi::c_void;
use std::ffi::CStr;
use std::mem::size_of;
use std::os::raw::c_char;
use std::os::raw::c_short;
use std::path::Path;
use std::path::PathBuf;
use std::ptr;
use std::rc::Rc;
use std::sync::mpsc::sync_channel;
#[cfg(not(target_os = "windows"))]
mod jit_trampoline;
#[cfg(not(target_os = "windows"))]
mod tcc;
#[cfg(not(target_pointer_width = "64"))]
compile_error!("platform not supported");
// Assert assumptions made in `prelude.h`
const _: () = {
assert!(size_of::<c_char>() == 1);
assert!(size_of::<c_short>() == 2);
assert!(size_of::<*const ()>() == 8);
};
thread_local! {
static LOCAL_ISOLATE_POINTER: RefCell<*const v8::Isolate> = RefCell::new(ptr::null());
}
const MAX_SAFE_INTEGER: isize = 9007199254740991;
const MIN_SAFE_INTEGER: isize = -9007199254740991;
pub struct Unstable(pub bool);
fn check_unstable(state: &OpState, api_name: &str) {
let unstable = state.borrow::<Unstable>();
if !unstable.0 {
eprintln!(
"Unstable API '{}'. The --unstable flag must be provided.",
api_name
);
std::process::exit(70);
}
}
pub fn check_unstable2(state: &Rc<RefCell<OpState>>, api_name: &str) {
let state = state.borrow();
check_unstable(&state, api_name)
}
pub trait FfiPermissions {
fn check(&mut self, path: Option<&Path>) -> Result<(), AnyError>;
}
#[derive(Clone)]
struct Symbol {
cif: libffi::middle::Cif,
ptr: libffi::middle::CodePtr,
parameter_types: Vec<NativeType>,
result_type: NativeType,
// This is dead code only on Windows
#[allow(dead_code)]
can_callback: bool,
}
#[allow(clippy::non_send_fields_in_send_ty)]
// SAFETY: unsafe trait must have unsafe implementation
unsafe impl Send for Symbol {}
// SAFETY: unsafe trait must have unsafe implementation
unsafe impl Sync for Symbol {}
#[derive(Clone)]
struct PtrSymbol {
cif: libffi::middle::Cif,
ptr: libffi::middle::CodePtr,
}
impl PtrSymbol {
fn new(fn_ptr: usize, def: &ForeignFunction) -> Self {
let ptr = libffi::middle::CodePtr::from_ptr(fn_ptr as _);
let cif = libffi::middle::Cif::new(
def
.parameters
.clone()
.into_iter()
.map(libffi::middle::Type::from),
def.result.into(),
);
Self { cif, ptr }
}
}
#[allow(clippy::non_send_fields_in_send_ty)]
// SAFETY: unsafe trait must have unsafe implementation
unsafe impl Send for PtrSymbol {}
// SAFETY: unsafe trait must have unsafe implementation
unsafe impl Sync for PtrSymbol {}
struct DynamicLibraryResource {
lib: Library,
symbols: HashMap<String, Box<Symbol>>,
}
impl Resource for DynamicLibraryResource {
fn name(&self) -> Cow<str> {
"dynamicLibrary".into()
}
fn close(self: Rc<Self>) {
drop(self)
}
}
impl DynamicLibraryResource {
fn get_static(&self, symbol: String) -> Result<*const c_void, AnyError> {
// By default, Err returned by this function does not tell
// which symbol wasn't exported. So we'll modify the error
// message to include the name of symbol.
//
// SAFETY: The obtained T symbol is the size of a pointer.
match unsafe { self.lib.symbol::<*const c_void>(&symbol) } {
Ok(value) => Ok(Ok(value)),
Err(err) => Err(generic_error(format!(
"Failed to register symbol {}: {}",
symbol, err
))),
}?
}
}
type PendingFfiAsyncWork = Box<dyn FnOnce()>;
struct FfiState {
async_work_sender: mpsc::UnboundedSender<PendingFfiAsyncWork>,
async_work_receiver: mpsc::UnboundedReceiver<PendingFfiAsyncWork>,
active_refed_functions: usize,
}
pub fn init<P: FfiPermissions + 'static>(unstable: bool) -> Extension {
Extension::builder()
.js(include_js_files!(
prefix "deno:ext/ffi",
"00_ffi.js",
))
.ops(vec![
op_ffi_load::decl::<P>(),
op_ffi_get_static::decl(),
op_ffi_call_nonblocking::decl(),
op_ffi_call_ptr::decl::<P>(),
op_ffi_call_ptr_nonblocking::decl::<P>(),
op_ffi_ptr_of::decl::<P>(),
op_ffi_get_buf::decl::<P>(),
op_ffi_buf_copy_into::decl::<P>(),
op_ffi_cstr_read::decl::<P>(),
op_ffi_read_u8::decl::<P>(),
op_ffi_read_i8::decl::<P>(),
op_ffi_read_u16::decl::<P>(),
op_ffi_read_i16::decl::<P>(),
op_ffi_read_u32::decl::<P>(),
op_ffi_read_i32::decl::<P>(),
op_ffi_read_u64::decl::<P>(),
op_ffi_read_i64::decl::<P>(),
op_ffi_read_f32::decl::<P>(),
op_ffi_read_f64::decl::<P>(),
op_ffi_unsafe_callback_create::decl::<P>(),
op_ffi_unsafe_callback_ref::decl(),
])
.event_loop_middleware(|op_state_rc, _cx| {
// FFI callbacks coming in from other threads will call in and get queued.
let mut maybe_scheduling = false;
let mut work_items: Vec<PendingFfiAsyncWork> = vec![];
{
let mut op_state = op_state_rc.borrow_mut();
let ffi_state = op_state.borrow_mut::<FfiState>();
while let Ok(Some(async_work_fut)) =
ffi_state.async_work_receiver.try_next()
{
// Move received items to a temporary vector so that we can drop the `op_state` borrow before we do the work.
work_items.push(async_work_fut);
maybe_scheduling = true;
}
if ffi_state.active_refed_functions > 0 {
maybe_scheduling = true;
}
drop(op_state);
}
while let Some(async_work_fut) = work_items.pop() {
async_work_fut();
}
maybe_scheduling
})
.state(move |state| {
// Stolen from deno_webgpu, is there a better option?
state.put(Unstable(unstable));
let (async_work_sender, async_work_receiver) =
mpsc::unbounded::<PendingFfiAsyncWork>();
state.put(FfiState {
active_refed_functions: 0,
async_work_receiver,
async_work_sender,
});
Ok(())
})
.build()
}
/// Defines the accepted types that can be used as
/// parameters and return values in FFI.
#[derive(Clone, Copy, Debug, Deserialize, Eq, PartialEq)]
#[serde(rename_all = "lowercase")]
enum NativeType {
Void,
U8,
I8,
U16,
I16,
U32,
I32,
U64,
I64,
USize,
ISize,
F32,
F64,
Pointer,
Buffer,
Function,
}
impl From<NativeType> for libffi::middle::Type {
fn from(native_type: NativeType) -> Self {
match native_type {
NativeType::Void => libffi::middle::Type::void(),
NativeType::U8 => libffi::middle::Type::u8(),
NativeType::I8 => libffi::middle::Type::i8(),
NativeType::U16 => libffi::middle::Type::u16(),
NativeType::I16 => libffi::middle::Type::i16(),
NativeType::U32 => libffi::middle::Type::u32(),
NativeType::I32 => libffi::middle::Type::i32(),
NativeType::U64 => libffi::middle::Type::u64(),
NativeType::I64 => libffi::middle::Type::i64(),
NativeType::USize => libffi::middle::Type::usize(),
NativeType::ISize => libffi::middle::Type::isize(),
NativeType::F32 => libffi::middle::Type::f32(),
NativeType::F64 => libffi::middle::Type::f64(),
NativeType::Pointer | NativeType::Buffer | NativeType::Function => {
libffi::middle::Type::pointer()
}
}
}
}
/// Intermediate format for easy translation from NativeType + V8 value
/// to libffi argument types.
#[repr(C)]
union NativeValue {
void_value: (),
u8_value: u8,
i8_value: i8,
u16_value: u16,
i16_value: i16,
u32_value: u32,
i32_value: i32,
u64_value: u64,
i64_value: i64,
usize_value: usize,
isize_value: isize,
f32_value: f32,
f64_value: f64,
pointer: *const u8,
}
impl NativeValue {
unsafe fn as_arg(&self, native_type: NativeType) -> Arg {
match native_type {
NativeType::Void => unreachable!(),
NativeType::U8 => Arg::new(&self.u8_value),
NativeType::I8 => Arg::new(&self.i8_value),
NativeType::U16 => Arg::new(&self.u16_value),
NativeType::I16 => Arg::new(&self.i16_value),
NativeType::U32 => Arg::new(&self.u32_value),
NativeType::I32 => Arg::new(&self.i32_value),
NativeType::U64 => Arg::new(&self.u64_value),
NativeType::I64 => Arg::new(&self.i64_value),
NativeType::USize => Arg::new(&self.usize_value),
NativeType::ISize => Arg::new(&self.isize_value),
NativeType::F32 => Arg::new(&self.f32_value),
NativeType::F64 => Arg::new(&self.f64_value),
NativeType::Pointer | NativeType::Buffer | NativeType::Function => {
Arg::new(&self.pointer)
}
}
}
// SAFETY: native_type must correspond to the type of value represented by the union field
unsafe fn to_value(&self, native_type: NativeType) -> Value {
match native_type {
NativeType::Void => Value::Null,
NativeType::U8 => Value::from(self.u8_value),
NativeType::I8 => Value::from(self.i8_value),
NativeType::U16 => Value::from(self.u16_value),
NativeType::I16 => Value::from(self.i16_value),
NativeType::U32 => Value::from(self.u32_value),
NativeType::I32 => Value::from(self.i32_value),
NativeType::U64 => {
let value = self.u64_value;
if value > MAX_SAFE_INTEGER as u64 {
json!(U32x2::from(self.u64_value))
} else {
Value::from(value)
}
}
NativeType::I64 => {
let value = self.i64_value;
if value > MAX_SAFE_INTEGER as i64 || value < MIN_SAFE_INTEGER as i64 {
json!(U32x2::from(self.i64_value as u64))
} else {
Value::from(value)
}
}
NativeType::USize => {
let value = self.usize_value;
if value > MAX_SAFE_INTEGER as usize {
json!(U32x2::from(self.usize_value as u64))
} else {
Value::from(value)
}
}
NativeType::ISize => {
let value = self.isize_value;
if !(MIN_SAFE_INTEGER..=MAX_SAFE_INTEGER).contains(&value) {
json!(U32x2::from(self.isize_value as u64))
} else {
Value::from(value)
}
}
NativeType::F32 => Value::from(self.f32_value),
NativeType::F64 => Value::from(self.f64_value),
NativeType::Pointer | NativeType::Function | NativeType::Buffer => {
let value = self.pointer as usize;
if value > MAX_SAFE_INTEGER as usize {
json!(U32x2::from(value as u64))
} else {
Value::from(value)
}
}
}
}
// SAFETY: native_type must correspond to the type of value represented by the union field
#[inline]
unsafe fn to_v8<'scope>(
&self,
scope: &mut v8::HandleScope<'scope>,
native_type: NativeType,
) -> serde_v8::Value<'scope> {
match native_type {
NativeType::Void => {
let local_value: v8::Local<v8::Value> = v8::undefined(scope).into();
local_value.into()
}
NativeType::U8 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, self.u8_value as u32).into();
local_value.into()
}
NativeType::I8 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new(scope, self.i8_value as i32).into();
local_value.into()
}
NativeType::U16 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, self.u16_value as u32).into();
local_value.into()
}
NativeType::I16 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new(scope, self.i16_value as i32).into();
local_value.into()
}
NativeType::U32 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, self.u32_value).into();
local_value.into()
}
NativeType::I32 => {
let local_value: v8::Local<v8::Value> =
v8::Integer::new(scope, self.i32_value).into();
local_value.into()
}
NativeType::U64 => {
let value = self.u64_value;
let local_value: v8::Local<v8::Value> =
if value > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, value).into()
} else {
v8::Number::new(scope, value as f64).into()
};
local_value.into()
}
NativeType::I64 => {
let value = self.i64_value;
let local_value: v8::Local<v8::Value> =
if value > MAX_SAFE_INTEGER as i64 || value < MIN_SAFE_INTEGER as i64
{
v8::BigInt::new_from_i64(scope, self.i64_value).into()
} else {
v8::Number::new(scope, value as f64).into()
};
local_value.into()
}
NativeType::USize => {
let value = self.usize_value;
let local_value: v8::Local<v8::Value> =
if value > MAX_SAFE_INTEGER as usize {
v8::BigInt::new_from_u64(scope, value as u64).into()
} else {
v8::Number::new(scope, value as f64).into()
};
local_value.into()
}
NativeType::ISize => {
let value = self.isize_value;
let local_value: v8::Local<v8::Value> =
if !(MIN_SAFE_INTEGER..=MAX_SAFE_INTEGER).contains(&value) {
v8::BigInt::new_from_i64(scope, self.isize_value as i64).into()
} else {
v8::Number::new(scope, value as f64).into()
};
local_value.into()
}
NativeType::F32 => {
let local_value: v8::Local<v8::Value> =
v8::Number::new(scope, self.f32_value as f64).into();
local_value.into()
}
NativeType::F64 => {
let local_value: v8::Local<v8::Value> =
v8::Number::new(scope, self.f64_value).into();
local_value.into()
}
NativeType::Pointer | NativeType::Buffer | NativeType::Function => {
let value = self.pointer as u64;
let local_value: v8::Local<v8::Value> =
if value > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, value).into()
} else {
v8::Number::new(scope, value as f64).into()
};
local_value.into()
}
}
}
}
// SAFETY: unsafe trait must have unsafe implementation
unsafe impl Send for NativeValue {}
#[derive(Serialize, Debug, Clone, Copy)]
struct U32x2(u32, u32);
impl From<u64> for U32x2 {
fn from(value: u64) -> Self {
Self((value >> 32) as u32, value as u32)
}
}
#[derive(Deserialize, Debug)]
#[serde(rename_all = "camelCase")]
struct ForeignFunction {
name: Option<String>,
parameters: Vec<NativeType>,
result: NativeType,
#[serde(rename = "nonblocking")]
non_blocking: Option<bool>,
#[serde(rename = "callback")]
#[serde(default = "default_callback")]
callback: bool,
}
fn default_callback() -> bool {
false
}
// ForeignStatic's name and type fields are read and used by
// serde_v8 to determine which variant a ForeignSymbol is.
// They are not used beyond that and are thus marked with underscores.
#[derive(Deserialize, Debug)]
struct ForeignStatic {
#[serde(rename(deserialize = "name"))]
_name: Option<String>,
#[serde(rename(deserialize = "type"))]
_type: String,
}
#[derive(Deserialize, Debug)]
#[serde(untagged)]
enum ForeignSymbol {
ForeignFunction(ForeignFunction),
ForeignStatic(ForeignStatic),
}
#[derive(Deserialize, Debug)]
struct FfiLoadArgs {
path: String,
symbols: HashMap<String, ForeignSymbol>,
}
// `path` is only used on Windows.
#[allow(unused_variables)]
pub(crate) fn format_error(e: dlopen::Error, path: String) -> String {
match e {
#[cfg(target_os = "windows")]
// This calls FormatMessageW with library path
// as replacement for the insert sequences.
// Unlike libstd which passes the FORMAT_MESSAGE_IGNORE_INSERTS
// flag without any arguments.
//
// https://github.com/denoland/deno/issues/11632
dlopen::Error::OpeningLibraryError(e) => {
use std::ffi::OsStr;
use std::os::windows::ffi::OsStrExt;
use winapi::shared::minwindef::DWORD;
use winapi::shared::winerror::ERROR_INSUFFICIENT_BUFFER;
use winapi::um::errhandlingapi::GetLastError;
use winapi::um::winbase::FormatMessageW;
use winapi::um::winbase::FORMAT_MESSAGE_ARGUMENT_ARRAY;
use winapi::um::winbase::FORMAT_MESSAGE_FROM_SYSTEM;
use winapi::um::winnt::LANG_SYSTEM_DEFAULT;
use winapi::um::winnt::MAKELANGID;
use winapi::um::winnt::SUBLANG_SYS_DEFAULT;
let err_num = match e.raw_os_error() {
Some(err_num) => err_num,
// This should never hit unless dlopen changes its error type.
None => return e.to_string(),
};
// Language ID (0x0800)
let lang_id =
MAKELANGID(LANG_SYSTEM_DEFAULT, SUBLANG_SYS_DEFAULT) as DWORD;
let mut buf = vec![0; 500];
let path = OsStr::new(&path)
.encode_wide()
.chain(Some(0).into_iter())
.collect::<Vec<_>>();
let arguments = [path.as_ptr()];
loop {
// SAFETY:
// winapi call to format the error message
let length = unsafe {
FormatMessageW(
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ARGUMENT_ARRAY,
std::ptr::null_mut(),
err_num as DWORD,
lang_id as DWORD,
buf.as_mut_ptr(),
buf.len() as DWORD,
arguments.as_ptr() as _,
)
};
if length == 0 {
// SAFETY:
// winapi call to get the last error message
let err_num = unsafe { GetLastError() };
if err_num == ERROR_INSUFFICIENT_BUFFER {
buf.resize(buf.len() * 2, 0);
continue;
}
// Something went wrong, just return the original error.
return e.to_string();
}
let msg = String::from_utf16_lossy(&buf[..length as usize]);
return msg;
}
}
_ => e.to_string(),
}
}
#[op(v8)]
fn op_ffi_load<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
args: FfiLoadArgs,
) -> Result<(ResourceId, serde_v8::Value<'scope>), AnyError>
where
FP: FfiPermissions + 'static,
{
let path = args.path;
check_unstable(state, "Deno.dlopen");
let permissions = state.borrow_mut::<FP>();
permissions.check(Some(&PathBuf::from(&path)))?;
let lib = Library::open(&path).map_err(|e| {
dlopen::Error::OpeningLibraryError(std::io::Error::new(
std::io::ErrorKind::Other,
format_error(e, path),
))
})?;
let mut resource = DynamicLibraryResource {
lib,
symbols: HashMap::new(),
};
let obj = v8::Object::new(scope);
for (symbol_key, foreign_symbol) in args.symbols {
match foreign_symbol {
ForeignSymbol::ForeignStatic(_) => {
// No-op: Statics will be handled separately and are not part of the Rust-side resource.
}
ForeignSymbol::ForeignFunction(foreign_fn) => {
let symbol = match &foreign_fn.name {
Some(symbol) => symbol,
None => &symbol_key,
};
// By default, Err returned by this function does not tell
// which symbol wasn't exported. So we'll modify the error
// message to include the name of symbol.
let fn_ptr =
// SAFETY: The obtained T symbol is the size of a pointer.
match unsafe { resource.lib.symbol::<*const c_void>(symbol) } {
Ok(value) => Ok(value),
Err(err) => Err(generic_error(format!(
"Failed to register symbol {}: {}",
symbol, err
))),
}?;
let ptr = libffi::middle::CodePtr::from_ptr(fn_ptr as _);
let cif = libffi::middle::Cif::new(
foreign_fn
.parameters
.clone()
.into_iter()
.map(libffi::middle::Type::from),
foreign_fn.result.into(),
);
let func_key = v8::String::new(scope, &symbol_key).unwrap();
let sym = Box::new(Symbol {
cif,
ptr,
parameter_types: foreign_fn.parameters,
result_type: foreign_fn.result,
can_callback: foreign_fn.callback,
});
resource.symbols.insert(symbol_key, sym.clone());
match foreign_fn.non_blocking {
// Generate functions for synchronous calls.
Some(false) | None => {
let function = make_sync_fn(scope, sym);
obj.set(scope, func_key.into(), function.into());
}
// This optimization is not yet supported for non-blocking calls.
_ => {}
};
}
}
}
let rid = state.resource_table.add(resource);
Ok((
rid,
serde_v8::Value {
v8_value: obj.into(),
},
))
}
pub struct FfiFastCallTemplate {
args: Box<[fast_api::Type]>,
ret: fast_api::CType,
symbol_ptr: *const c_void,
}
impl fast_api::FastFunction for FfiFastCallTemplate {
fn function(&self) -> *const c_void {
self.symbol_ptr
}
fn args(&self) -> &'static [fast_api::Type] {
Box::leak(self.args.clone())
}
fn return_type(&self) -> fast_api::CType {
self.ret
}
}
impl From<&NativeType> for fast_api::Type {
fn from(native_type: &NativeType) -> Self {
match native_type {
NativeType::U8 | NativeType::U16 | NativeType::U32 => {
fast_api::Type::Uint32
}
NativeType::I8 | NativeType::I16 | NativeType::I32 => {
fast_api::Type::Int32
}
NativeType::F32 => fast_api::Type::Float32,
NativeType::F64 => fast_api::Type::Float64,
NativeType::Void => fast_api::Type::Void,
NativeType::I64 => fast_api::Type::Int64,
NativeType::U64 => fast_api::Type::Uint64,
NativeType::ISize => fast_api::Type::Int64,
NativeType::USize | NativeType::Pointer | NativeType::Function => {
fast_api::Type::Uint64
}
NativeType::Buffer => fast_api::Type::TypedArray(fast_api::CType::Uint8),
}
}
}
fn needs_unwrap(rv: NativeType) -> bool {
matches!(
rv,
NativeType::Function
| NativeType::Pointer
| NativeType::Buffer
| NativeType::I64
| NativeType::ISize
| NativeType::U64
| NativeType::USize
)
}
fn is_i64(rv: NativeType) -> bool {
matches!(rv, NativeType::I64 | NativeType::ISize)
}
// Create a JavaScript function for synchronous FFI call to
// the given symbol.
fn make_sync_fn<'s>(
scope: &mut v8::HandleScope<'s>,
sym: Box<Symbol>,
) -> v8::Local<'s, v8::Function> {
#[cfg(not(target_os = "windows"))]
let mut fast_ffi_templ: Option<FfiFastCallTemplate> = None;
#[cfg(target_os = "windows")]
let fast_ffi_templ: Option<FfiFastCallTemplate> = None;
#[cfg(not(target_os = "windows"))]
let mut fast_allocations: Option<*mut ()> = None;
#[cfg(not(target_os = "windows"))]
if !sym.can_callback {
let needs_unwrap = needs_unwrap(sym.result_type);
let ret = match needs_unwrap {
true => fast_api::Type::Void,
false => fast_api::Type::from(&sym.result_type),
};
let mut args = sym
.parameter_types
.iter()
.map(|t| t.into())
.collect::<Vec<_>>();
// recv
args.insert(0, fast_api::Type::V8Value);
if needs_unwrap {
args.push(fast_api::Type::TypedArray(fast_api::CType::Int32));
}
let symbol_trampoline =
jit_trampoline::gen_trampoline(sym.clone()).expect("gen_trampoline");
fast_ffi_templ = Some(FfiFastCallTemplate {
args: args.into_boxed_slice(),
ret: (&ret).into(),
symbol_ptr: symbol_trampoline.addr,
});
fast_allocations = Some(Box::into_raw(symbol_trampoline) as *mut ());
}
let sym = Box::leak(sym);
let builder = v8::FunctionTemplate::builder(
|scope: &mut v8::HandleScope,
args: v8::FunctionCallbackArguments,
mut rv: v8::ReturnValue| {
let external: v8::Local<v8::External> =
args.data().unwrap().try_into().unwrap();
// SAFETY: The pointer will not be deallocated until the function is
// garbage collected.
let symbol = unsafe { &*(external.value() as *const Symbol) };
let needs_unwrap = match needs_unwrap(symbol.result_type) {
true => Some(args.get(symbol.parameter_types.len() as i32)),
false => None,
};
match ffi_call_sync(scope, args, symbol) {
Ok(result) => {
match needs_unwrap {
Some(v) => {
let view: v8::Local<v8::ArrayBufferView> = v.try_into().unwrap();
let backing_store =
view.buffer(scope).unwrap().get_backing_store();
if is_i64(symbol.result_type) {
// SAFETY: v8::SharedRef<v8::BackingStore> is similar to Arc<[u8]>,
// it points to a fixed continuous slice of bytes on the heap.
let bs = unsafe {
&mut *(&backing_store[..] as *const _ as *mut [u8]
as *mut i64)
};
// SAFETY: We already checked that type == I64
let value = unsafe { result.i64_value };
*bs = value;
} else {
// SAFETY: v8::SharedRef<v8::BackingStore> is similar to Arc<[u8]>,
// it points to a fixed continuous slice of bytes on the heap.
let bs = unsafe {
&mut *(&backing_store[..] as *const _ as *mut [u8]
as *mut u64)
};
// SAFETY: We checked that type == U64
let value = unsafe { result.u64_value };
*bs = value;
}
}
None => {
// SAFETY: Same return type declared to libffi; trust user to have it right beyond that.
let result = unsafe { result.to_v8(scope, symbol.result_type) };
rv.set(result.v8_value);
}
}
}
Err(err) => {
deno_core::_ops::throw_type_error(scope, err.to_string());
}
};
},
)
.data(v8::External::new(scope, sym as *mut Symbol as *mut _).into());
let func = if let Some(fast_ffi_templ) = fast_ffi_templ {
builder.build_fast(scope, &fast_ffi_templ, None)
} else {
builder.build(scope)
};
let func = func.get_function(scope).unwrap();
let weak = v8::Weak::with_finalizer(
scope,
func,
Box::new(move |_| {
// SAFETY: This is never called twice. pointer obtained
// from Box::into_raw, hence, satisfies memory layout requirements.
unsafe {
Box::from_raw(sym);
#[cfg(not(target_os = "windows"))]
if let Some(fast_allocations) = fast_allocations {
Box::from_raw(fast_allocations as *mut jit_trampoline::Allocation);
}
}
}),
);
weak.to_local(scope).unwrap()
}
#[inline]
fn ffi_parse_u8_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let u8_value = v8::Local::<v8::Uint32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI u8 type, expected unsigned integer"))?
.value() as u8;
Ok(NativeValue { u8_value })
}
#[inline]
fn ffi_parse_i8_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let i8_value = v8::Local::<v8::Int32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI i8 type, expected integer"))?
.value() as i8;
Ok(NativeValue { i8_value })
}
#[inline]
fn ffi_parse_u16_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let u16_value = v8::Local::<v8::Uint32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI u16 type, expected unsigned integer"))?
.value() as u16;
Ok(NativeValue { u16_value })
}
#[inline]
fn ffi_parse_i16_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let i16_value = v8::Local::<v8::Int32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI i16 type, expected integer"))?
.value() as i16;
Ok(NativeValue { i16_value })
}
#[inline]
fn ffi_parse_u32_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let u32_value = v8::Local::<v8::Uint32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI u32 type, expected unsigned integer"))?
.value() as u32;
Ok(NativeValue { u32_value })
}
#[inline]
fn ffi_parse_i32_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let i32_value = v8::Local::<v8::Int32>::try_from(arg)
.map_err(|_| type_error("Invalid FFI i32 type, expected integer"))?
.value() as i32;
Ok(NativeValue { i32_value })
}
#[inline]
fn ffi_parse_u64_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, so optimise slow call for this case.
// 2. Number: Common, supported by Fast API, so let that be the optimal case.
let u64_value: u64 = if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg)
{
value.u64_value().0
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as u64
} else {
return Err(type_error(
"Invalid FFI u64 type, expected unsigned integer",
));
};
Ok(NativeValue { u64_value })
}
#[inline]
fn ffi_parse_i64_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, so optimise slow call for this case.
// 2. Number: Common, supported by Fast API, so let that be the optimal case.
let i64_value: i64 = if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg)
{
value.i64_value().0
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as i64
} else {
return Err(type_error("Invalid FFI i64 type, expected integer"));
};
Ok(NativeValue { i64_value })
}
#[inline]
fn ffi_parse_usize_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, so optimise slow call for this case.
// 2. Number: Common, supported by Fast API, so let that be the optimal case.
let usize_value: usize =
if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg) {
value.u64_value().0 as usize
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as usize
} else {
return Err(type_error("Invalid FFI usize type, expected integer"));
};
Ok(NativeValue { usize_value })
}
#[inline]
fn ffi_parse_isize_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, so optimise slow call for this case.
// 2. Number: Common, supported by Fast API, so let that be the optimal case.
let isize_value: isize =
if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg) {
value.i64_value().0 as isize
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as isize
} else {
return Err(type_error("Invalid FFI isize type, expected integer"));
};
Ok(NativeValue { isize_value })
}
#[inline]
fn ffi_parse_f32_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let f32_value = v8::Local::<v8::Number>::try_from(arg)
.map_err(|_| type_error("Invalid FFI f32 type, expected number"))?
.value() as f32;
Ok(NativeValue { f32_value })
}
#[inline]
fn ffi_parse_f64_arg(
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
let f64_value = v8::Local::<v8::Number>::try_from(arg)
.map_err(|_| type_error("Invalid FFI f64 type, expected number"))?
.value() as f64;
Ok(NativeValue { f64_value })
}
#[inline]
fn ffi_parse_pointer_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, optimise this case.
// 2. Number: Common and supported by Fast API.
// 3. Null: Very uncommon / can be represented by a 0.
let pointer = if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg) {
value.u64_value().0 as usize as *const u8
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as usize as *const u8
} else if arg.is_null() {
ptr::null()
} else {
return Err(type_error(
"Invalid FFI pointer type, expected null, integer or BigInt",
));
};
Ok(NativeValue { pointer })
}
#[inline]
fn ffi_parse_buffer_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. ArrayBuffer: Fairly common and not supported by Fast API, optimise this case.
// 2. ArrayBufferView: Common and supported by Fast API
// 5. Null: Very uncommon / can be represented by a 0.
let pointer = if let Ok(value) = v8::Local::<v8::ArrayBuffer>::try_from(arg) {
let backing_store = value.get_backing_store();
&backing_store[..] as *const _ as *const u8
} else if let Ok(value) = v8::Local::<v8::ArrayBufferView>::try_from(arg) {
let byte_offset = value.byte_offset();
let backing_store = value
.buffer(scope)
.ok_or_else(|| {
type_error("Invalid FFI ArrayBufferView, expected data in the buffer")
})?
.get_backing_store();
&backing_store[byte_offset..] as *const _ as *const u8
} else if arg.is_null() {
ptr::null()
} else {
return Err(type_error(
"Invalid FFI buffer type, expected null, ArrayBuffer, or ArrayBufferView",
));
};
Ok(NativeValue { pointer })
}
#[inline]
fn ffi_parse_function_arg(
scope: &mut v8::HandleScope,
arg: v8::Local<v8::Value>,
) -> Result<NativeValue, AnyError> {
// Order of checking:
// 1. BigInt: Uncommon and not supported by Fast API, optimise this case.
// 2. Number: Common and supported by Fast API, optimise this case as second.
// 3. Null: Very uncommon / can be represented by a 0.
let pointer = if let Ok(value) = v8::Local::<v8::BigInt>::try_from(arg) {
value.u64_value().0 as usize as *const u8
} else if let Ok(value) = v8::Local::<v8::Number>::try_from(arg) {
value.integer_value(scope).unwrap() as usize as *const u8
} else if arg.is_null() {
ptr::null()
} else {
return Err(type_error(
"Invalid FFI function type, expected null, integer, or BigInt",
));
};
Ok(NativeValue { pointer })
}
fn ffi_parse_args<'scope>(
scope: &mut v8::HandleScope<'scope>,
args: serde_v8::Value<'scope>,
parameter_types: &[NativeType],
) -> Result<Vec<NativeValue>, AnyError>
where
'scope: 'scope,
{
if parameter_types.is_empty() {
return Ok(vec![]);
}
let args = v8::Local::<v8::Array>::try_from(args.v8_value)
.map_err(|_| type_error("Invalid FFI parameters, expected Array"))?;
let mut ffi_args: Vec<NativeValue> =
Vec::with_capacity(parameter_types.len());
for (index, native_type) in parameter_types.iter().enumerate() {
let value = args.get_index(scope, index as u32).unwrap();
match native_type {
NativeType::U8 => {
ffi_args.push(ffi_parse_u8_arg(value)?);
}
NativeType::I8 => {
ffi_args.push(ffi_parse_i8_arg(value)?);
}
NativeType::U16 => {
ffi_args.push(ffi_parse_u16_arg(value)?);
}
NativeType::I16 => {
ffi_args.push(ffi_parse_i16_arg(value)?);
}
NativeType::U32 => {
ffi_args.push(ffi_parse_u32_arg(value)?);
}
NativeType::I32 => {
ffi_args.push(ffi_parse_i32_arg(value)?);
}
NativeType::U64 => {
ffi_args.push(ffi_parse_u64_arg(scope, value)?);
}
NativeType::I64 => {
ffi_args.push(ffi_parse_i64_arg(scope, value)?);
}
NativeType::USize => {
ffi_args.push(ffi_parse_usize_arg(scope, value)?);
}
NativeType::ISize => {
ffi_args.push(ffi_parse_isize_arg(scope, value)?);
}
NativeType::F32 => {
ffi_args.push(ffi_parse_f32_arg(value)?);
}
NativeType::F64 => {
ffi_args.push(ffi_parse_f64_arg(value)?);
}
NativeType::Buffer => {
ffi_args.push(ffi_parse_buffer_arg(scope, value)?);
}
NativeType::Pointer => {
ffi_args.push(ffi_parse_pointer_arg(scope, value)?);
}
NativeType::Function => {
ffi_args.push(ffi_parse_function_arg(scope, value)?);
}
NativeType::Void => {
unreachable!();
}
}
}
Ok(ffi_args)
}
// A one-off synchronous FFI call.
fn ffi_call_sync<'scope>(
scope: &mut v8::HandleScope<'scope>,
args: v8::FunctionCallbackArguments,
symbol: &Symbol,
) -> Result<NativeValue, AnyError>
where
'scope: 'scope,
{
let Symbol {
parameter_types,
result_type,
cif,
ptr: fun_ptr,
..
} = symbol;
let mut ffi_args: Vec<NativeValue> =
Vec::with_capacity(parameter_types.len());
for (index, native_type) in parameter_types.iter().enumerate() {
let value = args.get(index as i32);
match native_type {
NativeType::U8 => {
ffi_args.push(ffi_parse_u8_arg(value)?);
}
NativeType::I8 => {
ffi_args.push(ffi_parse_i8_arg(value)?);
}
NativeType::U16 => {
ffi_args.push(ffi_parse_u16_arg(value)?);
}
NativeType::I16 => {
ffi_args.push(ffi_parse_i16_arg(value)?);
}
NativeType::U32 => {
ffi_args.push(ffi_parse_u32_arg(value)?);
}
NativeType::I32 => {
ffi_args.push(ffi_parse_i32_arg(value)?);
}
NativeType::U64 => {
ffi_args.push(ffi_parse_u64_arg(scope, value)?);
}
NativeType::I64 => {
ffi_args.push(ffi_parse_i64_arg(scope, value)?);
}
NativeType::USize => {
ffi_args.push(ffi_parse_usize_arg(scope, value)?);
}
NativeType::ISize => {
ffi_args.push(ffi_parse_isize_arg(scope, value)?);
}
NativeType::F32 => {
ffi_args.push(ffi_parse_f32_arg(value)?);
}
NativeType::F64 => {
ffi_args.push(ffi_parse_f64_arg(value)?);
}
NativeType::Buffer => {
ffi_args.push(ffi_parse_buffer_arg(scope, value)?);
}
NativeType::Pointer => {
ffi_args.push(ffi_parse_pointer_arg(scope, value)?);
}
NativeType::Function => {
ffi_args.push(ffi_parse_function_arg(scope, value)?);
}
NativeType::Void => {
unreachable!();
}
}
}
let call_args: Vec<Arg> = ffi_args.iter().map(Arg::new).collect();
// SAFETY: types in the `Cif` match the actual calling convention and
// types of symbol.
unsafe {
Ok(match result_type {
NativeType::Void => NativeValue {
void_value: cif.call::<()>(*fun_ptr, &call_args),
},
NativeType::U8 => NativeValue {
u8_value: cif.call::<u8>(*fun_ptr, &call_args),
},
NativeType::I8 => NativeValue {
i8_value: cif.call::<i8>(*fun_ptr, &call_args),
},
NativeType::U16 => NativeValue {
u16_value: cif.call::<u16>(*fun_ptr, &call_args),
},
NativeType::I16 => NativeValue {
i16_value: cif.call::<i16>(*fun_ptr, &call_args),
},
NativeType::U32 => NativeValue {
u32_value: cif.call::<u32>(*fun_ptr, &call_args),
},
NativeType::I32 => NativeValue {
i32_value: cif.call::<i32>(*fun_ptr, &call_args),
},
NativeType::U64 => NativeValue {
u64_value: cif.call::<u64>(*fun_ptr, &call_args),
},
NativeType::I64 => NativeValue {
i64_value: cif.call::<i64>(*fun_ptr, &call_args),
},
NativeType::USize => NativeValue {
usize_value: cif.call::<usize>(*fun_ptr, &call_args),
},
NativeType::ISize => NativeValue {
isize_value: cif.call::<isize>(*fun_ptr, &call_args),
},
NativeType::F32 => NativeValue {
f32_value: cif.call::<f32>(*fun_ptr, &call_args),
},
NativeType::F64 => NativeValue {
f64_value: cif.call::<f64>(*fun_ptr, &call_args),
},
NativeType::Pointer | NativeType::Function | NativeType::Buffer => {
NativeValue {
pointer: cif.call::<*const u8>(*fun_ptr, &call_args),
}
}
})
}
}
fn ffi_call(
call_args: Vec<NativeValue>,
cif: &libffi::middle::Cif,
fun_ptr: libffi::middle::CodePtr,
parameter_types: &[NativeType],
result_type: NativeType,
) -> Result<NativeValue, AnyError> {
let call_args: Vec<Arg> = call_args
.iter()
.enumerate()
.map(|(index, ffi_arg)| {
// SAFETY: the union field is initialized
unsafe { ffi_arg.as_arg(*parameter_types.get(index).unwrap()) }
})
.collect();
// SAFETY: types in the `Cif` match the actual calling convention and
// types of symbol.
unsafe {
Ok(match result_type {
NativeType::Void => NativeValue {
void_value: cif.call::<()>(fun_ptr, &call_args),
},
NativeType::U8 => NativeValue {
u8_value: cif.call::<u8>(fun_ptr, &call_args),
},
NativeType::I8 => NativeValue {
i8_value: cif.call::<i8>(fun_ptr, &call_args),
},
NativeType::U16 => NativeValue {
u16_value: cif.call::<u16>(fun_ptr, &call_args),
},
NativeType::I16 => NativeValue {
i16_value: cif.call::<i16>(fun_ptr, &call_args),
},
NativeType::U32 => NativeValue {
u32_value: cif.call::<u32>(fun_ptr, &call_args),
},
NativeType::I32 => NativeValue {
i32_value: cif.call::<i32>(fun_ptr, &call_args),
},
NativeType::U64 => NativeValue {
u64_value: cif.call::<u64>(fun_ptr, &call_args),
},
NativeType::I64 => NativeValue {
i64_value: cif.call::<i64>(fun_ptr, &call_args),
},
NativeType::USize => NativeValue {
usize_value: cif.call::<usize>(fun_ptr, &call_args),
},
NativeType::ISize => NativeValue {
isize_value: cif.call::<isize>(fun_ptr, &call_args),
},
NativeType::F32 => NativeValue {
f32_value: cif.call::<f32>(fun_ptr, &call_args),
},
NativeType::F64 => NativeValue {
f64_value: cif.call::<f64>(fun_ptr, &call_args),
},
NativeType::Pointer | NativeType::Function | NativeType::Buffer => {
NativeValue {
pointer: cif.call::<*const u8>(fun_ptr, &call_args),
}
}
})
}
}
struct UnsafeCallbackResource {
// Closure is never directly touched, but it keeps the C callback alive
// until `close()` method is called.
#[allow(dead_code)]
closure: libffi::middle::Closure<'static>,
info: *const CallbackInfo,
}
impl Resource for UnsafeCallbackResource {
fn name(&self) -> Cow<str> {
"unsafecallback".into()
}
fn close(self: Rc<Self>) {
// SAFETY: This drops the closure and the callback info associated with it.
// Any retained function pointers to the closure become dangling pointers.
// It is up to the user to know that it is safe to call the `close()` on the
// UnsafeCallback instance.
unsafe {
let info = Box::from_raw(self.info as *mut CallbackInfo);
let isolate = info.isolate.as_mut().unwrap();
v8::Global::from_raw(isolate, info.callback);
v8::Global::from_raw(isolate, info.context);
}
}
}
struct CallbackInfo {
pub async_work_sender: mpsc::UnboundedSender<PendingFfiAsyncWork>,
pub callback: NonNull<v8::Function>,
pub context: NonNull<v8::Context>,
pub isolate: *mut v8::Isolate,
}
unsafe extern "C" fn deno_ffi_callback(
cif: &libffi::low::ffi_cif,
result: &mut c_void,
args: *const *const c_void,
info: &CallbackInfo,
) {
LOCAL_ISOLATE_POINTER.with(|s| {
if ptr::eq(*s.borrow(), info.isolate) {
// Own isolate thread, okay to call directly
do_ffi_callback(
cif,
result,
args,
info.callback,
info.context,
info.isolate,
);
} else {
let async_work_sender = &info.async_work_sender;
// SAFETY: Safe as this function blocks until `do_ffi_callback` completes and a response message is received.
let cif: &'static libffi::low::ffi_cif = std::mem::transmute(cif);
let result: &'static mut c_void = std::mem::transmute(result);
let info: &'static CallbackInfo = std::mem::transmute(info);
let (response_sender, response_receiver) = sync_channel::<()>(0);
let fut = Box::new(move || {
do_ffi_callback(
cif,
result,
args,
info.callback,
info.context,
info.isolate,
);
response_sender.send(()).unwrap();
});
async_work_sender.unbounded_send(fut).unwrap();
response_receiver.recv().unwrap();
}
});
}
unsafe fn do_ffi_callback(
cif: &libffi::low::ffi_cif,
result: &mut c_void,
args: *const *const c_void,
callback: NonNull<v8::Function>,
context: NonNull<v8::Context>,
isolate: *mut v8::Isolate,
) {
let isolate = &mut *isolate;
let callback = v8::Global::from_raw(isolate, callback);
let context = std::mem::transmute::<
NonNull<v8::Context>,
v8::Local<v8::Context>,
>(context);
// Call from main thread. If this callback is being triggered due to a
// function call coming from Deno itself, then this callback will build
// ontop of that stack.
// If this callback is being triggered outside of Deno (for example from a
// signal handler) then this will either create an empty new stack if
// Deno currently has nothing running and is waiting for promises to resolve,
// or will (very incorrectly) build ontop of whatever stack exists.
// The callback will even be called through from a `while (true)` liveloop, but
// it somehow cannot change the values that the loop sees, even if they both
// refer the same `let bool_value`.
let mut cb_scope = v8::CallbackScope::new(context);
let scope = &mut v8::HandleScope::new(&mut cb_scope);
let func = callback.open(scope);
let result = result as *mut c_void;
let repr: &[*mut ffi_type] =
std::slice::from_raw_parts(cif.arg_types, cif.nargs as usize);
let vals: &[*const c_void] =
std::slice::from_raw_parts(args, cif.nargs as usize);
let mut params: Vec<v8::Local<v8::Value>> = vec![];
for (repr, val) in repr.iter().zip(vals) {
let value: v8::Local<v8::Value> = match (*(*repr)).type_ as _ {
FFI_TYPE_FLOAT => {
let value = *((*val) as *const f32);
v8::Number::new(scope, value as f64).into()
}
FFI_TYPE_DOUBLE => {
let value = *((*val) as *const f64);
v8::Number::new(scope, value).into()
}
FFI_TYPE_SINT8 => {
let value = *((*val) as *const i8);
v8::Integer::new(scope, value as i32).into()
}
FFI_TYPE_UINT8 => {
let value = *((*val) as *const u8);
v8::Integer::new_from_unsigned(scope, value as u32).into()
}
FFI_TYPE_SINT16 => {
let value = *((*val) as *const i16);
v8::Integer::new(scope, value as i32).into()
}
FFI_TYPE_UINT16 => {
let value = *((*val) as *const u16);
v8::Integer::new_from_unsigned(scope, value as u32).into()
}
FFI_TYPE_INT | FFI_TYPE_SINT32 => {
let value = *((*val) as *const i32);
v8::Integer::new(scope, value).into()
}
FFI_TYPE_UINT32 => {
let value = *((*val) as *const u32);
v8::Integer::new_from_unsigned(scope, value).into()
}
FFI_TYPE_SINT64 => {
let result = *((*val) as *const i64);
if result > MAX_SAFE_INTEGER as i64 || result < MIN_SAFE_INTEGER as i64
{
v8::BigInt::new_from_i64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
}
}
FFI_TYPE_UINT64 => {
let result = *((*val) as *const u64);
if result > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
}
}
FFI_TYPE_POINTER | FFI_TYPE_STRUCT => {
let result = *((*val) as *const u64);
if result > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
}
}
FFI_TYPE_VOID => v8::undefined(scope).into(),
_ => {
unreachable!()
}
};
params.push(value);
}
let recv = v8::undefined(scope);
let call_result = func.call(scope, recv.into(), &params);
std::mem::forget(callback);
if call_result.is_none() {
// JS function threw an exception. Set the return value to zero and return.
// The exception continue propagating up the call chain when the event loop
// resumes.
match (*cif.rtype).type_ as _ {
FFI_TYPE_INT | FFI_TYPE_SINT32 | FFI_TYPE_UINT32 => {
// zero is equal for signed and unsigned alike
*(result as *mut u32) = 0;
}
FFI_TYPE_FLOAT => {
*(result as *mut f32) = 0.0;
}
FFI_TYPE_DOUBLE => {
*(result as *mut f64) = 0.0;
}
FFI_TYPE_SINT8 | FFI_TYPE_UINT8 => {
// zero is equal for signed and unsigned alike
*(result as *mut u8) = 0;
}
FFI_TYPE_SINT16 | FFI_TYPE_UINT16 => {
// zero is equal for signed and unsigned alike
*(result as *mut u16) = 0;
}
FFI_TYPE_POINTER | FFI_TYPE_STRUCT | FFI_TYPE_UINT64
| FFI_TYPE_SINT64 => {
*(result as *mut usize) = 0;
}
FFI_TYPE_VOID => {
// nop
}
_ => {
unreachable!();
}
};
return;
}
let value = call_result.unwrap();
match (*cif.rtype).type_ as _ {
FFI_TYPE_INT | FFI_TYPE_SINT32 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as i32
} else {
// Fallthrough, probably UB.
value
.int32_value(scope)
.expect("Unable to deserialize result parameter.") as i32
};
*(result as *mut i32) = value;
}
FFI_TYPE_FLOAT => {
let value = if let Ok(value) = v8::Local::<v8::Number>::try_from(value) {
value.value() as f32
} else {
// Fallthrough, probably UB.
value
.number_value(scope)
.expect("Unable to deserialize result parameter.") as f32
};
*(result as *mut f32) = value;
}
FFI_TYPE_DOUBLE => {
let value = if let Ok(value) = v8::Local::<v8::Number>::try_from(value) {
value.value()
} else {
// Fallthrough, probably UB.
value
.number_value(scope)
.expect("Unable to deserialize result parameter.")
};
*(result as *mut f64) = value;
}
FFI_TYPE_POINTER | FFI_TYPE_STRUCT => {
let pointer = if let Ok(value) =
v8::Local::<v8::ArrayBufferView>::try_from(value)
{
let byte_offset = value.byte_offset();
let backing_store = value
.buffer(scope)
.expect("Unable to deserialize result parameter.")
.get_backing_store();
&backing_store[byte_offset..] as *const _ as *const u8
} else if let Ok(value) = v8::Local::<v8::BigInt>::try_from(value) {
value.u64_value().0 as usize as *const u8
} else if let Ok(value) = v8::Local::<v8::ArrayBuffer>::try_from(value) {
let backing_store = value.get_backing_store();
&backing_store[..] as *const _ as *const u8
} else if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as usize as *const u8
} else if value.is_null() {
ptr::null()
} else {
// Fallthrough: Probably someone returned a number but this could
// also be eg. a string. This is essentially UB.
value
.integer_value(scope)
.expect("Unable to deserialize result parameter.") as usize
as *const u8
};
*(result as *mut *const u8) = pointer;
}
FFI_TYPE_SINT8 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as i8
} else {
// Fallthrough, essentially UB.
value
.int32_value(scope)
.expect("Unable to deserialize result parameter.") as i8
};
*(result as *mut i8) = value;
}
FFI_TYPE_UINT8 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as u8
} else {
// Fallthrough, essentially UB.
value
.uint32_value(scope)
.expect("Unable to deserialize result parameter.") as u8
};
*(result as *mut u8) = value;
}
FFI_TYPE_SINT16 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as i16
} else {
// Fallthrough, essentially UB.
value
.int32_value(scope)
.expect("Unable to deserialize result parameter.") as i16
};
*(result as *mut i16) = value;
}
FFI_TYPE_UINT16 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as u16
} else {
// Fallthrough, essentially UB.
value
.uint32_value(scope)
.expect("Unable to deserialize result parameter.") as u16
};
*(result as *mut u16) = value;
}
FFI_TYPE_UINT32 => {
let value = if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
value.value() as u32
} else {
// Fallthrough, essentially UB.
value
.uint32_value(scope)
.expect("Unable to deserialize result parameter.")
};
*(result as *mut u32) = value;
}
FFI_TYPE_SINT64 => {
if let Ok(value) = v8::Local::<v8::BigInt>::try_from(value) {
*(result as *mut i64) = value.i64_value().0;
} else if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
*(result as *mut i64) = value.value();
} else {
*(result as *mut i64) = value
.integer_value(scope)
.expect("Unable to deserialize result parameter.")
as i64;
}
}
FFI_TYPE_UINT64 => {
if let Ok(value) = v8::Local::<v8::BigInt>::try_from(value) {
*(result as *mut u64) = value.u64_value().0;
} else if let Ok(value) = v8::Local::<v8::Integer>::try_from(value) {
*(result as *mut u64) = value.value() as u64;
} else {
*(result as *mut u64) = value
.integer_value(scope)
.expect("Unable to deserialize result parameter.")
as u64;
}
}
FFI_TYPE_VOID => {
// nop
}
_ => {
unreachable!();
}
};
}
#[derive(Deserialize)]
struct RegisterCallbackArgs {
parameters: Vec<NativeType>,
result: NativeType,
}
#[op(v8)]
fn op_ffi_unsafe_callback_create<FP, 'scope>(
state: &mut deno_core::OpState,
scope: &mut v8::HandleScope<'scope>,
args: RegisterCallbackArgs,
cb: serde_v8::Value<'scope>,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafeCallback");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
let v8_value = cb.v8_value;
let cb = v8::Local::<v8::Function>::try_from(v8_value)?;
let isolate: *mut v8::Isolate = &mut *scope as &mut v8::Isolate;
LOCAL_ISOLATE_POINTER.with(|s| {
if s.borrow().is_null() {
s.replace(isolate);
}
});
let async_work_sender =
state.borrow_mut::<FfiState>().async_work_sender.clone();
let callback = v8::Global::new(scope, cb).into_raw();
let current_context = scope.get_current_context();
let context = v8::Global::new(scope, current_context).into_raw();
let info = Box::leak(Box::new(CallbackInfo {
async_work_sender,
callback,
context,
isolate,
}));
let cif = Cif::new(
args.parameters.into_iter().map(libffi::middle::Type::from),
libffi::middle::Type::from(args.result),
);
let closure = libffi::middle::Closure::new(cif, deno_ffi_callback, info);
let ptr = *closure.code_ptr() as usize;
let resource = UnsafeCallbackResource { closure, info };
let rid = state.resource_table.add(resource);
let rid_local = v8::Integer::new_from_unsigned(scope, rid);
let ptr_local: v8::Local<v8::Value> = if ptr > MAX_SAFE_INTEGER as usize {
v8::BigInt::new_from_u64(scope, ptr as u64).into()
} else {
v8::Number::new(scope, ptr as f64).into()
};
let array = v8::Array::new(scope, 2);
array.set_index(scope, 0, rid_local.into());
array.set_index(scope, 1, ptr_local);
let array_value: v8::Local<v8::Value> = array.into();
Ok(array_value.into())
}
#[op(v8)]
fn op_ffi_call_ptr<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: Rc<RefCell<deno_core::OpState>>,
pointer: usize,
def: ForeignFunction,
parameters: serde_v8::Value<'scope>,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable2(&state, "Deno.UnsafeFnPointer#call");
{
let mut state = state.borrow_mut();
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
};
let symbol = PtrSymbol::new(pointer, &def);
let call_args = ffi_parse_args(scope, parameters, &def.parameters)?;
let result = ffi_call(
call_args,
&symbol.cif,
symbol.ptr,
&def.parameters,
def.result,
)?;
// SAFETY: Same return type declared to libffi; trust user to have it right beyond that.
let result = unsafe { result.to_v8(scope, def.result) };
Ok(result)
}
#[op]
fn op_ffi_unsafe_callback_ref(state: &mut deno_core::OpState, inc_dec: bool) {
check_unstable(state, "Deno.dlopen");
let ffi_state = state.borrow_mut::<FfiState>();
if inc_dec {
ffi_state.active_refed_functions += 1;
} else {
ffi_state.active_refed_functions -= 1;
}
}
#[op(v8)]
fn op_ffi_call_ptr_nonblocking<'scope, FP>(
scope: &mut v8::HandleScope<'scope>,
state: Rc<RefCell<deno_core::OpState>>,
pointer: usize,
def: ForeignFunction,
parameters: serde_v8::Value<'scope>,
) -> Result<impl Future<Output = Result<Value, AnyError>>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable2(&state, "Deno.UnsafeFnPointer#call");
{
let mut state = state.borrow_mut();
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
};
let symbol = PtrSymbol::new(pointer, &def);
let call_args = ffi_parse_args(scope, parameters, &def.parameters)?;
let join_handle = tokio::task::spawn_blocking(move || {
let PtrSymbol { cif, ptr } = symbol.clone();
ffi_call(call_args, &cif, ptr, &def.parameters, def.result)
});
Ok(async move {
let result = join_handle
.await
.map_err(|err| anyhow!("Nonblocking FFI call failed: {}", err))??;
// SAFETY: Same return type declared to libffi; trust user to have it right beyond that.
Ok(unsafe { result.to_value(def.result) })
})
}
#[op(v8)]
fn op_ffi_get_static<'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
rid: ResourceId,
name: String,
static_type: NativeType,
) -> Result<serde_v8::Value<'scope>, AnyError> {
let resource = state.resource_table.get::<DynamicLibraryResource>(rid)?;
let data_ptr = resource.get_static(name)?;
Ok(match static_type {
NativeType::Void => {
return Err(type_error("Invalid FFI static type 'void'"));
}
NativeType::U8 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const u8) };
let number: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, result as u32).into();
number.into()
}
NativeType::I8 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const i8) };
let number: v8::Local<v8::Value> =
v8::Integer::new(scope, result as i32).into();
number.into()
}
NativeType::U16 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const u16) };
let number: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, result as u32).into();
number.into()
}
NativeType::I16 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const i16) };
let number: v8::Local<v8::Value> =
v8::Integer::new(scope, result as i32).into();
number.into()
}
NativeType::U32 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const u32) };
let number: v8::Local<v8::Value> =
v8::Integer::new_from_unsigned(scope, result).into();
number.into()
}
NativeType::I32 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const i32) };
let number: v8::Local<v8::Value> = v8::Integer::new(scope, result).into();
number.into()
}
NativeType::U64 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const u64) };
let integer: v8::Local<v8::Value> = if result > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
};
integer.into()
}
NativeType::I64 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const i64) };
let integer: v8::Local<v8::Value> = if result > MAX_SAFE_INTEGER as i64
|| result < MIN_SAFE_INTEGER as i64
{
v8::BigInt::new_from_i64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
};
integer.into()
}
NativeType::USize => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const usize) };
let integer: v8::Local<v8::Value> = if result > MAX_SAFE_INTEGER as usize
{
v8::BigInt::new_from_u64(scope, result as u64).into()
} else {
v8::Number::new(scope, result as f64).into()
};
integer.into()
}
NativeType::ISize => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const isize) };
let integer: v8::Local<v8::Value> =
if !(MIN_SAFE_INTEGER..=MAX_SAFE_INTEGER).contains(&result) {
v8::BigInt::new_from_i64(scope, result as i64).into()
} else {
v8::Number::new(scope, result as f64).into()
};
integer.into()
}
NativeType::F32 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const f32) };
let number: v8::Local<v8::Value> =
v8::Number::new(scope, result as f64).into();
number.into()
}
NativeType::F64 => {
// SAFETY: ptr is user provided
let result = unsafe { ptr::read_unaligned(data_ptr as *const f64) };
let number: v8::Local<v8::Value> = v8::Number::new(scope, result).into();
number.into()
}
NativeType::Pointer | NativeType::Function | NativeType::Buffer => {
let result = data_ptr as u64;
let integer: v8::Local<v8::Value> = if result > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
};
integer.into()
}
})
}
/// A non-blocking FFI call.
#[op(v8)]
fn op_ffi_call_nonblocking<'scope>(
scope: &mut v8::HandleScope<'scope>,
state: Rc<RefCell<deno_core::OpState>>,
rid: ResourceId,
symbol: String,
parameters: serde_v8::Value<'scope>,
) -> Result<impl Future<Output = Result<Value, AnyError>> + 'static, AnyError> {
let symbol = {
let state = state.borrow();
let resource = state.resource_table.get::<DynamicLibraryResource>(rid)?;
let symbols = &resource.symbols;
*symbols
.get(&symbol)
.ok_or_else(|| type_error("Invalid FFI symbol name"))?
.clone()
};
let call_args = ffi_parse_args(scope, parameters, &symbol.parameter_types)?;
let result_type = symbol.result_type;
let join_handle = tokio::task::spawn_blocking(move || {
let Symbol {
cif,
ptr,
parameter_types,
result_type,
..
} = symbol.clone();
ffi_call(call_args, &cif, ptr, &parameter_types, result_type)
});
Ok(async move {
let result = join_handle
.await
.map_err(|err| anyhow!("Nonblocking FFI call failed: {}", err))??;
// SAFETY: Same return type declared to libffi; trust user to have it right beyond that.
Ok(unsafe { result.to_value(result_type) })
})
}
#[op(v8)]
fn op_ffi_ptr_of<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
buf: serde_v8::Value<'scope>,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointer#of");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
let pointer = if let Ok(value) =
v8::Local::<v8::ArrayBufferView>::try_from(buf.v8_value)
{
let backing_store = value
.buffer(scope)
.ok_or_else(|| {
type_error("Invalid FFI ArrayBufferView, expected data in the buffer")
})?
.get_backing_store();
let byte_offset = value.byte_offset();
&backing_store[byte_offset..] as *const _ as *const u8
} else if let Ok(value) = v8::Local::<v8::ArrayBuffer>::try_from(buf.v8_value)
{
let backing_store = value.get_backing_store();
&backing_store[..] as *const _ as *const u8
} else {
return Err(type_error(
"Invalid FFI buffer, expected ArrayBuffer, or ArrayBufferView",
));
};
let integer: v8::Local<v8::Value> =
if pointer as usize > MAX_SAFE_INTEGER as usize {
v8::BigInt::new_from_u64(scope, pointer as u64).into()
} else {
v8::Number::new(scope, pointer as usize as f64).into()
};
Ok(integer.into())
}
unsafe extern "C" fn noop_deleter_callback(
_data: *mut c_void,
_byte_length: usize,
_deleter_data: *mut c_void,
) {
}
#[op(v8)]
fn op_ffi_get_buf<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
src: serde_v8::Value<'scope>,
len: usize,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#arrayBuffer");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
let ptr = if let Ok(value) = v8::Local::<v8::Number>::try_from(src.v8_value) {
value.value() as usize as *mut c_void
} else if let Ok(value) = v8::Local::<v8::BigInt>::try_from(src.v8_value) {
value.u64_value().0 as usize as *mut c_void
} else {
return Err(type_error("Invalid FFI pointer value, expected BigInt"));
};
if std::ptr::eq(ptr, std::ptr::null()) {
return Err(type_error("Invalid FFI pointer value, got nullptr"));
}
// SAFETY: Trust the user to have provided a real pointer, and a valid matching size to it. Since this is a foreign pointer, we should not do any deletion.
let backing_store = unsafe {
v8::ArrayBuffer::new_backing_store_from_ptr(
ptr,
len,
noop_deleter_callback,
std::ptr::null_mut(),
)
}
.make_shared();
let array_buffer: v8::Local<v8::Value> =
v8::ArrayBuffer::with_backing_store(scope, &backing_store).into();
Ok(array_buffer.into())
}
#[op]
fn op_ffi_buf_copy_into<FP>(
state: &mut deno_core::OpState,
src: usize,
mut dst: ZeroCopyBuf,
len: usize,
) -> Result<(), AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#copyInto");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
if dst.len() < len {
Err(range_error(
"Destination length is smaller than source length",
))
} else {
let src = src as *const u8;
// SAFETY: src is user defined.
// dest is properly aligned and is valid for writes of len * size_of::<T>() bytes.
unsafe { ptr::copy(src, dst.as_mut_ptr(), len) };
Ok(())
}
}
#[op(v8)]
fn op_ffi_cstr_read<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getCString");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: Pointer is user provided.
let cstr = unsafe { CStr::from_ptr(ptr as *const c_char) }
.to_str()
.map_err(|_| type_error("Invalid CString pointer, not valid UTF-8"))?;
let value: v8::Local<v8::Value> = v8::String::new(scope, cstr)
.ok_or_else(|| {
type_error("Invalid CString pointer, string exceeds max length")
})?
.into();
Ok(value.into())
}
#[op]
fn op_ffi_read_u8<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<u8, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getUint8");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const u8) })
}
#[op]
fn op_ffi_read_i8<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<i8, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getInt8");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const i8) })
}
#[op]
fn op_ffi_read_u16<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<u16, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getUint16");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const u16) })
}
#[op]
fn op_ffi_read_i16<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<i16, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getInt16");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const i16) })
}
#[op]
fn op_ffi_read_u32<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<u32, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getUint32");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const u32) })
}
#[op]
fn op_ffi_read_i32<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<i32, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getInt32");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const i32) })
}
#[op(v8)]
fn op_ffi_read_u64<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
'scope: 'scope,
{
check_unstable(state, "Deno.UnsafePointerView#getBigUint64");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
let result = unsafe { ptr::read_unaligned(ptr as *const u64) };
let integer: v8::Local<v8::Value> = if result > MAX_SAFE_INTEGER as u64 {
v8::BigInt::new_from_u64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
};
Ok(integer.into())
}
#[op(v8)]
fn op_ffi_read_i64<FP, 'scope>(
scope: &mut v8::HandleScope<'scope>,
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<serde_v8::Value<'scope>, AnyError>
where
FP: FfiPermissions + 'static,
'scope: 'scope,
{
check_unstable(state, "Deno.UnsafePointerView#getBigUint64");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
let result = unsafe { ptr::read_unaligned(ptr as *const i64) };
let integer: v8::Local<v8::Value> =
if result > MAX_SAFE_INTEGER as i64 || result < MIN_SAFE_INTEGER as i64 {
v8::BigInt::new_from_i64(scope, result).into()
} else {
v8::Number::new(scope, result as f64).into()
};
Ok(integer.into())
}
#[op]
fn op_ffi_read_f32<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<f32, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getFloat32");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const f32) })
}
#[op]
fn op_ffi_read_f64<FP>(
state: &mut deno_core::OpState,
ptr: usize,
) -> Result<f64, AnyError>
where
FP: FfiPermissions + 'static,
{
check_unstable(state, "Deno.UnsafePointerView#getFloat64");
let permissions = state.borrow_mut::<FP>();
permissions.check(None)?;
// SAFETY: ptr is user provided.
Ok(unsafe { ptr::read_unaligned(ptr as *const f64) })
}
#[cfg(test)]
mod tests {
#[cfg(target_os = "windows")]
#[test]
fn test_format_error() {
use super::format_error;
// BAD_EXE_FORMAT
let err = dlopen::Error::OpeningLibraryError(
std::io::Error::from_raw_os_error(0x000000C1),
);
assert_eq!(
format_error(err, "foo.dll".to_string()),
"foo.dll is not a valid Win32 application.\r\n".to_string(),
);
}
}