1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-09 23:58:23 -05:00
denoland-deno/core/task_queue.rs
Matt Mastracci 9845361153
refactor(core): bake single-thread assumptions into spawn/spawn_blocking (#19056)
Partially supersedes #19016.

This migrates `spawn` and `spawn_blocking` to `deno_core`, and removes
the requirement for `spawn` tasks to be `Send` given our single-threaded
executor.

While we don't need to technically do anything w/`spawn_blocking`, this
allows us to have a single `JoinHandle` type that works for both cases,
and allows us to more easily experiment with alternative
`spawn_blocking` implementations that do not require tokio (ie: rayon).

Async ops (+~35%):

Before: 

```
time 1310 ms rate 763358
time 1267 ms rate 789265
time 1259 ms rate 794281
time 1266 ms rate 789889
```

After:

```
time 956 ms rate 1046025
time 954 ms rate 1048218
time 924 ms rate 1082251
time 920 ms rate 1086956
```

HTTP serve (+~4.4%):

Before:

```
Running 10s test @ http://localhost:4500
  2 threads and 10 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    68.78us   19.77us   1.43ms   86.84%
    Req/Sec    68.78k     5.00k   73.84k    91.58%
  1381833 requests in 10.10s, 167.36MB read
Requests/sec: 136823.29
Transfer/sec:     16.57MB
```

After:

```
Running 10s test @ http://localhost:4500
  2 threads and 10 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    63.12us   17.43us   1.11ms   85.13%
    Req/Sec    71.82k     3.71k   77.02k    79.21%
  1443195 requests in 10.10s, 174.79MB read
Requests/sec: 142921.99
Transfer/sec:     17.31MB
```

Suggested-By: alice@ryhl.io
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
2023-05-14 15:40:01 -06:00

143 lines
3.6 KiB
Rust

// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
use futures::task::AtomicWaker;
use futures::Future;
use parking_lot::Mutex;
use std::collections::LinkedList;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Arc;
#[derive(Debug, Default)]
struct TaskQueueTaskWaker {
is_ready: AtomicBool,
waker: AtomicWaker,
}
#[derive(Debug, Default)]
struct TaskQueueTasks {
is_running: bool,
wakers: LinkedList<Arc<TaskQueueTaskWaker>>,
}
/// A queue that executes tasks sequentially one after the other
/// ensuring order and that no task runs at the same time as another.
///
/// Note that tokio's semaphore doesn't seem to maintain order
/// and so we can't use that in the code that uses this or use
/// that here.
#[derive(Debug, Default)]
pub struct TaskQueue {
tasks: Mutex<TaskQueueTasks>,
}
impl TaskQueue {
/// Acquires a permit where the tasks are executed one at a time
/// and in the order that they were acquired.
pub async fn acquire(&self) -> TaskQueuePermit {
let acquire = TaskQueuePermitAcquire::new(self);
acquire.await;
TaskQueuePermit(self)
}
/// Alternate API that acquires a permit internally
/// for the duration of the future.
pub async fn queue<R>(&self, future: impl Future<Output = R>) -> R {
let _permit = self.acquire().await;
future.await
}
}
/// A permit that when dropped will allow another task to proceed.
pub struct TaskQueuePermit<'a>(&'a TaskQueue);
impl<'a> Drop for TaskQueuePermit<'a> {
fn drop(&mut self) {
let next_item = {
let mut tasks = self.0.tasks.lock();
let next_item = tasks.wakers.pop_front();
tasks.is_running = next_item.is_some();
next_item
};
if let Some(next_item) = next_item {
next_item.is_ready.store(true, Ordering::SeqCst);
next_item.waker.wake();
}
}
}
struct TaskQueuePermitAcquire<'a> {
task_queue: &'a TaskQueue,
initialized: AtomicBool,
waker: Arc<TaskQueueTaskWaker>,
}
impl<'a> TaskQueuePermitAcquire<'a> {
pub fn new(task_queue: &'a TaskQueue) -> Self {
Self {
task_queue,
initialized: Default::default(),
waker: Default::default(),
}
}
}
impl<'a> Future for TaskQueuePermitAcquire<'a> {
type Output = ();
fn poll(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Self::Output> {
// update with the latest waker
self.waker.waker.register(cx.waker());
// ensure this is initialized
if !self.initialized.swap(true, Ordering::SeqCst) {
let mut tasks = self.task_queue.tasks.lock();
if !tasks.is_running {
tasks.is_running = true;
return std::task::Poll::Ready(());
}
tasks.wakers.push_back(self.waker.clone());
return std::task::Poll::Pending;
}
// check if we're ready to run
if self.waker.is_ready.load(Ordering::SeqCst) {
std::task::Poll::Ready(())
} else {
std::task::Poll::Pending
}
}
}
#[cfg(test)]
mod tests {
use parking_lot::Mutex;
use std::sync::Arc;
use super::TaskQueue;
#[tokio::test]
async fn task_queue_runs_one_after_other() {
let task_queue = TaskQueue::default();
let mut tasks = Vec::new();
let data = Arc::new(Mutex::new(0));
for i in 0..100 {
let data = data.clone();
tasks.push(task_queue.queue(async move {
crate::task::spawn_blocking(move || {
let mut data = data.lock();
if *data != i {
panic!("Value was not equal.");
}
*data = i + 1;
})
.await
.unwrap();
}));
}
futures::future::join_all(tasks).await;
}
}