1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-11 01:58:05 -05:00
denoland-deno/ext/crypto/lib.rs

828 lines
25 KiB
Rust

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use aes_kw::KekAes128;
use aes_kw::KekAes192;
use aes_kw::KekAes256;
use base64::prelude::BASE64_URL_SAFE_NO_PAD;
use base64::Engine;
use deno_core::error::not_supported;
use deno_core::op2;
use deno_core::ToJsBuffer;
use deno_core::unsync::spawn_blocking;
use deno_core::JsBuffer;
use deno_core::OpState;
use serde::Deserialize;
use p256::elliptic_curve::sec1::FromEncodedPoint;
use p256::pkcs8::DecodePrivateKey;
use rand::rngs::OsRng;
use rand::rngs::StdRng;
use rand::thread_rng;
use rand::Rng;
use rand::SeedableRng;
use ring::digest;
use ring::hkdf;
use ring::hmac::Algorithm as HmacAlgorithm;
use ring::hmac::Key as HmacKey;
use ring::pbkdf2;
use ring::rand as RingRand;
use ring::signature::EcdsaKeyPair;
use ring::signature::EcdsaSigningAlgorithm;
use ring::signature::EcdsaVerificationAlgorithm;
use ring::signature::KeyPair;
use rsa::pkcs1::DecodeRsaPrivateKey;
use rsa::pkcs1::DecodeRsaPublicKey;
use rsa::signature::SignatureEncoding;
use rsa::signature::Signer;
use rsa::signature::Verifier;
use rsa::traits::SignatureScheme;
use rsa::Pss;
use rsa::RsaPrivateKey;
use rsa::RsaPublicKey;
use sha1::Sha1;
use sha2::Digest;
use sha2::Sha256;
use sha2::Sha384;
use sha2::Sha512;
use std::num::NonZeroU32;
use std::path::PathBuf;
pub use rand; // Re-export rand
mod decrypt;
mod ed25519;
mod encrypt;
mod export_key;
mod generate_key;
mod import_key;
mod key;
mod shared;
mod x25519;
mod x448;
pub use crate::decrypt::op_crypto_decrypt;
pub use crate::decrypt::DecryptError;
pub use crate::ed25519::Ed25519Error;
pub use crate::encrypt::op_crypto_encrypt;
pub use crate::encrypt::EncryptError;
pub use crate::export_key::op_crypto_export_key;
pub use crate::export_key::ExportKeyError;
pub use crate::generate_key::op_crypto_generate_key;
pub use crate::generate_key::GenerateKeyError;
pub use crate::import_key::op_crypto_import_key;
pub use crate::import_key::ImportKeyError;
use crate::key::Algorithm;
use crate::key::CryptoHash;
use crate::key::CryptoNamedCurve;
use crate::key::HkdfOutput;
pub use crate::shared::SharedError;
use crate::shared::V8RawKeyData;
pub use crate::x25519::X25519Error;
pub use crate::x448::X448Error;
deno_core::extension!(deno_crypto,
deps = [ deno_webidl, deno_web ],
ops = [
op_crypto_get_random_values,
op_crypto_generate_key,
op_crypto_sign_key,
op_crypto_verify_key,
op_crypto_derive_bits,
op_crypto_import_key,
op_crypto_export_key,
op_crypto_encrypt,
op_crypto_decrypt,
op_crypto_subtle_digest,
op_crypto_random_uuid,
op_crypto_wrap_key,
op_crypto_unwrap_key,
op_crypto_base64url_decode,
op_crypto_base64url_encode,
x25519::op_crypto_generate_x25519_keypair,
x25519::op_crypto_derive_bits_x25519,
x25519::op_crypto_import_spki_x25519,
x25519::op_crypto_import_pkcs8_x25519,
x25519::op_crypto_export_spki_x25519,
x25519::op_crypto_export_pkcs8_x25519,
x448::op_crypto_generate_x448_keypair,
x448::op_crypto_derive_bits_x448,
x448::op_crypto_import_spki_x448,
x448::op_crypto_import_pkcs8_x448,
x448::op_crypto_export_spki_x448,
x448::op_crypto_export_pkcs8_x448,
ed25519::op_crypto_generate_ed25519_keypair,
ed25519::op_crypto_import_spki_ed25519,
ed25519::op_crypto_import_pkcs8_ed25519,
ed25519::op_crypto_sign_ed25519,
ed25519::op_crypto_verify_ed25519,
ed25519::op_crypto_export_spki_ed25519,
ed25519::op_crypto_export_pkcs8_ed25519,
ed25519::op_crypto_jwk_x_ed25519,
],
esm = [ "00_crypto.js" ],
options = {
maybe_seed: Option<u64>,
},
state = |state, options| {
if let Some(seed) = options.maybe_seed {
state.put(StdRng::seed_from_u64(seed));
}
},
);
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error(transparent)]
General(#[from] SharedError),
#[error(transparent)]
JoinError(#[from] tokio::task::JoinError),
#[error(transparent)]
Der(#[from] rsa::pkcs1::der::Error),
#[error("Missing argument hash")]
MissingArgumentHash,
#[error("Missing argument saltLength")]
MissingArgumentSaltLength,
#[error("unsupported algorithm")]
UnsupportedAlgorithm,
#[error(transparent)]
KeyRejected(#[from] ring::error::KeyRejected),
#[error(transparent)]
RSA(#[from] rsa::Error),
#[error(transparent)]
Pkcs1(#[from] rsa::pkcs1::Error),
#[error(transparent)]
Unspecified(#[from] ring::error::Unspecified),
#[error("Invalid key format")]
InvalidKeyFormat,
#[error(transparent)]
P256Ecdsa(#[from] p256::ecdsa::Error),
#[error("Unexpected error decoding private key")]
DecodePrivateKey,
#[error("Missing argument publicKey")]
MissingArgumentPublicKey,
#[error("Missing argument namedCurve")]
MissingArgumentNamedCurve,
#[error("Missing argument info")]
MissingArgumentInfo,
#[error("The length provided for HKDF is too large")]
HKDFLengthTooLarge,
#[error(transparent)]
Base64Decode(#[from] base64::DecodeError),
#[error("Data must be multiple of 8 bytes")]
DataInvalidSize,
#[error("Invalid key length")]
InvalidKeyLength,
#[error("encryption error")]
EncryptionError,
#[error("decryption error - integrity check failed")]
DecryptionError,
#[error("The ArrayBufferView's byte length ({0}) exceeds the number of bytes of entropy available via this API (65536)")]
ArrayBufferViewLengthExceeded(usize),
#[error(transparent)]
Other(deno_core::error::AnyError),
}
#[op2]
#[serde]
pub fn op_crypto_base64url_decode(
#[string] data: String,
) -> Result<ToJsBuffer, Error> {
let data: Vec<u8> = BASE64_URL_SAFE_NO_PAD.decode(data)?;
Ok(data.into())
}
#[op2]
#[string]
pub fn op_crypto_base64url_encode(#[buffer] data: JsBuffer) -> String {
let data: String = BASE64_URL_SAFE_NO_PAD.encode(data);
data
}
#[op2(fast)]
pub fn op_crypto_get_random_values(
state: &mut OpState,
#[buffer] out: &mut [u8],
) -> Result<(), Error> {
if out.len() > 65536 {
return Err(Error::ArrayBufferViewLengthExceeded(out.len()));
}
let maybe_seeded_rng = state.try_borrow_mut::<StdRng>();
if let Some(seeded_rng) = maybe_seeded_rng {
seeded_rng.fill(out);
} else {
let mut rng = thread_rng();
rng.fill(out);
}
Ok(())
}
#[derive(Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum KeyFormat {
Raw,
Pkcs8,
Spki,
}
#[derive(Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum KeyType {
Secret,
Private,
Public,
}
#[derive(Deserialize)]
#[serde(rename_all = "lowercase")]
pub struct KeyData {
r#type: KeyType,
data: JsBuffer,
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct SignArg {
key: KeyData,
algorithm: Algorithm,
salt_length: Option<u32>,
hash: Option<CryptoHash>,
named_curve: Option<CryptoNamedCurve>,
}
#[op2(async)]
#[serde]
pub async fn op_crypto_sign_key(
#[serde] args: SignArg,
#[buffer] zero_copy: JsBuffer,
) -> Result<ToJsBuffer, Error> {
deno_core::unsync::spawn_blocking(move || {
let data = &*zero_copy;
let algorithm = args.algorithm;
let signature = match algorithm {
Algorithm::RsassaPkcs1v15 => {
use rsa::pkcs1v15::SigningKey;
let private_key = RsaPrivateKey::from_pkcs1_der(&args.key.data)?;
match args.hash.ok_or_else(|| Error::MissingArgumentHash)? {
CryptoHash::Sha1 => {
let signing_key = SigningKey::<Sha1>::new(private_key);
signing_key.sign(data)
}
CryptoHash::Sha256 => {
let signing_key = SigningKey::<Sha256>::new(private_key);
signing_key.sign(data)
}
CryptoHash::Sha384 => {
let signing_key = SigningKey::<Sha384>::new(private_key);
signing_key.sign(data)
}
CryptoHash::Sha512 => {
let signing_key = SigningKey::<Sha512>::new(private_key);
signing_key.sign(data)
}
}
.to_vec()
}
Algorithm::RsaPss => {
let private_key = RsaPrivateKey::from_pkcs1_der(&args.key.data)?;
let salt_len = args
.salt_length
.ok_or_else(|| Error::MissingArgumentSaltLength)?
as usize;
let mut rng = OsRng;
match args.hash.ok_or_else(|| Error::MissingArgumentHash)? {
CryptoHash::Sha1 => {
let signing_key = Pss::new_with_salt::<Sha1>(salt_len);
let hashed = Sha1::digest(data);
signing_key.sign(Some(&mut rng), &private_key, &hashed)?
}
CryptoHash::Sha256 => {
let signing_key = Pss::new_with_salt::<Sha256>(salt_len);
let hashed = Sha256::digest(data);
signing_key.sign(Some(&mut rng), &private_key, &hashed)?
}
CryptoHash::Sha384 => {
let signing_key = Pss::new_with_salt::<Sha384>(salt_len);
let hashed = Sha384::digest(data);
signing_key.sign(Some(&mut rng), &private_key, &hashed)?
}
CryptoHash::Sha512 => {
let signing_key = Pss::new_with_salt::<Sha512>(salt_len);
let hashed = Sha512::digest(data);
signing_key.sign(Some(&mut rng), &private_key, &hashed)?
}
}
.to_vec()
}
Algorithm::Ecdsa => {
let curve: &EcdsaSigningAlgorithm = args
.named_curve
.ok_or_else(|| Error::Other(not_supported()))?
.into();
let rng = RingRand::SystemRandom::new();
let key_pair = EcdsaKeyPair::from_pkcs8(curve, &args.key.data, &rng)?;
// We only support P256-SHA256 & P384-SHA384. These are recommended signature pairs.
// https://briansmith.org/rustdoc/ring/signature/index.html#statics
if let Some(hash) = args.hash {
match hash {
CryptoHash::Sha256 | CryptoHash::Sha384 => (),
_ => return Err(Error::UnsupportedAlgorithm),
}
};
let signature = key_pair.sign(&rng, data)?;
// Signature data as buffer.
signature.as_ref().to_vec()
}
Algorithm::Hmac => {
let hash: HmacAlgorithm = args
.hash
.ok_or_else(|| Error::Other(not_supported()))?
.into();
let key = HmacKey::new(hash, &args.key.data);
let signature = ring::hmac::sign(&key, data);
signature.as_ref().to_vec()
}
_ => return Err(Error::UnsupportedAlgorithm),
};
Ok(signature.into())
})
.await?
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct VerifyArg {
key: KeyData,
algorithm: Algorithm,
salt_length: Option<u32>,
hash: Option<CryptoHash>,
signature: JsBuffer,
named_curve: Option<CryptoNamedCurve>,
}
#[op2(async)]
pub async fn op_crypto_verify_key(
#[serde] args: VerifyArg,
#[buffer] zero_copy: JsBuffer,
) -> Result<bool, Error> {
deno_core::unsync::spawn_blocking(move || {
let data = &*zero_copy;
let algorithm = args.algorithm;
let verification = match algorithm {
Algorithm::RsassaPkcs1v15 => {
use rsa::pkcs1v15::Signature;
use rsa::pkcs1v15::VerifyingKey;
let public_key = read_rsa_public_key(args.key)?;
let signature: Signature = args.signature.as_ref().try_into()?;
match args.hash.ok_or_else(|| Error::MissingArgumentHash)? {
CryptoHash::Sha1 => {
let verifying_key = VerifyingKey::<Sha1>::new(public_key);
verifying_key.verify(data, &signature).is_ok()
}
CryptoHash::Sha256 => {
let verifying_key = VerifyingKey::<Sha256>::new(public_key);
verifying_key.verify(data, &signature).is_ok()
}
CryptoHash::Sha384 => {
let verifying_key = VerifyingKey::<Sha384>::new(public_key);
verifying_key.verify(data, &signature).is_ok()
}
CryptoHash::Sha512 => {
let verifying_key = VerifyingKey::<Sha512>::new(public_key);
verifying_key.verify(data, &signature).is_ok()
}
}
}
Algorithm::RsaPss => {
let public_key = read_rsa_public_key(args.key)?;
let signature = args.signature.as_ref();
let salt_len = args
.salt_length
.ok_or_else(|| Error::MissingArgumentSaltLength)?
as usize;
match args.hash.ok_or_else(|| Error::MissingArgumentHash)? {
CryptoHash::Sha1 => {
let pss = Pss::new_with_salt::<Sha1>(salt_len);
let hashed = Sha1::digest(data);
pss.verify(&public_key, &hashed, signature).is_ok()
}
CryptoHash::Sha256 => {
let pss = Pss::new_with_salt::<Sha256>(salt_len);
let hashed = Sha256::digest(data);
pss.verify(&public_key, &hashed, signature).is_ok()
}
CryptoHash::Sha384 => {
let pss = Pss::new_with_salt::<Sha384>(salt_len);
let hashed = Sha384::digest(data);
pss.verify(&public_key, &hashed, signature).is_ok()
}
CryptoHash::Sha512 => {
let pss = Pss::new_with_salt::<Sha512>(salt_len);
let hashed = Sha512::digest(data);
pss.verify(&public_key, &hashed, signature).is_ok()
}
}
}
Algorithm::Hmac => {
let hash: HmacAlgorithm = args
.hash
.ok_or_else(|| Error::Other(not_supported()))?
.into();
let key = HmacKey::new(hash, &args.key.data);
ring::hmac::verify(&key, data, &args.signature).is_ok()
}
Algorithm::Ecdsa => {
let signing_alg: &EcdsaSigningAlgorithm = args
.named_curve
.ok_or_else(|| Error::Other(not_supported()))?
.into();
let verify_alg: &EcdsaVerificationAlgorithm = args
.named_curve
.ok_or_else(|| Error::Other(not_supported()))?
.into();
let private_key;
let public_key_bytes = match args.key.r#type {
KeyType::Private => {
let rng = RingRand::SystemRandom::new();
private_key =
EcdsaKeyPair::from_pkcs8(signing_alg, &args.key.data, &rng)?;
private_key.public_key().as_ref()
}
KeyType::Public => &*args.key.data,
_ => return Err(Error::InvalidKeyFormat),
};
let public_key =
ring::signature::UnparsedPublicKey::new(verify_alg, public_key_bytes);
public_key.verify(data, &args.signature).is_ok()
}
_ => return Err(Error::UnsupportedAlgorithm),
};
Ok(verification)
})
.await?
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct DeriveKeyArg {
key: KeyData,
algorithm: Algorithm,
hash: Option<CryptoHash>,
length: usize,
iterations: Option<u32>,
// ECDH
public_key: Option<KeyData>,
named_curve: Option<CryptoNamedCurve>,
// HKDF
info: Option<JsBuffer>,
}
#[op2(async)]
#[serde]
pub async fn op_crypto_derive_bits(
#[serde] args: DeriveKeyArg,
#[buffer] zero_copy: Option<JsBuffer>,
) -> Result<ToJsBuffer, Error> {
deno_core::unsync::spawn_blocking(move || {
let algorithm = args.algorithm;
match algorithm {
Algorithm::Pbkdf2 => {
let zero_copy =
zero_copy.ok_or_else(|| Error::Other(not_supported()))?;
let salt = &*zero_copy;
// The caller must validate these cases.
assert!(args.length > 0);
assert!(args.length % 8 == 0);
let algorithm =
match args.hash.ok_or_else(|| Error::Other(not_supported()))? {
CryptoHash::Sha1 => pbkdf2::PBKDF2_HMAC_SHA1,
CryptoHash::Sha256 => pbkdf2::PBKDF2_HMAC_SHA256,
CryptoHash::Sha384 => pbkdf2::PBKDF2_HMAC_SHA384,
CryptoHash::Sha512 => pbkdf2::PBKDF2_HMAC_SHA512,
};
// This will never panic. We have already checked length earlier.
let iterations = NonZeroU32::new(
args
.iterations
.ok_or_else(|| Error::Other(not_supported()))?,
)
.unwrap();
let secret = args.key.data;
let mut out = vec![0; args.length / 8];
pbkdf2::derive(algorithm, iterations, salt, &secret, &mut out);
Ok(out.into())
}
Algorithm::Ecdh => {
let named_curve = args
.named_curve
.ok_or_else(|| Error::MissingArgumentNamedCurve)?;
let public_key = args
.public_key
.ok_or_else(|| Error::MissingArgumentPublicKey)?;
match named_curve {
CryptoNamedCurve::P256 => {
let secret_key = p256::SecretKey::from_pkcs8_der(&args.key.data)
.map_err(|_| Error::DecodePrivateKey)?;
let public_key = match public_key.r#type {
KeyType::Private => {
p256::SecretKey::from_pkcs8_der(&public_key.data)
.map_err(|_| Error::DecodePrivateKey)?
.public_key()
}
KeyType::Public => {
let point = p256::EncodedPoint::from_bytes(public_key.data)
.map_err(|_| Error::DecodePrivateKey)?;
let pk = p256::PublicKey::from_encoded_point(&point);
// pk is a constant time Option.
if pk.is_some().into() {
pk.unwrap()
} else {
return Err(Error::DecodePrivateKey);
}
}
_ => unreachable!(),
};
let shared_secret = p256::elliptic_curve::ecdh::diffie_hellman(
secret_key.to_nonzero_scalar(),
public_key.as_affine(),
);
// raw serialized x-coordinate of the computed point
Ok(shared_secret.raw_secret_bytes().to_vec().into())
}
CryptoNamedCurve::P384 => {
let secret_key = p384::SecretKey::from_pkcs8_der(&args.key.data)
.map_err(|_| Error::DecodePrivateKey)?;
let public_key = match public_key.r#type {
KeyType::Private => {
p384::SecretKey::from_pkcs8_der(&public_key.data)
.map_err(|_| Error::DecodePrivateKey)?
.public_key()
}
KeyType::Public => {
let point = p384::EncodedPoint::from_bytes(public_key.data)
.map_err(|_| Error::DecodePrivateKey)?;
let pk = p384::PublicKey::from_encoded_point(&point);
// pk is a constant time Option.
if pk.is_some().into() {
pk.unwrap()
} else {
return Err(Error::DecodePrivateKey);
}
}
_ => unreachable!(),
};
let shared_secret = p384::elliptic_curve::ecdh::diffie_hellman(
secret_key.to_nonzero_scalar(),
public_key.as_affine(),
);
// raw serialized x-coordinate of the computed point
Ok(shared_secret.raw_secret_bytes().to_vec().into())
}
}
}
Algorithm::Hkdf => {
let zero_copy =
zero_copy.ok_or_else(|| Error::Other(not_supported()))?;
let salt = &*zero_copy;
let algorithm =
match args.hash.ok_or_else(|| Error::Other(not_supported()))? {
CryptoHash::Sha1 => hkdf::HKDF_SHA1_FOR_LEGACY_USE_ONLY,
CryptoHash::Sha256 => hkdf::HKDF_SHA256,
CryptoHash::Sha384 => hkdf::HKDF_SHA384,
CryptoHash::Sha512 => hkdf::HKDF_SHA512,
};
let info = args.info.ok_or_else(|| Error::MissingArgumentInfo)?;
// IKM
let secret = args.key.data;
// L
let length = args.length / 8;
let salt = hkdf::Salt::new(algorithm, salt);
let prk = salt.extract(&secret);
let info = &[&*info];
let okm = prk
.expand(info, HkdfOutput(length))
.map_err(|_e| Error::HKDFLengthTooLarge)?;
let mut r = vec![0u8; length];
okm.fill(&mut r)?;
Ok(r.into())
}
_ => Err(Error::UnsupportedAlgorithm),
}
})
.await?
}
fn read_rsa_public_key(key_data: KeyData) -> Result<RsaPublicKey, Error> {
let public_key = match key_data.r#type {
KeyType::Private => {
RsaPrivateKey::from_pkcs1_der(&key_data.data)?.to_public_key()
}
KeyType::Public => RsaPublicKey::from_pkcs1_der(&key_data.data)?,
KeyType::Secret => unreachable!("unexpected KeyType::Secret"),
};
Ok(public_key)
}
#[op2]
#[string]
pub fn op_crypto_random_uuid(state: &mut OpState) -> Result<String, Error> {
let maybe_seeded_rng = state.try_borrow_mut::<StdRng>();
let uuid = if let Some(seeded_rng) = maybe_seeded_rng {
let mut bytes = [0u8; 16];
seeded_rng.fill(&mut bytes);
fast_uuid_v4(&mut bytes)
} else {
let mut rng = thread_rng();
let mut bytes = [0u8; 16];
rng.fill(&mut bytes);
fast_uuid_v4(&mut bytes)
};
Ok(uuid)
}
#[op2(async)]
#[serde]
pub async fn op_crypto_subtle_digest(
#[serde] algorithm: CryptoHash,
#[buffer] data: JsBuffer,
) -> Result<ToJsBuffer, Error> {
let output = spawn_blocking(move || {
digest::digest(algorithm.into(), &data)
.as_ref()
.to_vec()
.into()
})
.await?;
Ok(output)
}
#[derive(Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct WrapUnwrapKeyArg {
key: V8RawKeyData,
algorithm: Algorithm,
}
#[op2]
#[serde]
pub fn op_crypto_wrap_key(
#[serde] args: WrapUnwrapKeyArg,
#[buffer] data: JsBuffer,
) -> Result<ToJsBuffer, Error> {
let algorithm = args.algorithm;
match algorithm {
Algorithm::AesKw => {
let key = args.key.as_secret_key()?;
if data.len() % 8 != 0 {
return Err(Error::DataInvalidSize);
}
let wrapped_key = match key.len() {
16 => KekAes128::new(key.into()).wrap_vec(&data),
24 => KekAes192::new(key.into()).wrap_vec(&data),
32 => KekAes256::new(key.into()).wrap_vec(&data),
_ => return Err(Error::InvalidKeyLength),
}
.map_err(|_| Error::EncryptionError)?;
Ok(wrapped_key.into())
}
_ => Err(Error::UnsupportedAlgorithm),
}
}
#[op2]
#[serde]
pub fn op_crypto_unwrap_key(
#[serde] args: WrapUnwrapKeyArg,
#[buffer] data: JsBuffer,
) -> Result<ToJsBuffer, Error> {
let algorithm = args.algorithm;
match algorithm {
Algorithm::AesKw => {
let key = args.key.as_secret_key()?;
if data.len() % 8 != 0 {
return Err(Error::DataInvalidSize);
}
let unwrapped_key = match key.len() {
16 => KekAes128::new(key.into()).unwrap_vec(&data),
24 => KekAes192::new(key.into()).unwrap_vec(&data),
32 => KekAes256::new(key.into()).unwrap_vec(&data),
_ => return Err(Error::InvalidKeyLength),
}
.map_err(|_| Error::DecryptionError)?;
Ok(unwrapped_key.into())
}
_ => Err(Error::UnsupportedAlgorithm),
}
}
pub fn get_declaration() -> PathBuf {
PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("lib.deno_crypto.d.ts")
}
const HEX_CHARS: &[u8; 16] = b"0123456789abcdef";
fn fast_uuid_v4(bytes: &mut [u8; 16]) -> String {
// Set UUID version to 4 and variant to 1.
bytes[6] = (bytes[6] & 0x0f) | 0x40;
bytes[8] = (bytes[8] & 0x3f) | 0x80;
let buf = [
HEX_CHARS[(bytes[0] >> 4) as usize],
HEX_CHARS[(bytes[0] & 0x0f) as usize],
HEX_CHARS[(bytes[1] >> 4) as usize],
HEX_CHARS[(bytes[1] & 0x0f) as usize],
HEX_CHARS[(bytes[2] >> 4) as usize],
HEX_CHARS[(bytes[2] & 0x0f) as usize],
HEX_CHARS[(bytes[3] >> 4) as usize],
HEX_CHARS[(bytes[3] & 0x0f) as usize],
b'-',
HEX_CHARS[(bytes[4] >> 4) as usize],
HEX_CHARS[(bytes[4] & 0x0f) as usize],
HEX_CHARS[(bytes[5] >> 4) as usize],
HEX_CHARS[(bytes[5] & 0x0f) as usize],
b'-',
HEX_CHARS[(bytes[6] >> 4) as usize],
HEX_CHARS[(bytes[6] & 0x0f) as usize],
HEX_CHARS[(bytes[7] >> 4) as usize],
HEX_CHARS[(bytes[7] & 0x0f) as usize],
b'-',
HEX_CHARS[(bytes[8] >> 4) as usize],
HEX_CHARS[(bytes[8] & 0x0f) as usize],
HEX_CHARS[(bytes[9] >> 4) as usize],
HEX_CHARS[(bytes[9] & 0x0f) as usize],
b'-',
HEX_CHARS[(bytes[10] >> 4) as usize],
HEX_CHARS[(bytes[10] & 0x0f) as usize],
HEX_CHARS[(bytes[11] >> 4) as usize],
HEX_CHARS[(bytes[11] & 0x0f) as usize],
HEX_CHARS[(bytes[12] >> 4) as usize],
HEX_CHARS[(bytes[12] & 0x0f) as usize],
HEX_CHARS[(bytes[13] >> 4) as usize],
HEX_CHARS[(bytes[13] & 0x0f) as usize],
HEX_CHARS[(bytes[14] >> 4) as usize],
HEX_CHARS[(bytes[14] & 0x0f) as usize],
HEX_CHARS[(bytes[15] >> 4) as usize],
HEX_CHARS[(bytes[15] & 0x0f) as usize],
];
// Safety: the buffer is all valid UTF-8.
unsafe { String::from_utf8_unchecked(buf.to_vec()) }
}
#[test]
fn test_fast_uuid_v4_correctness() {
let mut rng = thread_rng();
let mut bytes = [0u8; 16];
rng.fill(&mut bytes);
let uuid = fast_uuid_v4(&mut bytes.clone());
let uuid_lib = uuid::Builder::from_bytes(bytes)
.set_variant(uuid::Variant::RFC4122)
.set_version(uuid::Version::Random)
.as_uuid()
.to_string();
assert_eq!(uuid, uuid_lib);
}