1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-11 16:42:21 -05:00
denoland-deno/core/resources.rs

182 lines
5.8 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
// Think of Resources as File Descriptors. They are integers that are allocated by
// the privileged side of Deno to refer to various rust objects that need to be
// referenced between multiple ops. For example, network sockets are resources.
// Resources may or may not correspond to a real operating system file
// descriptor (hence the different name).
use std::any::Any;
use std::collections::HashMap;
/// ResourceId is Deno's version of a file descriptor. ResourceId is also referred
/// to as `rid` in the code base.
pub type ResourceId = u32;
/// These store Deno's file descriptors. These are not necessarily the operating
/// system ones.
type ResourceMap = HashMap<ResourceId, (String, Box<dyn Any>)>;
/// Map-like data structure storing Deno's resources (equivalent to file descriptors).
///
/// Provides basic methods for element access. A resource can be of any type.
/// Different types of resources can be stored in the same map, and provided
/// with a name for description.
///
/// Each resource is identified through a _resource ID (rid)_, which acts as
/// the key in the map.
#[derive(Default)]
pub struct ResourceTable {
map: ResourceMap,
next_id: u32,
}
impl ResourceTable {
/// Checks if the given resource ID is contained.
pub fn has(&self, rid: ResourceId) -> bool {
self.map.contains_key(&rid)
}
/// Returns a shared reference to a resource.
///
/// Returns `None`, if `rid` is not stored or has a type different from `T`.
pub fn get<T: Any>(&self, rid: ResourceId) -> Option<&T> {
let (_, resource) = self.map.get(&rid)?;
resource.downcast_ref::<T>()
}
/// Returns a mutable reference to a resource.
///
/// Returns `None`, if `rid` is not stored or has a type different from `T`.
pub fn get_mut<T: Any>(&mut self, rid: ResourceId) -> Option<&mut T> {
let (_, resource) = self.map.get_mut(&rid)?;
resource.downcast_mut::<T>()
}
// TODO: resource id allocation should probably be randomized for security.
fn next_rid(&mut self) -> ResourceId {
let next_rid = self.next_id;
self.next_id += 1;
next_rid as ResourceId
}
/// Inserts a resource, taking ownership of it.
///
/// The resource type is erased at runtime and must be statically known
/// when retrieving it through `get()`.
///
/// Returns a unique resource ID, which acts as a key for this resource.
pub fn add(&mut self, name: &str, resource: Box<dyn Any>) -> ResourceId {
let rid = self.next_rid();
let r = self.map.insert(rid, (name.to_string(), resource));
assert!(r.is_none());
rid
}
/// Returns a map of resource IDs to names.
///
/// The name is the one specified during `add()`. To access resources themselves,
/// use the `get()` or `get_mut()` functions.
pub fn entries(&self) -> HashMap<ResourceId, String> {
self
.map
.iter()
.map(|(key, (name, _resource))| (*key, name.clone()))
.collect()
}
// close(2) is done by dropping the value. Therefore we just need to remove
// the resource from the resource table.
pub fn close(&mut self, rid: ResourceId) -> Option<()> {
self.map.remove(&rid).map(|(_name, _resource)| ())
}
/// Removes the resource identified by `rid` and returns it.
///
/// When the provided `rid` is stored, the associated resource will be removed.
/// Otherwise, nothing happens and `None` is returned.
///
/// If the type `T` matches the resource's type, the resource will be returned.
/// If the type mismatches, `None` is returned, but the resource is still removed.
pub fn remove<T: Any>(&mut self, rid: ResourceId) -> Option<Box<T>> {
if let Some((_name, resource)) = self.map.remove(&rid) {
let res = match resource.downcast::<T>() {
Ok(res) => Some(res),
Err(_e) => None,
};
return res;
}
None
}
}
#[cfg(test)]
mod tests {
use super::*;
struct FakeResource {
not_empty: u128,
}
impl FakeResource {
fn new(value: u128) -> FakeResource {
FakeResource { not_empty: value }
}
}
#[test]
fn test_create_resource_table_default() {
let table = ResourceTable::default();
assert_eq!(table.map.len(), 0);
}
#[test]
fn test_add_to_resource_table_not_empty() {
let mut table = ResourceTable::default();
table.add("fake1", Box::new(FakeResource::new(1)));
table.add("fake2", Box::new(FakeResource::new(2)));
assert_eq!(table.map.len(), 2);
}
#[test]
fn test_add_to_resource_table_are_contiguous() {
let mut table = ResourceTable::default();
let rid1 = table.add("fake1", Box::new(FakeResource::new(1)));
let rid2 = table.add("fake2", Box::new(FakeResource::new(2)));
assert_eq!(rid1 + 1, rid2);
}
#[test]
fn test_get_from_resource_table_is_what_was_given() {
let mut table = ResourceTable::default();
let rid = table.add("fake", Box::new(FakeResource::new(7)));
let resource = table.get::<FakeResource>(rid);
assert_eq!(resource.unwrap().not_empty, 7);
}
#[test]
fn test_remove_from_resource_table() {
let mut table = ResourceTable::default();
let rid1 = table.add("fake1", Box::new(FakeResource::new(1)));
let rid2 = table.add("fake2", Box::new(FakeResource::new(2)));
assert_eq!(table.map.len(), 2);
table.close(rid1);
assert_eq!(table.map.len(), 1);
table.close(rid2);
assert_eq!(table.map.len(), 0);
}
#[test]
fn test_take_from_resource_table() {
let mut table = ResourceTable::default();
let rid1 = table.add("fake1", Box::new(FakeResource::new(1)));
let rid2 = table.add("fake2", Box::new(FakeResource::new(2)));
assert_eq!(table.map.len(), 2);
let res1 = table.remove::<FakeResource>(rid1);
assert_eq!(table.map.len(), 1);
assert!(res1.is_some());
let res2 = table.remove::<FakeResource>(rid2);
assert_eq!(table.map.len(), 0);
assert!(res2.is_some());
}
}