0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-10-31 09:14:20 -04:00
denoland-deno/core/runtime.rs
Bartek Iwańczuk d4c8fa263d
refactor(core): don't depend on get_identity_hash for promises (#8352)
This commit changes how pending promise exceptions are stored
in JsRuntime by using global handle to promise instead of its
identity hash.
2020-11-11 23:11:40 +01:00

2611 lines
80 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
use rusty_v8 as v8;
use crate::bindings;
use crate::error::attach_handle_to_error;
use crate::error::generic_error;
use crate::error::AnyError;
use crate::error::ErrWithV8Handle;
use crate::error::JsError;
use crate::futures::FutureExt;
use crate::module_specifier::ModuleSpecifier;
use crate::modules::LoadState;
use crate::modules::ModuleId;
use crate::modules::ModuleLoadId;
use crate::modules::ModuleLoader;
use crate::modules::ModuleSource;
use crate::modules::Modules;
use crate::modules::NoopModuleLoader;
use crate::modules::PrepareLoadFuture;
use crate::modules::RecursiveModuleLoad;
use crate::ops::*;
use crate::shared_queue::SharedQueue;
use crate::shared_queue::RECOMMENDED_SIZE;
use crate::BufVec;
use crate::OpState;
use futures::channel::mpsc;
use futures::future::poll_fn;
use futures::stream::FuturesUnordered;
use futures::stream::StreamExt;
use futures::stream::StreamFuture;
use futures::task::AtomicWaker;
use futures::Future;
use std::any::Any;
use std::cell::Cell;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::ffi::c_void;
use std::mem::forget;
use std::option::Option;
use std::pin::Pin;
use std::rc::Rc;
use std::sync::Once;
use std::task::Context;
use std::task::Poll;
type PendingOpFuture = Pin<Box<dyn Future<Output = (OpId, Box<[u8]>)>>>;
pub enum Snapshot {
Static(&'static [u8]),
JustCreated(v8::StartupData),
Boxed(Box<[u8]>),
}
type JsErrorCreateFn = dyn Fn(JsError) -> AnyError;
pub type GetErrorClassFn =
&'static dyn for<'e> Fn(&'e AnyError) -> &'static str;
/// Objects that need to live as long as the isolate
#[derive(Default)]
struct IsolateAllocations {
near_heap_limit_callback_data:
Option<(Box<RefCell<dyn Any>>, v8::NearHeapLimitCallback)>,
}
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. A JsRuntime is a Future that can be used with
/// an event loop (Tokio, async_std).
////
/// The JsRuntime future completes when there is an error or when all
/// pending ops have completed.
///
/// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust
/// by implementing dispatcher function that takes control buffer and optional zero copy buffer
/// as arguments. An async Op corresponds exactly to a Promise in JavaScript.
pub struct JsRuntime {
// This is an Option<OwnedIsolate> instead of just OwnedIsolate to workaround
// an safety issue with SnapshotCreator. See JsRuntime::drop.
v8_isolate: Option<v8::OwnedIsolate>,
snapshot_creator: Option<v8::SnapshotCreator>,
has_snapshotted: bool,
needs_init: bool,
allocations: IsolateAllocations,
}
struct DynImportModEvaluate {
module_id: ModuleId,
promise: v8::Global<v8::Promise>,
module: v8::Global<v8::Module>,
}
struct ModEvaluate {
promise: v8::Global<v8::Promise>,
sender: mpsc::Sender<Result<(), AnyError>>,
}
/// Internal state for JsRuntime which is stored in one of v8::Isolate's
/// embedder slots.
pub(crate) struct JsRuntimeState {
pub global_context: Option<v8::Global<v8::Context>>,
pub(crate) shared_ab: Option<v8::Global<v8::SharedArrayBuffer>>,
pub(crate) js_recv_cb: Option<v8::Global<v8::Function>>,
pub(crate) js_macrotask_cb: Option<v8::Global<v8::Function>>,
pub(crate) pending_promise_exceptions:
HashMap<v8::Global<v8::Promise>, v8::Global<v8::Value>>,
pending_dyn_mod_evaluate: HashMap<ModuleLoadId, DynImportModEvaluate>,
pending_mod_evaluate: Option<ModEvaluate>,
pub(crate) js_error_create_fn: Box<JsErrorCreateFn>,
pub(crate) shared: SharedQueue,
pub(crate) pending_ops: FuturesUnordered<PendingOpFuture>,
pub(crate) pending_unref_ops: FuturesUnordered<PendingOpFuture>,
pub(crate) have_unpolled_ops: Cell<bool>,
//pub(crate) op_table: OpTable,
pub(crate) op_state: Rc<RefCell<OpState>>,
loader: Rc<dyn ModuleLoader>,
pub modules: Modules,
pub(crate) dyn_import_map:
HashMap<ModuleLoadId, v8::Global<v8::PromiseResolver>>,
preparing_dyn_imports: FuturesUnordered<Pin<Box<PrepareLoadFuture>>>,
pending_dyn_imports: FuturesUnordered<StreamFuture<RecursiveModuleLoad>>,
waker: AtomicWaker,
}
impl Drop for JsRuntime {
fn drop(&mut self) {
if let Some(creator) = self.snapshot_creator.take() {
// TODO(ry): in rusty_v8, `SnapShotCreator::get_owned_isolate()` returns
// a `struct OwnedIsolate` which is not actually owned, hence the need
// here to leak the `OwnedIsolate` in order to avoid a double free and
// the segfault that it causes.
let v8_isolate = self.v8_isolate.take().unwrap();
forget(v8_isolate);
// TODO(ry) V8 has a strange assert which prevents a SnapshotCreator from
// being deallocated if it hasn't created a snapshot yet.
// https://github.com/v8/v8/blob/73212783fbd534fac76cc4b66aac899c13f71fc8/src/api.cc#L603
// If that assert is removed, this if guard could be removed.
// WARNING: There may be false positive LSAN errors here.
if self.has_snapshotted {
drop(creator);
}
}
}
}
#[allow(clippy::missing_safety_doc)]
pub unsafe fn v8_init() {
let platform = v8::new_default_platform().unwrap();
v8::V8::initialize_platform(platform);
v8::V8::initialize();
// TODO(ry) This makes WASM compile synchronously. Eventually we should
// remove this to make it work asynchronously too. But that requires getting
// PumpMessageLoop and RunMicrotasks setup correctly.
// See https://github.com/denoland/deno/issues/2544
let argv = vec![
"".to_string(),
"--wasm-test-streaming".to_string(),
"--no-wasm-async-compilation".to_string(),
"--harmony-top-level-await".to_string(),
];
v8::V8::set_flags_from_command_line(argv);
}
#[derive(Default)]
pub struct RuntimeOptions {
/// Allows a callback to be set whenever a V8 exception is made. This allows
/// the caller to wrap the JsError into an error. By default this callback
/// is set to `JsError::create()`.
pub js_error_create_fn: Option<Box<JsErrorCreateFn>>,
/// Implementation of `ModuleLoader` which will be
/// called when V8 requests to load ES modules.
///
/// If not provided runtime will error if code being
/// executed tries to load modules.
pub module_loader: Option<Rc<dyn ModuleLoader>>,
/// V8 snapshot that should be loaded on startup.
///
/// Currently can't be used with `will_snapshot`.
pub startup_snapshot: Option<Snapshot>,
/// Prepare runtime to take snapshot of loaded code.
///
/// Currently can't be used with `startup_snapshot`.
pub will_snapshot: bool,
/// Isolate creation parameters.
pub create_params: Option<v8::CreateParams>,
}
impl JsRuntime {
/// Only constructor, configuration is done through `options`.
pub fn new(mut options: RuntimeOptions) -> Self {
static DENO_INIT: Once = Once::new();
DENO_INIT.call_once(|| {
unsafe { v8_init() };
});
let global_context;
let (mut isolate, maybe_snapshot_creator) = if options.will_snapshot {
// TODO(ry) Support loading snapshots before snapshotting.
assert!(options.startup_snapshot.is_none());
let mut creator =
v8::SnapshotCreator::new(Some(&bindings::EXTERNAL_REFERENCES));
let isolate = unsafe { creator.get_owned_isolate() };
let mut isolate = JsRuntime::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = bindings::initialize_context(scope);
global_context = v8::Global::new(scope, context);
creator.set_default_context(context);
}
(isolate, Some(creator))
} else {
let mut params = options
.create_params
.take()
.unwrap_or_else(v8::Isolate::create_params)
.external_references(&**bindings::EXTERNAL_REFERENCES);
let snapshot_loaded = if let Some(snapshot) = options.startup_snapshot {
params = match snapshot {
Snapshot::Static(data) => params.snapshot_blob(data),
Snapshot::JustCreated(data) => params.snapshot_blob(data),
Snapshot::Boxed(data) => params.snapshot_blob(data),
};
true
} else {
false
};
let isolate = v8::Isolate::new(params);
let mut isolate = JsRuntime::setup_isolate(isolate);
{
let scope = &mut v8::HandleScope::new(&mut isolate);
let context = if snapshot_loaded {
v8::Context::new(scope)
} else {
// If no snapshot is provided, we initialize the context with empty
// main source code and source maps.
bindings::initialize_context(scope)
};
global_context = v8::Global::new(scope, context);
}
(isolate, None)
};
let loader = options
.module_loader
.unwrap_or_else(|| Rc::new(NoopModuleLoader));
let js_error_create_fn = options
.js_error_create_fn
.unwrap_or_else(|| Box::new(JsError::create));
let op_state = OpState::default();
isolate.set_slot(Rc::new(RefCell::new(JsRuntimeState {
global_context: Some(global_context),
pending_promise_exceptions: HashMap::new(),
pending_dyn_mod_evaluate: HashMap::new(),
pending_mod_evaluate: None,
shared_ab: None,
js_recv_cb: None,
js_macrotask_cb: None,
js_error_create_fn,
shared: SharedQueue::new(RECOMMENDED_SIZE),
pending_ops: FuturesUnordered::new(),
pending_unref_ops: FuturesUnordered::new(),
op_state: Rc::new(RefCell::new(op_state)),
have_unpolled_ops: Cell::new(false),
modules: Modules::new(),
loader,
dyn_import_map: HashMap::new(),
preparing_dyn_imports: FuturesUnordered::new(),
pending_dyn_imports: FuturesUnordered::new(),
waker: AtomicWaker::new(),
})));
Self {
v8_isolate: Some(isolate),
snapshot_creator: maybe_snapshot_creator,
has_snapshotted: false,
needs_init: true,
allocations: IsolateAllocations::default(),
}
}
pub fn global_context(&mut self) -> v8::Global<v8::Context> {
let state = Self::state(self.v8_isolate());
let state = state.borrow();
state.global_context.clone().unwrap()
}
pub fn v8_isolate(&mut self) -> &mut v8::OwnedIsolate {
self.v8_isolate.as_mut().unwrap()
}
fn setup_isolate(mut isolate: v8::OwnedIsolate) -> v8::OwnedIsolate {
isolate.set_capture_stack_trace_for_uncaught_exceptions(true, 10);
isolate.set_promise_reject_callback(bindings::promise_reject_callback);
isolate.set_host_initialize_import_meta_object_callback(
bindings::host_initialize_import_meta_object_callback,
);
isolate.set_host_import_module_dynamically_callback(
bindings::host_import_module_dynamically_callback,
);
isolate
}
pub(crate) fn state(isolate: &v8::Isolate) -> Rc<RefCell<JsRuntimeState>> {
let s = isolate.get_slot::<Rc<RefCell<JsRuntimeState>>>().unwrap();
s.clone()
}
/// Executes a bit of built-in JavaScript to provide Deno.sharedQueue.
fn shared_init(&mut self) {
if self.needs_init {
self.needs_init = false;
self.execute("core.js", include_str!("core.js")).unwrap();
}
}
/// Returns the runtime's op state, which can be used to maintain ops
/// and access resources between op calls.
pub fn op_state(&mut self) -> Rc<RefCell<OpState>> {
let state_rc = Self::state(self.v8_isolate());
let state = state_rc.borrow();
state.op_state.clone()
}
/// Executes traditional JavaScript code (traditional = not ES modules)
///
/// The execution takes place on the current global context, so it is possible
/// to maintain local JS state and invoke this method multiple times.
///
/// `AnyError` can be downcast to a type that exposes additional information
/// about the V8 exception. By default this type is `JsError`, however it may
/// be a different type if `RuntimeOptions::js_error_create_fn` has been set.
pub fn execute(
&mut self,
js_filename: &str,
js_source: &str,
) -> Result<(), AnyError> {
self.shared_init();
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let source = v8::String::new(scope, js_source).unwrap();
let name = v8::String::new(scope, js_filename).unwrap();
let origin = bindings::script_origin(scope, name);
let tc_scope = &mut v8::TryCatch::new(scope);
let script = match v8::Script::compile(tc_scope, source, Some(&origin)) {
Some(script) => script,
None => {
let exception = tc_scope.exception().unwrap();
return exception_to_err_result(tc_scope, exception, false);
}
};
match script.run(tc_scope) {
Some(_) => Ok(()),
None => {
assert!(tc_scope.has_caught());
let exception = tc_scope.exception().unwrap();
exception_to_err_result(tc_scope, exception, false)
}
}
}
/// Takes a snapshot. The isolate should have been created with will_snapshot
/// set to true.
///
/// `AnyError` can be downcast to a type that exposes additional information
/// about the V8 exception. By default this type is `JsError`, however it may
/// be a different type if `RuntimeOptions::js_error_create_fn` has been set.
pub fn snapshot(&mut self) -> v8::StartupData {
assert!(self.snapshot_creator.is_some());
let state = Self::state(self.v8_isolate());
// Note: create_blob() method must not be called from within a HandleScope.
// TODO(piscisaureus): The rusty_v8 type system should enforce this.
state.borrow_mut().global_context.take();
std::mem::take(&mut state.borrow_mut().modules);
let snapshot_creator = self.snapshot_creator.as_mut().unwrap();
let snapshot = snapshot_creator
.create_blob(v8::FunctionCodeHandling::Keep)
.unwrap();
self.has_snapshotted = true;
snapshot
}
/// Registers an op that can be called from JavaScript.
///
/// The _op_ mechanism allows to expose Rust functions to the JS runtime,
/// which can be called using the provided `name`.
///
/// This function provides byte-level bindings. To pass data via JSON, the
/// following functions can be passed as an argument for `op_fn`:
/// * [json_op_sync()](fn.json_op_sync.html)
/// * [json_op_async()](fn.json_op_async.html)
pub fn register_op<F>(&mut self, name: &str, op_fn: F) -> OpId
where
F: Fn(Rc<RefCell<OpState>>, BufVec) -> Op + 'static,
{
Self::state(self.v8_isolate())
.borrow_mut()
.op_state
.borrow_mut()
.op_table
.register_op(name, op_fn)
}
/// Registers a callback on the isolate when the memory limits are approached.
/// Use this to prevent V8 from crashing the process when reaching the limit.
///
/// Calls the closure with the current heap limit and the initial heap limit.
/// The return value of the closure is set as the new limit.
pub fn add_near_heap_limit_callback<C>(&mut self, cb: C)
where
C: FnMut(usize, usize) -> usize + 'static,
{
let boxed_cb = Box::new(RefCell::new(cb));
let data = boxed_cb.as_ptr() as *mut c_void;
let prev = self
.allocations
.near_heap_limit_callback_data
.replace((boxed_cb, near_heap_limit_callback::<C>));
if let Some((_, prev_cb)) = prev {
self
.v8_isolate()
.remove_near_heap_limit_callback(prev_cb, 0);
}
self
.v8_isolate()
.add_near_heap_limit_callback(near_heap_limit_callback::<C>, data);
}
pub fn remove_near_heap_limit_callback(&mut self, heap_limit: usize) {
if let Some((_, cb)) = self.allocations.near_heap_limit_callback_data.take()
{
self
.v8_isolate()
.remove_near_heap_limit_callback(cb, heap_limit);
}
}
/// Runs event loop to completion
///
/// This future resolves when:
/// - there are no more pending dynamic imports
/// - there are no more pending ops
pub async fn run_event_loop(&mut self) -> Result<(), AnyError> {
poll_fn(|cx| self.poll_event_loop(cx)).await
}
/// Runs a single tick of event loop
pub fn poll_event_loop(
&mut self,
cx: &mut Context,
) -> Poll<Result<(), AnyError>> {
self.shared_init();
let state_rc = Self::state(self.v8_isolate());
{
let state = state_rc.borrow();
state.waker.register(cx.waker());
}
// Ops
{
let overflow_response = self.poll_pending_ops(cx);
self.async_op_response(overflow_response)?;
self.drain_macrotasks()?;
self.check_promise_exceptions()?;
}
// Dynamic module loading - ie. modules loaded using "import()"
{
let poll_imports = self.prepare_dyn_imports(cx)?;
assert!(poll_imports.is_ready());
let poll_imports = self.poll_dyn_imports(cx)?;
assert!(poll_imports.is_ready());
self.evaluate_dyn_imports()?;
self.check_promise_exceptions()?;
}
// Top level module
self.evaluate_pending_module()?;
let state = state_rc.borrow();
let has_pending_ops = !state.pending_ops.is_empty();
let has_pending_dyn_imports = !{
state.preparing_dyn_imports.is_empty()
&& state.pending_dyn_imports.is_empty()
};
let has_pending_dyn_module_evaluation =
!state.pending_dyn_mod_evaluate.is_empty();
let has_pending_module_evaluation = state.pending_mod_evaluate.is_some();
if !has_pending_ops
&& !has_pending_dyn_imports
&& !has_pending_dyn_module_evaluation
&& !has_pending_module_evaluation
{
return Poll::Ready(Ok(()));
}
// Check if more async ops have been dispatched
// during this turn of event loop.
if state.have_unpolled_ops.get() {
state.waker.wake();
}
if has_pending_module_evaluation {
if has_pending_ops
|| has_pending_dyn_imports
|| has_pending_dyn_module_evaluation
{
// pass, will be polled again
} else {
let msg = "Module evaluation is still pending but there are no pending ops or dynamic imports. This situation is often caused by unresolved promise.";
return Poll::Ready(Err(generic_error(msg)));
}
}
if has_pending_dyn_module_evaluation {
if has_pending_ops || has_pending_dyn_imports {
// pass, will be polled again
} else {
let msg = "Dynamically imported module evaluation is still pending but there are no pending ops. This situation is often caused by unresolved promise.";
return Poll::Ready(Err(generic_error(msg)));
}
}
Poll::Pending
}
}
extern "C" fn near_heap_limit_callback<F>(
data: *mut c_void,
current_heap_limit: usize,
initial_heap_limit: usize,
) -> usize
where
F: FnMut(usize, usize) -> usize,
{
let callback = unsafe { &mut *(data as *mut F) };
callback(current_heap_limit, initial_heap_limit)
}
impl JsRuntimeState {
// Called by V8 during `Isolate::mod_instantiate`.
pub fn module_resolve_cb(
&mut self,
specifier: &str,
referrer_id: ModuleId,
) -> ModuleId {
let referrer = self.modules.get_name(referrer_id).unwrap();
let specifier = self
.loader
.resolve(self.op_state.clone(), specifier, referrer, false)
.expect("Module should have been already resolved");
self.modules.get_id(specifier.as_str()).unwrap_or(0)
}
// Called by V8 during `Isolate::mod_instantiate`.
pub fn dyn_import_cb(
&mut self,
resolver_handle: v8::Global<v8::PromiseResolver>,
specifier: &str,
referrer: &str,
) {
debug!("dyn_import specifier {} referrer {} ", specifier, referrer);
let load = RecursiveModuleLoad::dynamic_import(
self.op_state.clone(),
specifier,
referrer,
self.loader.clone(),
);
self.dyn_import_map.insert(load.id, resolver_handle);
self.waker.wake();
let fut = load.prepare().boxed_local();
self.preparing_dyn_imports.push(fut);
}
}
pub(crate) fn exception_to_err_result<'s, T>(
scope: &mut v8::HandleScope<'s>,
exception: v8::Local<v8::Value>,
in_promise: bool,
) -> Result<T, AnyError> {
// TODO(piscisaureus): in rusty_v8, `is_execution_terminating()` should
// also be implemented on `struct Isolate`.
let is_terminating_exception =
scope.thread_safe_handle().is_execution_terminating();
let mut exception = exception;
if is_terminating_exception {
// TerminateExecution was called. Cancel exception termination so that the
// exception can be created..
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
scope.thread_safe_handle().cancel_terminate_execution();
// Maybe make a new exception object.
if exception.is_null_or_undefined() {
let message = v8::String::new(scope, "execution terminated").unwrap();
exception = v8::Exception::error(scope, message);
}
}
let mut js_error = JsError::from_v8_exception(scope, exception);
if in_promise {
js_error.message = format!(
"Uncaught (in promise) {}",
js_error.message.trim_start_matches("Uncaught ")
);
}
let state_rc = JsRuntime::state(scope);
let state = state_rc.borrow();
let js_error = (state.js_error_create_fn)(js_error);
if is_terminating_exception {
// Re-enable exception termination.
// TODO(piscisaureus): in rusty_v8, `terminate_execution()` should also
// be implemented on `struct Isolate`.
scope.thread_safe_handle().terminate_execution();
}
Err(js_error)
}
// Related to module loading
impl JsRuntime {
/// Low-level module creation.
///
/// Called during module loading or dynamic import loading.
fn mod_new(
&mut self,
main: bool,
name: &str,
source: &str,
) -> Result<ModuleId, AnyError> {
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let name_str = v8::String::new(scope, name).unwrap();
let source_str = v8::String::new(scope, source).unwrap();
let origin = bindings::module_origin(scope, name_str);
let source = v8::script_compiler::Source::new(source_str, &origin);
let tc_scope = &mut v8::TryCatch::new(scope);
let maybe_module = v8::script_compiler::compile_module(tc_scope, source);
if tc_scope.has_caught() {
assert!(maybe_module.is_none());
let e = tc_scope.exception().unwrap();
return exception_to_err_result(tc_scope, e, false);
}
let module = maybe_module.unwrap();
let id = module.get_identity_hash();
let mut import_specifiers: Vec<ModuleSpecifier> = vec![];
for i in 0..module.get_module_requests_length() {
let import_specifier =
module.get_module_request(i).to_rust_string_lossy(tc_scope);
let state = state_rc.borrow();
let module_specifier = state.loader.resolve(
state.op_state.clone(),
&import_specifier,
name,
false,
)?;
import_specifiers.push(module_specifier);
}
state_rc.borrow_mut().modules.register(
id,
name,
main,
v8::Global::<v8::Module>::new(tc_scope, module),
import_specifiers,
);
Ok(id)
}
/// Instantiates a ES module
///
/// `AnyError` can be downcast to a type that exposes additional information
/// about the V8 exception. By default this type is `JsError`, however it may
/// be a different type if `RuntimeOptions::js_error_create_fn` has been set.
fn mod_instantiate(&mut self, id: ModuleId) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let tc_scope = &mut v8::TryCatch::new(scope);
let state = state_rc.borrow();
let module = match state.modules.get_info(id) {
Some(info) => v8::Local::new(tc_scope, &info.handle),
None if id == 0 => return Ok(()),
_ => panic!("module id {} not found in module table", id),
};
drop(state);
if module.get_status() == v8::ModuleStatus::Errored {
exception_to_err_result(tc_scope, module.get_exception(), false)?
}
let result =
module.instantiate_module(tc_scope, bindings::module_resolve_callback);
match result {
Some(_) => Ok(()),
None => {
let exception = tc_scope.exception().unwrap();
exception_to_err_result(tc_scope, exception, false)
}
}
}
/// Evaluates an already instantiated ES module.
///
/// `AnyError` can be downcast to a type that exposes additional information
/// about the V8 exception. By default this type is `JsError`, however it may
/// be a different type if `RuntimeOptions::js_error_create_fn` has been set.
pub fn dyn_mod_evaluate(
&mut self,
load_id: ModuleLoadId,
id: ModuleId,
) -> Result<(), AnyError> {
self.shared_init();
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
let context1 = self.global_context();
let module_handle = state_rc
.borrow()
.modules
.get_info(id)
.expect("ModuleInfo not found")
.handle
.clone();
let status = {
let scope =
&mut v8::HandleScope::with_context(self.v8_isolate(), context);
let module = module_handle.get(scope);
module.get_status()
};
if status == v8::ModuleStatus::Instantiated {
// IMPORTANT: Top-level-await is enabled, which means that return value
// of module evaluation is a promise.
//
// Because that promise is created internally by V8, when error occurs during
// module evaluation the promise is rejected, and since the promise has no rejection
// handler it will result in call to `bindings::promise_reject_callback` adding
// the promise to pending promise rejection table - meaning JsRuntime will return
// error on next poll().
//
// This situation is not desirable as we want to manually return error at the
// end of this function to handle it further. It means we need to manually
// remove this promise from pending promise rejection table.
//
// For more details see:
// https://github.com/denoland/deno/issues/4908
// https://v8.dev/features/top-level-await#module-execution-order
let scope =
&mut v8::HandleScope::with_context(self.v8_isolate(), context1);
let module = v8::Local::new(scope, &module_handle);
let maybe_value = module.evaluate(scope);
// Update status after evaluating.
let status = module.get_status();
if let Some(value) = maybe_value {
assert!(
status == v8::ModuleStatus::Evaluated
|| status == v8::ModuleStatus::Errored
);
let promise = v8::Local::<v8::Promise>::try_from(value)
.expect("Expected to get promise as module evaluation result");
let promise_global = v8::Global::new(scope, promise);
let mut state = state_rc.borrow_mut();
state.pending_promise_exceptions.remove(&promise_global);
let promise_global = v8::Global::new(scope, promise);
let module_global = v8::Global::new(scope, module);
let dyn_import_mod_evaluate = DynImportModEvaluate {
module_id: id,
promise: promise_global,
module: module_global,
};
state
.pending_dyn_mod_evaluate
.insert(load_id, dyn_import_mod_evaluate);
} else {
assert!(status == v8::ModuleStatus::Errored);
}
}
if status == v8::ModuleStatus::Evaluated {
self.dyn_import_done(load_id, id)?;
}
Ok(())
}
/// Evaluates an already instantiated ES module.
///
/// `AnyError` can be downcast to a type that exposes additional information
/// about the V8 exception. By default this type is `JsError`, however it may
/// be a different type if `RuntimeOptions::js_error_create_fn` has been set.
fn mod_evaluate_inner(
&mut self,
id: ModuleId,
) -> Result<mpsc::Receiver<Result<(), AnyError>>, AnyError> {
self.shared_init();
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let module = state_rc
.borrow()
.modules
.get_info(id)
.map(|info| v8::Local::new(scope, &info.handle))
.expect("ModuleInfo not found");
let mut status = module.get_status();
let (sender, receiver) = mpsc::channel(1);
if status == v8::ModuleStatus::Instantiated {
// IMPORTANT: Top-level-await is enabled, which means that return value
// of module evaluation is a promise.
//
// Because that promise is created internally by V8, when error occurs during
// module evaluation the promise is rejected, and since the promise has no rejection
// handler it will result in call to `bindings::promise_reject_callback` adding
// the promise to pending promise rejection table - meaning JsRuntime will return
// error on next poll().
//
// This situation is not desirable as we want to manually return error at the
// end of this function to handle it further. It means we need to manually
// remove this promise from pending promise rejection table.
//
// For more details see:
// https://github.com/denoland/deno/issues/4908
// https://v8.dev/features/top-level-await#module-execution-order
let maybe_value = module.evaluate(scope);
// Update status after evaluating.
status = module.get_status();
if let Some(value) = maybe_value {
assert!(
status == v8::ModuleStatus::Evaluated
|| status == v8::ModuleStatus::Errored
);
let promise = v8::Local::<v8::Promise>::try_from(value)
.expect("Expected to get promise as module evaluation result");
let promise_global = v8::Global::new(scope, promise);
let mut state = state_rc.borrow_mut();
state.pending_promise_exceptions.remove(&promise_global);
let promise_global = v8::Global::new(scope, promise);
assert!(
state.pending_mod_evaluate.is_none(),
"There is already pending top level module evaluation"
);
state.pending_mod_evaluate = Some(ModEvaluate {
promise: promise_global,
sender,
});
scope.perform_microtask_checkpoint();
} else {
assert!(status == v8::ModuleStatus::Errored);
}
}
Ok(receiver)
}
pub async fn mod_evaluate(&mut self, id: ModuleId) -> Result<(), AnyError> {
let mut receiver = self.mod_evaluate_inner(id)?;
poll_fn(|cx| {
if let Poll::Ready(result) = receiver.poll_next_unpin(cx) {
debug!("received module evaluate");
return Poll::Ready(result.unwrap());
}
let _r = self.poll_event_loop(cx)?;
Poll::Pending
})
.await
}
fn dyn_import_error(
&mut self,
id: ModuleLoadId,
err: AnyError,
) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let resolver_handle = state_rc
.borrow_mut()
.dyn_import_map
.remove(&id)
.expect("Invalid dyn import id");
let resolver = resolver_handle.get(scope);
let exception = err
.downcast_ref::<ErrWithV8Handle>()
.map(|err| err.get_handle(scope))
.unwrap_or_else(|| {
let message = err.to_string();
let message = v8::String::new(scope, &message).unwrap();
v8::Exception::type_error(scope, message)
});
resolver.reject(scope, exception).unwrap();
scope.perform_microtask_checkpoint();
Ok(())
}
fn dyn_import_done(
&mut self,
id: ModuleLoadId,
mod_id: ModuleId,
) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
debug!("dyn_import_done {} {:?}", id, mod_id);
assert!(mod_id != 0);
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let resolver_handle = state_rc
.borrow_mut()
.dyn_import_map
.remove(&id)
.expect("Invalid dyn import id");
let resolver = resolver_handle.get(scope);
let module = {
let state = state_rc.borrow();
state
.modules
.get_info(mod_id)
.map(|info| v8::Local::new(scope, &info.handle))
.expect("Dyn import module info not found")
};
// Resolution success
assert_eq!(module.get_status(), v8::ModuleStatus::Evaluated);
let module_namespace = module.get_module_namespace();
resolver.resolve(scope, module_namespace).unwrap();
scope.perform_microtask_checkpoint();
Ok(())
}
fn prepare_dyn_imports(
&mut self,
cx: &mut Context,
) -> Poll<Result<(), AnyError>> {
let state_rc = Self::state(self.v8_isolate());
if state_rc.borrow().preparing_dyn_imports.is_empty() {
return Poll::Ready(Ok(()));
}
loop {
let r = {
let mut state = state_rc.borrow_mut();
state.preparing_dyn_imports.poll_next_unpin(cx)
};
match r {
Poll::Pending | Poll::Ready(None) => {
// There are no active dynamic import loaders, or none are ready.
return Poll::Ready(Ok(()));
}
Poll::Ready(Some(prepare_poll)) => {
let dyn_import_id = prepare_poll.0;
let prepare_result = prepare_poll.1;
match prepare_result {
Ok(load) => {
let state = state_rc.borrow_mut();
state.pending_dyn_imports.push(load.into_future());
}
Err(err) => {
self.dyn_import_error(dyn_import_id, err)?;
}
}
}
}
}
}
fn poll_dyn_imports(
&mut self,
cx: &mut Context,
) -> Poll<Result<(), AnyError>> {
let state_rc = Self::state(self.v8_isolate());
if state_rc.borrow().pending_dyn_imports.is_empty() {
return Poll::Ready(Ok(()));
}
loop {
let poll_result = {
let mut state = state_rc.borrow_mut();
state.pending_dyn_imports.poll_next_unpin(cx)
};
match poll_result {
Poll::Pending | Poll::Ready(None) => {
// There are no active dynamic import loaders, or none are ready.
return Poll::Ready(Ok(()));
}
Poll::Ready(Some(load_stream_poll)) => {
let maybe_result = load_stream_poll.0;
let mut load = load_stream_poll.1;
let dyn_import_id = load.id;
if let Some(load_stream_result) = maybe_result {
match load_stream_result {
Ok(info) => {
// A module (not necessarily the one dynamically imported) has been
// fetched. Create and register it, and if successful, poll for the
// next recursive-load event related to this dynamic import.
match self.register_during_load(info, &mut load) {
Ok(()) => {
// Keep importing until it's fully drained
let state = state_rc.borrow_mut();
state.pending_dyn_imports.push(load.into_future());
}
Err(err) => self.dyn_import_error(dyn_import_id, err)?,
}
}
Err(err) => {
// A non-javascript error occurred; this could be due to a an invalid
// module specifier, or a problem with the source map, or a failure
// to fetch the module source code.
self.dyn_import_error(dyn_import_id, err)?
}
}
} else {
// The top-level module from a dynamic import has been instantiated.
// Load is done.
let module_id = load.root_module_id.unwrap();
self.mod_instantiate(module_id)?;
self.dyn_mod_evaluate(dyn_import_id, module_id)?;
}
}
}
}
}
/// "deno_core" runs V8 with "--harmony-top-level-await"
/// flag on - it means that each module evaluation returns a promise
/// from V8.
///
/// This promise resolves after all dependent modules have also
/// resolved. Each dependent module may perform calls to "import()" and APIs
/// using async ops will add futures to the runtime's event loop.
/// It means that the promise returned from module evaluation will
/// resolve only after all futures in the event loop are done.
///
/// Thus during turn of event loop we need to check if V8 has
/// resolved or rejected the promise. If the promise is still pending
/// then another turn of event loop must be performed.
fn evaluate_pending_module(&mut self) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let context = self.global_context();
{
let scope =
&mut v8::HandleScope::with_context(self.v8_isolate(), context);
let mut state = state_rc.borrow_mut();
if let Some(module_evaluation) = state.pending_mod_evaluate.as_ref() {
let promise = module_evaluation.promise.get(scope);
let mut sender = module_evaluation.sender.clone();
let promise_state = promise.state();
match promise_state {
v8::PromiseState::Pending => {
// pass, poll_event_loop will decide if
// runtime would be woken soon
}
v8::PromiseState::Fulfilled => {
state.pending_mod_evaluate.take();
scope.perform_microtask_checkpoint();
sender.try_send(Ok(())).unwrap();
}
v8::PromiseState::Rejected => {
let exception = promise.result(scope);
state.pending_mod_evaluate.take();
drop(state);
scope.perform_microtask_checkpoint();
let err1 = exception_to_err_result::<()>(scope, exception, false)
.map_err(|err| attach_handle_to_error(scope, err, exception))
.unwrap_err();
sender.try_send(Err(err1)).unwrap();
}
}
}
};
Ok(())
}
fn evaluate_dyn_imports(&mut self) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
loop {
let context = self.global_context();
let maybe_result = {
let scope =
&mut v8::HandleScope::with_context(self.v8_isolate(), context);
let mut state = state_rc.borrow_mut();
if let Some(&dyn_import_id) =
state.pending_dyn_mod_evaluate.keys().next()
{
let handle = state
.pending_dyn_mod_evaluate
.remove(&dyn_import_id)
.unwrap();
drop(state);
let module_id = handle.module_id;
let promise = handle.promise.get(scope);
let _module = handle.module.get(scope);
let promise_state = promise.state();
match promise_state {
v8::PromiseState::Pending => {
state_rc
.borrow_mut()
.pending_dyn_mod_evaluate
.insert(dyn_import_id, handle);
None
}
v8::PromiseState::Fulfilled => Some(Ok((dyn_import_id, module_id))),
v8::PromiseState::Rejected => {
let exception = promise.result(scope);
let err1 = exception_to_err_result::<()>(scope, exception, false)
.map_err(|err| attach_handle_to_error(scope, err, exception))
.unwrap_err();
Some(Err((dyn_import_id, err1)))
}
}
} else {
None
}
};
if let Some(result) = maybe_result {
match result {
Ok((dyn_import_id, module_id)) => {
self.dyn_import_done(dyn_import_id, module_id)?;
}
Err((dyn_import_id, err1)) => {
self.dyn_import_error(dyn_import_id, err1)?;
}
}
} else {
break;
}
}
Ok(())
}
fn register_during_load(
&mut self,
info: ModuleSource,
load: &mut RecursiveModuleLoad,
) -> Result<(), AnyError> {
let ModuleSource {
code,
module_url_specified,
module_url_found,
} = info;
let is_main =
load.state == LoadState::LoadingRoot && !load.is_dynamic_import();
let referrer_specifier =
ModuleSpecifier::resolve_url(&module_url_found).unwrap();
let state_rc = Self::state(self.v8_isolate());
// #A There are 3 cases to handle at this moment:
// 1. Source code resolved result have the same module name as requested
// and is not yet registered
// -> register
// 2. Source code resolved result have a different name as requested:
// 2a. The module with resolved module name has been registered
// -> alias
// 2b. The module with resolved module name has not yet been registered
// -> register & alias
// If necessary, register an alias.
if module_url_specified != module_url_found {
let mut state = state_rc.borrow_mut();
state
.modules
.alias(&module_url_specified, &module_url_found);
}
let maybe_mod_id = {
let state = state_rc.borrow();
state.modules.get_id(&module_url_found)
};
let module_id = match maybe_mod_id {
Some(id) => {
// Module has already been registered.
debug!(
"Already-registered module fetched again: {}",
module_url_found
);
id
}
// Module not registered yet, do it now.
None => self.mod_new(is_main, &module_url_found, &code)?,
};
// Now we must iterate over all imports of the module and load them.
let imports = {
let state_rc = Self::state(self.v8_isolate());
let state = state_rc.borrow();
state.modules.get_children(module_id).unwrap().clone()
};
for module_specifier in imports {
let is_registered = {
let state_rc = Self::state(self.v8_isolate());
let state = state_rc.borrow();
state.modules.is_registered(&module_specifier)
};
if !is_registered {
load
.add_import(module_specifier.to_owned(), referrer_specifier.clone());
}
}
// If we just finished loading the root module, store the root module id.
if load.state == LoadState::LoadingRoot {
load.root_module_id = Some(module_id);
load.state = LoadState::LoadingImports;
}
if load.pending.is_empty() {
load.state = LoadState::Done;
}
Ok(())
}
/// Asynchronously load specified module and all of it's dependencies
///
/// User must call `JsRuntime::mod_evaluate` with returned `ModuleId`
/// manually after load is finished.
pub async fn load_module(
&mut self,
specifier: &ModuleSpecifier,
code: Option<String>,
) -> Result<ModuleId, AnyError> {
self.shared_init();
let loader = {
let state_rc = Self::state(self.v8_isolate());
let state = state_rc.borrow();
state.loader.clone()
};
let load = RecursiveModuleLoad::main(
self.op_state(),
&specifier.to_string(),
code,
loader,
);
let (_load_id, prepare_result) = load.prepare().await;
let mut load = prepare_result?;
while let Some(info_result) = load.next().await {
let info = info_result?;
self.register_during_load(info, &mut load)?;
}
let root_id = load.root_module_id.expect("Root module id empty");
self.mod_instantiate(root_id).map(|_| root_id)
}
fn poll_pending_ops(
&mut self,
cx: &mut Context,
) -> Option<(OpId, Box<[u8]>)> {
let state_rc = Self::state(self.v8_isolate());
let mut overflow_response: Option<(OpId, Box<[u8]>)> = None;
loop {
let mut state = state_rc.borrow_mut();
// Now handle actual ops.
state.have_unpolled_ops.set(false);
let pending_r = state.pending_ops.poll_next_unpin(cx);
match pending_r {
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
loop {
let mut state = state_rc.borrow_mut();
let unref_r = state.pending_unref_ops.poll_next_unpin(cx);
#[allow(clippy::match_wild_err_arm)]
match unref_r {
Poll::Ready(None) => break,
Poll::Pending => break,
Poll::Ready(Some((op_id, buf))) => {
let successful_push = state.shared.push(op_id, &buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some((op_id, buf));
break;
}
}
};
}
overflow_response
}
fn check_promise_exceptions(&mut self) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let mut state = state_rc.borrow_mut();
if state.pending_promise_exceptions.is_empty() {
return Ok(());
}
let key = {
state
.pending_promise_exceptions
.keys()
.next()
.unwrap()
.clone()
};
let handle = state.pending_promise_exceptions.remove(&key).unwrap();
drop(state);
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let exception = v8::Local::new(scope, handle);
exception_to_err_result(scope, exception, true)
}
// Respond using shared queue and optionally overflown response
fn async_op_response(
&mut self,
maybe_overflown_response: Option<(OpId, Box<[u8]>)>,
) -> Result<(), AnyError> {
let state_rc = Self::state(self.v8_isolate());
let shared_queue_size = state_rc.borrow().shared.size();
if shared_queue_size == 0 && maybe_overflown_response.is_none() {
return Ok(());
}
// FIXME(bartlomieju): without check above this call would panic
// because of lazy initialization in core.js. It seems this lazy initialization
// hides unnecessary complexity.
let js_recv_cb_handle = state_rc
.borrow()
.js_recv_cb
.clone()
.expect("Deno.core.recv has not been called.");
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let context = scope.get_current_context();
let global: v8::Local<v8::Value> = context.global(scope).into();
let js_recv_cb = js_recv_cb_handle.get(scope);
let tc_scope = &mut v8::TryCatch::new(scope);
if shared_queue_size > 0 {
js_recv_cb.call(tc_scope, global, &[]);
// The other side should have shifted off all the messages.
let shared_queue_size = state_rc.borrow().shared.size();
assert_eq!(shared_queue_size, 0);
}
if let Some(overflown_response) = maybe_overflown_response {
let (op_id, buf) = overflown_response;
let op_id: v8::Local<v8::Value> =
v8::Integer::new(tc_scope, op_id as i32).into();
let ui8: v8::Local<v8::Value> =
bindings::boxed_slice_to_uint8array(tc_scope, buf).into();
js_recv_cb.call(tc_scope, global, &[op_id, ui8]);
}
match tc_scope.exception() {
None => Ok(()),
Some(exception) => exception_to_err_result(tc_scope, exception, false),
}
}
fn drain_macrotasks(&mut self) -> Result<(), AnyError> {
let js_macrotask_cb_handle =
match &Self::state(self.v8_isolate()).borrow().js_macrotask_cb {
Some(handle) => handle.clone(),
None => return Ok(()),
};
let context = self.global_context();
let scope = &mut v8::HandleScope::with_context(self.v8_isolate(), context);
let context = scope.get_current_context();
let global: v8::Local<v8::Value> = context.global(scope).into();
let js_macrotask_cb = js_macrotask_cb_handle.get(scope);
// Repeatedly invoke macrotask callback until it returns true (done),
// such that ready microtasks would be automatically run before
// next macrotask is processed.
let tc_scope = &mut v8::TryCatch::new(scope);
loop {
let is_done = js_macrotask_cb.call(tc_scope, global, &[]);
if let Some(exception) = tc_scope.exception() {
return exception_to_err_result(tc_scope, exception, false);
}
let is_done = is_done.unwrap();
if is_done.is_true() {
break;
}
}
Ok(())
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::modules::ModuleSourceFuture;
use crate::BufVec;
use futures::future::lazy;
use futures::FutureExt;
use std::io;
use std::ops::FnOnce;
use std::rc::Rc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
pub fn run_in_task<F>(f: F)
where
F: FnOnce(&mut Context) + Send + 'static,
{
futures::executor::block_on(lazy(move |cx| f(cx)));
}
fn poll_until_ready(
runtime: &mut JsRuntime,
max_poll_count: usize,
) -> Result<(), AnyError> {
let mut cx = Context::from_waker(futures::task::noop_waker_ref());
for _ in 0..max_poll_count {
match runtime.poll_event_loop(&mut cx) {
Poll::Pending => continue,
Poll::Ready(val) => return val,
}
}
panic!(
"JsRuntime still not ready after polling {} times.",
max_poll_count
)
}
enum Mode {
Async,
AsyncUnref,
AsyncZeroCopy(u8),
OverflowReqSync,
OverflowResSync,
OverflowReqAsync,
OverflowResAsync,
}
struct TestState {
mode: Mode,
dispatch_count: Arc<AtomicUsize>,
}
fn dispatch(op_state: Rc<RefCell<OpState>>, bufs: BufVec) -> Op {
let op_state_ = op_state.borrow();
let test_state = op_state_.borrow::<TestState>();
test_state.dispatch_count.fetch_add(1, Ordering::Relaxed);
match test_state.mode {
Mode::Async => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 1);
assert_eq!(bufs[0][0], 42);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::AsyncUnref => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 1);
assert_eq!(bufs[0][0], 42);
let fut = async {
// This future never finish.
futures::future::pending::<()>().await;
vec![43u8].into_boxed_slice()
};
Op::AsyncUnref(fut.boxed())
}
Mode::AsyncZeroCopy(count) => {
assert_eq!(bufs.len(), count as usize);
bufs.iter().enumerate().for_each(|(idx, buf)| {
assert_eq!(buf.len(), 1);
assert_eq!(idx, buf[0] as usize);
});
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowReqSync => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowResSync => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 1);
assert_eq!(bufs[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 99;
let buf = vec.into_boxed_slice();
Op::Sync(buf)
}
Mode::OverflowReqAsync => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
Mode::OverflowResAsync => {
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 1);
assert_eq!(bufs[0][0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 4;
let buf = vec.into_boxed_slice();
Op::Async(futures::future::ready(buf).boxed())
}
}
}
fn setup(mode: Mode) -> (JsRuntime, Arc<AtomicUsize>) {
let dispatch_count = Arc::new(AtomicUsize::new(0));
let mut runtime = JsRuntime::new(Default::default());
let op_state = runtime.op_state();
op_state.borrow_mut().put(TestState {
mode,
dispatch_count: dispatch_count.clone(),
});
runtime.register_op("test", dispatch);
runtime
.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
(runtime, dispatch_count)
}
#[test]
fn test_dispatch() {
let (mut runtime, dispatch_count) = setup(Mode::Async);
runtime
.execute(
"filename.js",
r#"
let control = new Uint8Array([42]);
Deno.core.send(1, control);
async function main() {
Deno.core.send(1, control);
}
main();
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
}
#[test]
fn test_dispatch_no_zero_copy_buf() {
let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(0));
runtime
.execute(
"filename.js",
r#"
Deno.core.send(1);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_stack_zero_copy_bufs() {
let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(2));
runtime
.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
Deno.core.send(1, zero_copy_a, zero_copy_b);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_dispatch_heap_zero_copy_bufs() {
let (mut runtime, dispatch_count) = setup(Mode::AsyncZeroCopy(5));
runtime.execute(
"filename.js",
r#"
let zero_copy_a = new Uint8Array([0]);
let zero_copy_b = new Uint8Array([1]);
let zero_copy_c = new Uint8Array([2]);
let zero_copy_d = new Uint8Array([3]);
let zero_copy_e = new Uint8Array([4]);
Deno.core.send(1, zero_copy_a, zero_copy_b, zero_copy_c, zero_copy_d, zero_copy_e);
"#,
).unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn test_poll_async_delayed_ops() {
run_in_task(|cx| {
let (mut runtime, dispatch_count) = setup(Mode::Async);
runtime
.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
nrecv++;
});
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
runtime
.execute(
"check1.js",
r#"
assert(nrecv == 0);
let control = new Uint8Array([42]);
Deno.core.send(1, control);
assert(nrecv == 0);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
runtime
.execute(
"check2.js",
r#"
assert(nrecv == 1);
Deno.core.send(1, control);
assert(nrecv == 1);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
runtime.execute("check3.js", "assert(nrecv == 2)").unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
// We are idle, so the next poll should be the last.
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
});
}
#[test]
fn test_poll_async_optional_ops() {
run_in_task(|cx| {
let (mut runtime, dispatch_count) = setup(Mode::AsyncUnref);
runtime
.execute(
"check1.js",
r#"
Deno.core.setAsyncHandler(1, (buf) => {
// This handler will never be called
assert(false);
});
let control = new Uint8Array([42]);
Deno.core.send(1, control);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
// The above op never finish, but runtime can finish
// because the op is an unreffed async op.
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
})
}
#[test]
fn terminate_execution() {
let (mut isolate, _dispatch_count) = setup(Mode::Async);
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
let v8_isolate_handle = isolate.v8_isolate().thread_safe_handle();
let terminator_thread = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
let ok = v8_isolate_handle.terminate_execution();
assert!(ok);
});
// Rn an infinite loop, which should be terminated.
match isolate.execute("infinite_loop.js", "for(;;) {}") {
Ok(_) => panic!("execution should be terminated"),
Err(e) => {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated")
}
};
// Cancel the execution-terminating exception in order to allow script
// execution again.
// TODO(piscisaureus): in rusty_v8, `cancel_terminate_execution()` should
// also be implemented on `struct Isolate`.
let ok = isolate
.v8_isolate()
.thread_safe_handle()
.cancel_terminate_execution();
assert!(ok);
// Verify that the isolate usable again.
isolate
.execute("simple.js", "1 + 1")
.expect("execution should be possible again");
terminator_thread.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
let v8_isolate_handle = {
// isolate is dropped at the end of this block
let (mut runtime, _dispatch_count) = setup(Mode::Async);
// TODO(piscisaureus): in rusty_v8, the `thread_safe_handle()` method
// should not require a mutable reference to `struct rusty_v8::Isolate`.
runtime.v8_isolate().thread_safe_handle()
};
// this should not SEGFAULT
v8_isolate_handle.terminate_execution();
}
#[test]
fn overflow_req_sync() {
let (mut runtime, dispatch_count) = setup(Mode::OverflowReqSync);
runtime
.execute(
"overflow_req_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 1);
assert(response[0] == 43);
assert(asyncRecv == 0);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_res_sync() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut runtime, dispatch_count) = setup(Mode::OverflowResSync);
runtime
.execute(
"overflow_res_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response instanceof Uint8Array);
assert(response.length == 100 * 1024 * 1024);
assert(response[0] == 99);
assert(asyncRecv == 0);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn overflow_req_async() {
run_in_task(|cx| {
let (mut runtime, dispatch_count) = setup(Mode::OverflowReqAsync);
runtime
.execute(
"overflow_req_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 1);
assert(buf[0] === 43);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(1, control);
// Async messages always have null response.
assert(response == null);
assert(asyncRecv == 0);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
runtime
.execute("check.js", "assert(asyncRecv == 1);")
.unwrap();
});
}
#[test]
fn overflow_res_async() {
run_in_task(|_cx| {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let (mut runtime, dispatch_count) = setup(Mode::OverflowResAsync);
runtime
.execute(
"overflow_res_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
poll_until_ready(&mut runtime, 3).unwrap();
runtime
.execute("check.js", "assert(asyncRecv == 1);")
.unwrap();
});
}
#[test]
fn overflow_res_multiple_dispatch_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
run_in_task(|_cx| {
let (mut runtime, dispatch_count) = setup(Mode::OverflowResAsync);
runtime
.execute(
"overflow_res_multiple_dispatch_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler(1, (buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(1, control);
assert(response == null);
assert(asyncRecv == 0);
// Dispatch another message to verify that pending ops
// are done even if shared space overflows
Deno.core.dispatch(1, control);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 2);
poll_until_ready(&mut runtime, 3).unwrap();
runtime
.execute("check.js", "assert(asyncRecv == 2);")
.unwrap();
});
}
#[test]
fn test_pre_dispatch() {
run_in_task(|mut cx| {
let (mut runtime, _dispatch_count) = setup(Mode::OverflowResAsync);
runtime
.execute(
"bad_op_id.js",
r#"
let thrown;
try {
Deno.core.dispatch(100);
} catch (e) {
thrown = e;
}
assert(String(thrown) === "TypeError: Unknown op id: 100");
"#,
)
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) {
unreachable!();
}
});
}
#[test]
fn core_test_js() {
run_in_task(|mut cx| {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute("core_test.js", include_str!("core_test.js"))
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) {
unreachable!();
}
});
}
#[test]
fn syntax_error() {
let mut runtime = JsRuntime::new(Default::default());
let src = "hocuspocus(";
let r = runtime.execute("i.js", src);
let e = r.unwrap_err();
let js_error = e.downcast::<JsError>().unwrap();
assert_eq!(js_error.end_column, Some(11));
}
#[test]
fn test_encode_decode() {
run_in_task(|mut cx| {
let (mut runtime, _dispatch_count) = setup(Mode::Async);
runtime
.execute(
"encode_decode_test.js",
include_str!("encode_decode_test.js"),
)
.unwrap();
if let Poll::Ready(Err(_)) = runtime.poll_event_loop(&mut cx) {
unreachable!();
}
});
}
#[test]
fn will_snapshot() {
let snapshot = {
let mut runtime = JsRuntime::new(RuntimeOptions {
will_snapshot: true,
..Default::default()
});
runtime.execute("a.js", "a = 1 + 2").unwrap();
runtime.snapshot()
};
let snapshot = Snapshot::JustCreated(snapshot);
let mut runtime2 = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(snapshot),
..Default::default()
});
runtime2
.execute("check.js", "if (a != 3) throw Error('x')")
.unwrap();
}
#[test]
fn test_from_boxed_snapshot() {
let snapshot = {
let mut runtime = JsRuntime::new(RuntimeOptions {
will_snapshot: true,
..Default::default()
});
runtime.execute("a.js", "a = 1 + 2").unwrap();
let snap: &[u8] = &*runtime.snapshot();
Vec::from(snap).into_boxed_slice()
};
let snapshot = Snapshot::Boxed(snapshot);
let mut runtime2 = JsRuntime::new(RuntimeOptions {
startup_snapshot: Some(snapshot),
..Default::default()
});
runtime2
.execute("check.js", "if (a != 3) throw Error('x')")
.unwrap();
}
#[test]
fn test_heap_limits() {
let create_params = v8::Isolate::create_params().heap_limits(0, 20 * 1024);
let mut runtime = JsRuntime::new(RuntimeOptions {
create_params: Some(create_params),
..Default::default()
});
let cb_handle = runtime.v8_isolate().thread_safe_handle();
let callback_invoke_count = Rc::new(AtomicUsize::default());
let inner_invoke_count = Rc::clone(&callback_invoke_count);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = runtime
.execute(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JsError>().unwrap().message
);
assert!(callback_invoke_count.load(Ordering::SeqCst) > 0)
}
#[test]
fn test_heap_limit_cb_remove() {
let mut runtime = JsRuntime::new(Default::default());
runtime.add_near_heap_limit_callback(|current_limit, _initial_limit| {
current_limit * 2
});
runtime.remove_near_heap_limit_callback(20 * 1024);
assert!(runtime.allocations.near_heap_limit_callback_data.is_none());
}
#[test]
fn test_heap_limit_cb_multiple() {
let create_params = v8::Isolate::create_params().heap_limits(0, 20 * 1024);
let mut runtime = JsRuntime::new(RuntimeOptions {
create_params: Some(create_params),
..Default::default()
});
let cb_handle = runtime.v8_isolate().thread_safe_handle();
let callback_invoke_count_first = Rc::new(AtomicUsize::default());
let inner_invoke_count_first = Rc::clone(&callback_invoke_count_first);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_first.fetch_add(1, Ordering::SeqCst);
current_limit * 2
},
);
let callback_invoke_count_second = Rc::new(AtomicUsize::default());
let inner_invoke_count_second = Rc::clone(&callback_invoke_count_second);
runtime.add_near_heap_limit_callback(
move |current_limit, _initial_limit| {
inner_invoke_count_second.fetch_add(1, Ordering::SeqCst);
cb_handle.terminate_execution();
current_limit * 2
},
);
let err = runtime
.execute(
"script name",
r#"let s = ""; while(true) { s += "Hello"; }"#,
)
.expect_err("script should fail");
assert_eq!(
"Uncaught Error: execution terminated",
err.downcast::<JsError>().unwrap().message
);
assert_eq!(0, callback_invoke_count_first.load(Ordering::SeqCst));
assert!(callback_invoke_count_second.load(Ordering::SeqCst) > 0);
}
#[test]
fn test_mods() {
#[derive(Default)]
struct ModsLoader {
pub count: Arc<AtomicUsize>,
}
impl ModuleLoader for ModsLoader {
fn resolve(
&self,
_op_state: Rc<RefCell<OpState>>,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, AnyError> {
self.count.fetch_add(1, Ordering::Relaxed);
assert_eq!(specifier, "./b.js");
assert_eq!(referrer, "file:///a.js");
let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_op_state: Rc<RefCell<OpState>>,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
unreachable!()
}
}
let loader = Rc::new(ModsLoader::default());
let resolve_count = loader.count.clone();
let dispatch_count = Arc::new(AtomicUsize::new(0));
let dispatch_count_ = dispatch_count.clone();
let dispatcher = move |_state: Rc<RefCell<OpState>>, bufs: BufVec| -> Op {
dispatch_count_.fetch_add(1, Ordering::Relaxed);
assert_eq!(bufs.len(), 1);
assert_eq!(bufs[0].len(), 1);
assert_eq!(bufs[0][0], 42);
let buf = [43u8, 0, 0, 0][..].into();
Op::Async(futures::future::ready(buf).boxed())
};
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
runtime.register_op("test", dispatcher);
runtime
.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
let specifier_a = "file:///a.js".to_string();
let mod_a = runtime
.mod_new(
true,
&specifier_a,
r#"
import { b } from './b.js'
if (b() != 'b') throw Error();
let control = new Uint8Array([42]);
Deno.core.send(1, control);
"#,
)
.unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
let state_rc = JsRuntime::state(runtime.v8_isolate());
{
let state = state_rc.borrow();
let imports = state.modules.get_children(mod_a);
assert_eq!(
imports,
Some(&vec![ModuleSpecifier::resolve_url("file:///b.js").unwrap()])
);
}
let mod_b = runtime
.mod_new(false, "file:///b.js", "export function b() { return 'b' }")
.unwrap();
{
let state = state_rc.borrow();
let imports = state.modules.get_children(mod_b).unwrap();
assert_eq!(imports.len(), 0);
}
runtime.mod_instantiate(mod_b).unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
assert_eq!(resolve_count.load(Ordering::SeqCst), 1);
runtime.mod_instantiate(mod_a).unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 0);
runtime.mod_evaluate_inner(mod_a).unwrap();
assert_eq!(dispatch_count.load(Ordering::Relaxed), 1);
}
#[test]
fn dyn_import_err() {
#[derive(Clone, Default)]
struct DynImportErrLoader {
pub count: Arc<AtomicUsize>,
}
impl ModuleLoader for DynImportErrLoader {
fn resolve(
&self,
_op_state: Rc<RefCell<OpState>>,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, AnyError> {
self.count.fetch_add(1, Ordering::Relaxed);
assert_eq!(specifier, "/foo.js");
assert_eq!(referrer, "file:///dyn_import2.js");
let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_op_state: Rc<RefCell<OpState>>,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
async { Err(io::Error::from(io::ErrorKind::NotFound).into()) }.boxed()
}
}
// Test an erroneous dynamic import where the specified module isn't found.
run_in_task(|cx| {
let loader = Rc::new(DynImportErrLoader::default());
let count = loader.count.clone();
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
runtime
.execute(
"file:///dyn_import2.js",
r#"
(async () => {
await import("/foo.js");
})();
"#,
)
.unwrap();
assert_eq!(count.load(Ordering::Relaxed), 0);
// We should get an error here.
let result = runtime.poll_event_loop(cx);
if let Poll::Ready(Ok(_)) = result {
unreachable!();
}
assert_eq!(count.load(Ordering::Relaxed), 2);
})
}
#[derive(Clone, Default)]
struct DynImportOkLoader {
pub prepare_load_count: Arc<AtomicUsize>,
pub resolve_count: Arc<AtomicUsize>,
pub load_count: Arc<AtomicUsize>,
}
impl ModuleLoader for DynImportOkLoader {
fn resolve(
&self,
_op_state: Rc<RefCell<OpState>>,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, AnyError> {
let c = self.resolve_count.fetch_add(1, Ordering::Relaxed);
assert!(c < 4);
assert_eq!(specifier, "./b.js");
assert_eq!(referrer, "file:///dyn_import3.js");
let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_op_state: Rc<RefCell<OpState>>,
specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
self.load_count.fetch_add(1, Ordering::Relaxed);
let info = ModuleSource {
module_url_specified: specifier.to_string(),
module_url_found: specifier.to_string(),
code: "export function b() { return 'b' }".to_owned(),
};
async move { Ok(info) }.boxed()
}
fn prepare_load(
&self,
_op_state: Rc<RefCell<OpState>>,
_load_id: ModuleLoadId,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<String>,
_is_dyn_import: bool,
) -> Pin<Box<dyn Future<Output = Result<(), AnyError>>>> {
self.prepare_load_count.fetch_add(1, Ordering::Relaxed);
async { Ok(()) }.boxed_local()
}
}
#[test]
fn dyn_import_ok() {
run_in_task(|cx| {
let loader = Rc::new(DynImportOkLoader::default());
let prepare_load_count = loader.prepare_load_count.clone();
let resolve_count = loader.resolve_count.clone();
let load_count = loader.load_count.clone();
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
// Dynamically import mod_b
runtime
.execute(
"file:///dyn_import3.js",
r#"
(async () => {
let mod = await import("./b.js");
if (mod.b() !== 'b') {
throw Error("bad1");
}
// And again!
mod = await import("./b.js");
if (mod.b() !== 'b') {
throw Error("bad2");
}
})();
"#,
)
.unwrap();
// First poll runs `prepare_load` hook.
assert!(matches!(runtime.poll_event_loop(cx), Poll::Pending));
assert_eq!(prepare_load_count.load(Ordering::Relaxed), 1);
// Second poll actually loads modules into the isolate.
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
assert_eq!(resolve_count.load(Ordering::Relaxed), 4);
assert_eq!(load_count.load(Ordering::Relaxed), 2);
assert!(matches!(runtime.poll_event_loop(cx), Poll::Ready(Ok(_))));
assert_eq!(resolve_count.load(Ordering::Relaxed), 4);
assert_eq!(load_count.load(Ordering::Relaxed), 2);
})
}
#[test]
fn dyn_import_borrow_mut_error() {
// https://github.com/denoland/deno/issues/6054
run_in_task(|cx| {
let loader = Rc::new(DynImportOkLoader::default());
let prepare_load_count = loader.prepare_load_count.clone();
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
..Default::default()
});
runtime
.execute(
"file:///dyn_import3.js",
r#"
(async () => {
let mod = await import("./b.js");
if (mod.b() !== 'b') {
throw Error("bad");
}
// Now do any op
Deno.core.ops();
})();
"#,
)
.unwrap();
// First poll runs `prepare_load` hook.
let _ = runtime.poll_event_loop(cx);
assert_eq!(prepare_load_count.load(Ordering::Relaxed), 1);
// Second poll triggers error
let _ = runtime.poll_event_loop(cx);
})
}
#[test]
fn es_snapshot() {
#[derive(Default)]
struct ModsLoader;
impl ModuleLoader for ModsLoader {
fn resolve(
&self,
_op_state: Rc<RefCell<OpState>>,
specifier: &str,
referrer: &str,
_is_main: bool,
) -> Result<ModuleSpecifier, AnyError> {
assert_eq!(specifier, "file:///main.js");
assert_eq!(referrer, ".");
let s = ModuleSpecifier::resolve_import(specifier, referrer).unwrap();
Ok(s)
}
fn load(
&self,
_op_state: Rc<RefCell<OpState>>,
_module_specifier: &ModuleSpecifier,
_maybe_referrer: Option<ModuleSpecifier>,
_is_dyn_import: bool,
) -> Pin<Box<ModuleSourceFuture>> {
unreachable!()
}
}
let loader = std::rc::Rc::new(ModsLoader::default());
let mut runtime = JsRuntime::new(RuntimeOptions {
module_loader: Some(loader),
will_snapshot: true,
..Default::default()
});
let specifier = ModuleSpecifier::resolve_url("file:///main.js").unwrap();
let source_code = "Deno.core.print('hello\\n')".to_string();
let module_id = futures::executor::block_on(
runtime.load_module(&specifier, Some(source_code)),
)
.unwrap();
futures::executor::block_on(runtime.mod_evaluate(module_id)).unwrap();
let _snapshot = runtime.snapshot();
}
#[test]
fn test_error_without_stack() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
// SyntaxError
let result = runtime.execute(
"error_without_stack.js",
r#"
function main() {
console.log("asdf);
}
main();
"#,
);
let expected_error = r#"Uncaught SyntaxError: Invalid or unexpected token
at error_without_stack.js:3:14"#;
assert_eq!(result.unwrap_err().to_string(), expected_error);
}
#[test]
fn test_error_stack() {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
let result = runtime.execute(
"error_stack.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
function main() {
assert(false);
}
main();
"#,
);
let expected_error = r#"Error: assert
at assert (error_stack.js:4:11)
at main (error_stack.js:9:3)
at error_stack.js:12:1"#;
assert_eq!(result.unwrap_err().to_string(), expected_error);
}
#[test]
fn test_error_async_stack() {
run_in_task(|cx| {
let mut runtime = JsRuntime::new(RuntimeOptions::default());
runtime
.execute(
"error_async_stack.js",
r#"
(async () => {
const p = (async () => {
await Promise.resolve().then(() => {
throw new Error("async");
});
})();
try {
await p;
} catch (error) {
console.log(error.stack);
throw error;
}
})();"#,
)
.unwrap();
let expected_error = r#"Error: async
at error_async_stack.js:5:13
at async error_async_stack.js:4:5
at async error_async_stack.js:10:5"#;
match runtime.poll_event_loop(cx) {
Poll::Ready(Err(e)) => {
assert_eq!(e.to_string(), expected_error);
}
_ => panic!(),
};
})
}
}