1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-06 22:35:51 -05:00
denoland-deno/ext/timers/01_timers.js
2021-09-02 18:28:12 -04:00

595 lines
16 KiB
JavaScript

// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.
"use strict";
((window) => {
const core = window.Deno.core;
const {
ArrayPrototypeIndexOf,
ArrayPrototypePush,
ArrayPrototypeShift,
ArrayPrototypeSplice,
DateNow,
Error,
FunctionPrototypeBind,
Map,
MapPrototypeDelete,
MapPrototypeGet,
MapPrototypeHas,
MapPrototypeSet,
MathMax,
Number,
String,
TypeError,
} = window.__bootstrap.primordials;
// Shamelessly cribbed from extensions/fetch/11_streams.js
class AssertionError extends Error {
constructor(msg) {
super(msg);
this.name = "AssertionError";
}
}
/**
* @param {unknown} cond
* @param {string=} msg
* @returns {asserts cond}
*/
function assert(cond, msg = "Assertion failed.") {
if (!cond) {
throw new AssertionError(msg);
}
}
function opStopGlobalTimer() {
core.opSync("op_global_timer_stop");
}
function opStartGlobalTimer(timeout) {
return core.opSync("op_global_timer_start", timeout);
}
async function opWaitGlobalTimer() {
await core.opAsync("op_global_timer");
}
function opNow() {
return core.opSync("op_now");
}
function sleepSync(millis = 0) {
return core.opSync("op_sleep_sync", millis);
}
// Derived from https://github.com/vadimg/js_bintrees. MIT Licensed.
class RBNode {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
this.red = true;
}
getChild(dir) {
return dir ? this.right : this.left;
}
setChild(dir, val) {
if (dir) {
this.right = val;
} else {
this.left = val;
}
}
}
class RBTree {
#comparator = null;
#root = null;
constructor(comparator) {
this.#comparator = comparator;
this.#root = null;
}
/** Returns `null` if tree is empty. */
min() {
let res = this.#root;
if (res === null) {
return null;
}
while (res.left !== null) {
res = res.left;
}
return res.data;
}
/** Returns node `data` if found, `null` otherwise. */
find(data) {
let res = this.#root;
while (res !== null) {
const c = this.#comparator(data, res.data);
if (c === 0) {
return res.data;
} else {
res = res.getChild(c > 0);
}
}
return null;
}
/** returns `true` if inserted, `false` if duplicate. */
insert(data) {
let ret = false;
if (this.#root === null) {
// empty tree
this.#root = new RBNode(data);
ret = true;
} else {
const head = new RBNode(null); // fake tree root
let dir = 0;
let last = 0;
// setup
let gp = null; // grandparent
let ggp = head; // grand-grand-parent
let p = null; // parent
let node = this.#root;
ggp.right = this.#root;
// search down
while (true) {
if (node === null) {
// insert new node at the bottom
node = new RBNode(data);
p.setChild(dir, node);
ret = true;
} else if (isRed(node.left) && isRed(node.right)) {
// color flip
node.red = true;
node.left.red = false;
node.right.red = false;
}
// fix red violation
if (isRed(node) && isRed(p)) {
const dir2 = ggp.right === gp;
assert(gp);
if (node === p.getChild(last)) {
ggp.setChild(dir2, singleRotate(gp, !last));
} else {
ggp.setChild(dir2, doubleRotate(gp, !last));
}
}
const cmp = this.#comparator(node.data, data);
// stop if found
if (cmp === 0) {
break;
}
last = dir;
dir = Number(cmp < 0); // Fix type
// update helpers
if (gp !== null) {
ggp = gp;
}
gp = p;
p = node;
node = node.getChild(dir);
}
// update root
this.#root = head.right;
}
// make root black
this.#root.red = false;
return ret;
}
/** Returns `true` if removed, `false` if not found. */
remove(data) {
if (this.#root === null) {
return false;
}
const head = new RBNode(null); // fake tree root
let node = head;
node.right = this.#root;
let p = null; // parent
let gp = null; // grand parent
let found = null; // found item
let dir = 1;
while (node.getChild(dir) !== null) {
const last = dir;
// update helpers
gp = p;
p = node;
node = node.getChild(dir);
const cmp = this.#comparator(data, node.data);
dir = cmp > 0;
// save found node
if (cmp === 0) {
found = node;
}
// push the red node down
if (!isRed(node) && !isRed(node.getChild(dir))) {
if (isRed(node.getChild(!dir))) {
const sr = singleRotate(node, dir);
p.setChild(last, sr);
p = sr;
} else if (!isRed(node.getChild(!dir))) {
const sibling = p.getChild(!last);
if (sibling !== null) {
if (
!isRed(sibling.getChild(!last)) &&
!isRed(sibling.getChild(last))
) {
// color flip
p.red = false;
sibling.red = true;
node.red = true;
} else {
assert(gp);
const dir2 = gp.right === p;
if (isRed(sibling.getChild(last))) {
gp.setChild(dir2, doubleRotate(p, last));
} else if (isRed(sibling.getChild(!last))) {
gp.setChild(dir2, singleRotate(p, last));
}
// ensure correct coloring
const gpc = gp.getChild(dir2);
assert(gpc);
gpc.red = true;
node.red = true;
assert(gpc.left);
gpc.left.red = false;
assert(gpc.right);
gpc.right.red = false;
}
}
}
}
}
// replace and remove if found
if (found !== null) {
found.data = node.data;
assert(p);
p.setChild(p.right === node, node.getChild(node.left === null));
}
// update root and make it black
this.#root = head.right;
if (this.#root !== null) {
this.#root.red = false;
}
return found !== null;
}
}
function isRed(node) {
return node !== null && node.red;
}
function singleRotate(root, dir) {
const save = root.getChild(!dir);
assert(save);
root.setChild(!dir, save.getChild(dir));
save.setChild(dir, root);
root.red = true;
save.red = false;
return save;
}
function doubleRotate(root, dir) {
root.setChild(!dir, singleRotate(root.getChild(!dir), !dir));
return singleRotate(root, dir);
}
const { console } = globalThis;
// Timeout values > TIMEOUT_MAX are set to 1.
const TIMEOUT_MAX = 2 ** 31 - 1;
let globalTimeoutDue = null;
let nextTimerId = 1;
const idMap = new Map();
const dueTree = new RBTree((a, b) => a.due - b.due);
function clearGlobalTimeout() {
globalTimeoutDue = null;
opStopGlobalTimer();
}
let pendingEvents = 0;
const pendingFireTimers = [];
/** Process and run a single ready timer macrotask.
* This function should be registered through Deno.core.setMacrotaskCallback.
* Returns true when all ready macrotasks have been processed, false if more
* ready ones are available. The Isolate future would rely on the return value
* to repeatedly invoke this function until depletion. Multiple invocations
* of this function one at a time ensures newly ready microtasks are processed
* before next macrotask timer callback is invoked. */
function handleTimerMacrotask() {
if (pendingFireTimers.length > 0) {
fire(ArrayPrototypeShift(pendingFireTimers));
return pendingFireTimers.length === 0;
}
return true;
}
async function setGlobalTimeout(due, now) {
// Since JS and Rust don't use the same clock, pass the time to rust as a
// relative time value. On the Rust side we'll turn that into an absolute
// value again.
const timeout = due - now;
assert(timeout >= 0);
// Send message to the backend.
globalTimeoutDue = due;
pendingEvents++;
// FIXME(bartlomieju): this is problematic, because `clearGlobalTimeout`
// is synchronous. That means that timer is cancelled, but this promise is still pending
// until next turn of event loop. This leads to "leaking of async ops" in tests;
// because `clearTimeout/clearInterval` might be the last statement in test function
// `opSanitizer` will immediately complain that there is pending op going on, unless
// some timeout/defer is put in place to allow promise resolution.
// Ideally `clearGlobalTimeout` doesn't return until this op is resolved, but
// I'm not if that's possible.
opStartGlobalTimer(timeout);
await opWaitGlobalTimer();
pendingEvents--;
prepareReadyTimers();
}
function prepareReadyTimers() {
const now = DateNow();
// Bail out if we're not expecting the global timer to fire.
if (globalTimeoutDue === null || pendingEvents > 0) {
return;
}
// After firing the timers that are due now, this will hold the first timer
// list that hasn't fired yet.
let nextDueNode;
while ((nextDueNode = dueTree.min()) !== null && nextDueNode.due <= now) {
dueTree.remove(nextDueNode);
// Fire all the timers in the list.
for (const timer of nextDueNode.timers) {
// With the list dropped, the timer is no longer scheduled.
timer.scheduled = false;
// Place the callback to pending timers to fire.
ArrayPrototypePush(pendingFireTimers, timer);
}
}
setOrClearGlobalTimeout(nextDueNode && nextDueNode.due, now);
}
function setOrClearGlobalTimeout(due, now) {
if (due == null) {
clearGlobalTimeout();
} else {
setGlobalTimeout(due, now);
}
}
function schedule(timer, now) {
assert(!timer.scheduled);
assert(now <= timer.due);
// Find or create the list of timers that will fire at point-in-time `due`.
const maybeNewDueNode = { due: timer.due, timers: [] };
let dueNode = dueTree.find(maybeNewDueNode);
if (dueNode === null) {
dueTree.insert(maybeNewDueNode);
dueNode = maybeNewDueNode;
}
// Append the newly scheduled timer to the list and mark it as scheduled.
ArrayPrototypePush(dueNode.timers, timer);
timer.scheduled = true;
// If the new timer is scheduled to fire before any timer that existed before,
// update the global timeout to reflect this.
if (globalTimeoutDue === null || globalTimeoutDue > timer.due) {
setOrClearGlobalTimeout(timer.due, now);
}
}
function unschedule(timer) {
// Check if our timer is pending scheduling or pending firing.
// If either is true, they are not in tree, and their idMap entry
// will be deleted soon. Remove it from queue.
let index = -1;
if ((index = ArrayPrototypeIndexOf(pendingFireTimers, timer)) >= 0) {
ArrayPrototypeSplice(pendingFireTimers, index);
return;
}
// If timer is not in the 2 pending queues and is unscheduled,
// it is not in the tree.
if (!timer.scheduled) {
return;
}
const searchKey = { due: timer.due, timers: [] };
// Find the list of timers that will fire at point-in-time `due`.
const list = dueTree.find(searchKey).timers;
if (list.length === 1) {
// Time timer is the only one in the list. Remove the entire list.
assert(list[0] === timer);
dueTree.remove(searchKey);
// If the unscheduled timer was 'next up', find when the next timer that
// still exists is due, and update the global alarm accordingly.
if (timer.due === globalTimeoutDue) {
const nextDueNode = dueTree.min();
setOrClearGlobalTimeout(
nextDueNode && nextDueNode.due,
DateNow(),
);
}
} else {
// Multiple timers that are due at the same point in time.
// Remove this timer from the list.
const index = ArrayPrototypeIndexOf(list, timer);
assert(index > -1);
ArrayPrototypeSplice(list, index, 1);
}
}
function fire(timer) {
// If the timer isn't found in the ID map, that means it has been cancelled
// between the timer firing and the promise callback (this function).
if (!MapPrototypeHas(idMap, timer.id)) {
return;
}
// Reschedule the timer if it is a repeating one, otherwise drop it.
if (!timer.repeat) {
// One-shot timer: remove the timer from this id-to-timer map.
MapPrototypeDelete(idMap, timer.id);
} else {
// Interval timer: compute when timer was supposed to fire next.
// However make sure to never schedule the next interval in the past.
const now = DateNow();
timer.due = MathMax(now, timer.due + timer.delay);
schedule(timer, now);
}
// Call the user callback. Intermediate assignment is to avoid leaking `this`
// to it, while also keeping the stack trace neat when it shows up in there.
const callback = timer.callback;
if ("function" === typeof callback) {
callback();
} else {
(0, eval)(callback);
}
}
function checkThis(thisArg) {
if (thisArg !== null && thisArg !== undefined && thisArg !== globalThis) {
throw new TypeError("Illegal invocation");
}
}
function setTimer(
cb,
delay,
args,
repeat,
) {
// If the callack is a function, bind `args` to the callback and bind `this` to globalThis(global).
// otherwise call `String` on it, and `eval` it on calls; do not pass variardic args to the string
let callback;
if ("function" === typeof cb) {
callback = FunctionPrototypeBind(cb, globalThis, ...args);
} else {
callback = String(cb);
args = []; // args are ignored
}
// In the browser, the delay value must be coercible to an integer between 0
// and INT32_MAX. Any other value will cause the timer to fire immediately.
// We emulate this behavior.
const now = DateNow();
if (delay > TIMEOUT_MAX) {
console.warn(
`${delay} does not fit into` +
" a 32-bit signed integer." +
"\nTimeout duration was set to 1.",
);
delay = 1;
}
delay = MathMax(0, delay | 0);
// Create a new, unscheduled timer object.
const timer = {
id: nextTimerId++,
callback,
args,
delay,
due: now + delay,
repeat,
scheduled: false,
};
// Register the timer's existence in the id-to-timer map.
MapPrototypeSet(idMap, timer.id, timer);
// Schedule the timer in the due table.
schedule(timer, now);
return timer.id;
}
function setTimeout(
cb,
delay = 0,
...args
) {
delay >>>= 0;
checkThis(this);
return setTimer(cb, delay, args, false);
}
function setInterval(
cb,
delay = 0,
...args
) {
delay >>>= 0;
checkThis(this);
return setTimer(cb, delay, args, true);
}
function clearTimer(id) {
id >>>= 0;
const timer = MapPrototypeGet(idMap, id);
if (timer === undefined) {
// Timer doesn't exist any more or never existed. This is not an error.
return;
}
// Unschedule the timer if it is currently scheduled, and forget about it.
unschedule(timer);
MapPrototypeDelete(idMap, timer.id);
}
function clearTimeout(id = 0) {
id >>>= 0;
if (id === 0) {
return;
}
clearTimer(id);
}
function clearInterval(id = 0) {
id >>>= 0;
if (id === 0) {
return;
}
clearTimer(id);
}
window.__bootstrap.timers = {
clearInterval,
setInterval,
clearTimeout,
setTimeout,
handleTimerMacrotask,
opStopGlobalTimer,
opStartGlobalTimer,
opNow,
sleepSync,
};
})(this);