1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-15 02:20:15 -05:00
denoland-deno/core/ops.rs
Ryan Dahl 161cf7cdfd
refactor: Use Tokio's single-threaded runtime (#3844)
This change simplifies how we execute V8. Previously V8 Isolates jumped
around threads every time they were woken up. This was overly complex and
potentially hurting performance in a myriad ways. Now isolates run on
their own dedicated thread and never move.

- blocking_json spawns a thread and does not use a thread pool
- op_host_poll_worker and op_host_resume_worker are non-operational
- removes Worker::get_message and Worker::post_message
- ThreadSafeState::workers table contains WorkerChannel entries instead
  of actual Worker instances.
- MainWorker and CompilerWorker are no longer Futures.
- The multi-threaded version of deno_core_http_bench was removed.
- AyncOps no longer need to be Send + Sync

This PR is very large and several tests were disabled to speed
integration:
- installer_test_local_module_run
- installer_test_remote_module_run
- _015_duplicate_parallel_import
- _026_workers
2020-02-03 18:08:44 -05:00

175 lines
4.6 KiB
Rust

// Copyright 2018-2020 the Deno authors. All rights reserved. MIT license.
use crate::ZeroCopyBuf;
use futures::Future;
use std::collections::HashMap;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::RwLock;
pub type OpId = u32;
pub type Buf = Box<[u8]>;
pub type OpAsyncFuture<E> = Pin<Box<dyn Future<Output = Result<Buf, E>>>>;
pub(crate) type PendingOpFuture =
Pin<Box<dyn Future<Output = Result<(OpId, Buf), CoreError>>>>;
pub type OpResult<E> = Result<Op<E>, E>;
pub enum Op<E> {
Sync(Buf),
Async(OpAsyncFuture<E>),
/// AsyncUnref is the variation of Async, which doesn't block the program
/// exiting.
AsyncUnref(OpAsyncFuture<E>),
}
pub type CoreError = ();
pub type CoreOp = Op<CoreError>;
/// Main type describing op
pub type OpDispatcher = dyn Fn(&[u8], Option<ZeroCopyBuf>) -> CoreOp + 'static;
#[derive(Default)]
pub struct OpRegistry {
dispatchers: RwLock<Vec<Arc<Box<OpDispatcher>>>>,
name_to_id: RwLock<HashMap<String, OpId>>,
}
impl OpRegistry {
pub fn new() -> Self {
let registry = Self::default();
let op_id = registry.register("ops", |_, _| {
// ops is a special op which is handled in call.
unreachable!()
});
assert_eq!(op_id, 0);
registry
}
pub fn register<F>(&self, name: &str, op: F) -> OpId
where
F: Fn(&[u8], Option<ZeroCopyBuf>) -> CoreOp + 'static,
{
let mut lock = self.dispatchers.write().unwrap();
let op_id = lock.len() as u32;
let mut name_lock = self.name_to_id.write().unwrap();
let existing = name_lock.insert(name.to_string(), op_id);
assert!(
existing.is_none(),
format!("Op already registered: {}", name)
);
lock.push(Arc::new(Box::new(op)));
drop(name_lock);
drop(lock);
op_id
}
fn json_map(&self) -> Buf {
let lock = self.name_to_id.read().unwrap();
let op_map_json = serde_json::to_string(&*lock).unwrap();
op_map_json.as_bytes().to_owned().into_boxed_slice()
}
/// This function returns None only if op with given id doesn't exist in registry.
pub fn call(
&self,
op_id: OpId,
control: &[u8],
zero_copy_buf: Option<ZeroCopyBuf>,
) -> Option<CoreOp> {
// Op with id 0 has special meaning - it's a special op that is always
// provided to retrieve op id map. The map consists of name to `OpId`
// mappings.
if op_id == 0 {
return Some(Op::Sync(self.json_map()));
}
let lock = self.dispatchers.read().unwrap();
if let Some(op) = lock.get(op_id as usize) {
let op_ = Arc::clone(&op);
// This should allow for changes to the dispatcher list during a call.
drop(lock);
Some(op_(control, zero_copy_buf))
} else {
None
}
}
}
#[test]
fn test_op_registry() {
use std::sync::atomic;
use std::sync::Arc;
let op_registry = OpRegistry::new();
let c = Arc::new(atomic::AtomicUsize::new(0));
let c_ = c.clone();
let test_id = op_registry.register("test", move |_, _| {
c_.fetch_add(1, atomic::Ordering::SeqCst);
CoreOp::Sync(Box::new([]))
});
assert!(test_id != 0);
let mut expected = HashMap::new();
expected.insert("ops".to_string(), 0);
expected.insert("test".to_string(), 1);
let name_to_id = op_registry.name_to_id.read().unwrap();
assert_eq!(*name_to_id, expected);
let res = op_registry.call(test_id, &[], None).unwrap();
if let Op::Sync(buf) = res {
assert_eq!(buf.len(), 0);
} else {
unreachable!();
}
assert_eq!(c.load(atomic::Ordering::SeqCst), 1);
let res = op_registry.call(100, &[], None);
assert!(res.is_none());
}
#[test]
fn register_op_during_call() {
use std::sync::atomic;
use std::sync::Arc;
let op_registry = Arc::new(OpRegistry::new());
let c = Arc::new(atomic::AtomicUsize::new(0));
let c_ = c.clone();
let op_registry_ = op_registry.clone();
let test_id = op_registry.register("dynamic_register_op", move |_, _| {
let c__ = c_.clone();
op_registry_.register("test", move |_, _| {
c__.fetch_add(1, atomic::Ordering::SeqCst);
CoreOp::Sync(Box::new([]))
});
CoreOp::Sync(Box::new([]))
});
assert!(test_id != 0);
op_registry.call(test_id, &[], None);
let mut expected = HashMap::new();
expected.insert("ops".to_string(), 0);
expected.insert("dynamic_register_op".to_string(), 1);
expected.insert("test".to_string(), 2);
let name_to_id = op_registry.name_to_id.read().unwrap();
assert_eq!(*name_to_id, expected);
let res = op_registry.call(2, &[], None).unwrap();
if let Op::Sync(buf) = res {
assert_eq!(buf.len(), 0);
} else {
unreachable!();
}
assert_eq!(c.load(atomic::Ordering::SeqCst), 1);
let res = op_registry.call(100, &[], None);
assert!(res.is_none());
}