1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-01 09:24:20 -04:00
denoland-deno/src/isolate.rs
Ryan Dahl b8a537d020
deno_core (#1827)
A new low-level crate with focus on speed. 
This doesn't yet hook into the existing code base.
2019-02-26 17:36:05 -05:00

814 lines
23 KiB
Rust

// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license.
// Do not use FlatBuffers in this module.
// TODO Currently this module uses Tokio, but it would be nice if they were
// decoupled.
#![allow(dead_code)]
use crate::compiler::compile_sync;
use crate::compiler::ModuleMetaData;
use crate::deno_dir;
use crate::errors::DenoError;
use crate::errors::DenoResult;
use crate::errors::RustOrJsError;
use crate::flags;
use crate::js_errors::JSError;
use crate::libdeno;
use crate::modules::Modules;
use crate::msg;
use crate::permissions::DenoPermissions;
use crate::tokio_util;
use futures::sync::mpsc as async_mpsc;
use futures::Future;
use libc::c_char;
use libc::c_void;
use std;
use std::cell::Cell;
use std::cell::RefCell;
use std::env;
use std::ffi::CStr;
use std::ffi::CString;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::{Once, ONCE_INIT};
use std::time::Duration;
use std::time::Instant;
use tokio;
// Buf represents a byte array returned from a "Op".
// The message might be empty (which will be translated into a null object on
// the javascript side) or it is a heap allocated opaque sequence of bytes.
// Usually a flatbuffer message.
pub type Buf = Box<[u8]>;
// JS promises in Deno map onto a specific Future
// which yields either a DenoError or a byte array.
pub type Op = dyn Future<Item = Buf, Error = DenoError> + Send;
// Returns (is_sync, op)
pub type Dispatch = fn(
isolate: &Isolate,
buf: libdeno::deno_buf,
zero_copy_buf: libdeno::deno_buf,
) -> (bool, Box<Op>);
pub struct Isolate {
libdeno_isolate: *const libdeno::isolate,
dispatch: Dispatch,
rx: mpsc::Receiver<(usize, Buf)>,
tx: mpsc::Sender<(usize, Buf)>,
ntasks: Cell<i32>,
timeout_due: Cell<Option<Instant>>,
pub modules: RefCell<Modules>,
pub state: Arc<IsolateState>,
}
pub type WorkerSender = async_mpsc::Sender<Buf>;
pub type WorkerReceiver = async_mpsc::Receiver<Buf>;
pub type WorkerChannels = (WorkerSender, WorkerReceiver);
// Isolate cannot be passed between threads but IsolateState can.
// IsolateState satisfies Send and Sync.
// So any state that needs to be accessed outside the main V8 thread should be
// inside IsolateState.
#[cfg_attr(feature = "cargo-clippy", allow(stutter))]
pub struct IsolateState {
pub dir: deno_dir::DenoDir,
pub argv: Vec<String>,
pub permissions: DenoPermissions,
pub flags: flags::DenoFlags,
pub metrics: Metrics,
pub worker_channels: Option<Mutex<WorkerChannels>>,
}
impl IsolateState {
pub fn new(
flags: flags::DenoFlags,
argv_rest: Vec<String>,
worker_channels: Option<WorkerChannels>,
) -> Self {
let custom_root = env::var("DENO_DIR").map(|s| s.into()).ok();
Self {
dir: deno_dir::DenoDir::new(flags.reload, flags.recompile, custom_root)
.unwrap(),
argv: argv_rest,
permissions: DenoPermissions::new(&flags),
flags,
metrics: Metrics::default(),
worker_channels: worker_channels.map(Mutex::new),
}
}
pub fn main_module(&self) -> Option<String> {
if self.argv.len() <= 1 {
None
} else {
let specifier = self.argv[1].clone();
let referrer = ".";
match self.dir.resolve_module_url(&specifier, referrer) {
Ok(url) => Some(url.to_string()),
Err(e) => {
debug!("Potentially swallowed error {}", e);
None
}
}
}
}
#[cfg(test)]
pub fn mock() -> Arc<IsolateState> {
let argv = vec![String::from("./deno"), String::from("hello.js")];
// For debugging: argv.push_back(String::from("-D"));
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
Arc::new(IsolateState::new(flags, rest_argv, None))
}
#[inline]
pub fn check_read(&self, filename: &str) -> DenoResult<()> {
self.permissions.check_read(filename)
}
#[inline]
pub fn check_write(&self, filename: &str) -> DenoResult<()> {
self.permissions.check_write(filename)
}
#[inline]
pub fn check_env(&self) -> DenoResult<()> {
self.permissions.check_env()
}
#[inline]
pub fn check_net(&self, filename: &str) -> DenoResult<()> {
self.permissions.check_net(filename)
}
#[inline]
pub fn check_run(&self) -> DenoResult<()> {
self.permissions.check_run()
}
fn metrics_op_dispatched(
&self,
bytes_sent_control: usize,
bytes_sent_data: usize,
) {
self.metrics.ops_dispatched.fetch_add(1, Ordering::SeqCst);
self
.metrics
.bytes_sent_control
.fetch_add(bytes_sent_control, Ordering::SeqCst);
self
.metrics
.bytes_sent_data
.fetch_add(bytes_sent_data, Ordering::SeqCst);
}
fn metrics_op_completed(&self, bytes_received: usize) {
self.metrics.ops_completed.fetch_add(1, Ordering::SeqCst);
self
.metrics
.bytes_received
.fetch_add(bytes_received, Ordering::SeqCst);
}
}
// AtomicU64 is currently unstable
#[derive(Default)]
pub struct Metrics {
pub ops_dispatched: AtomicUsize,
pub ops_completed: AtomicUsize,
pub bytes_sent_control: AtomicUsize,
pub bytes_sent_data: AtomicUsize,
pub bytes_received: AtomicUsize,
pub resolve_count: AtomicUsize,
}
static DENO_INIT: Once = ONCE_INIT;
impl Isolate {
pub fn new(
snapshot: libdeno::deno_buf,
state: Arc<IsolateState>,
dispatch: Dispatch,
) -> Self {
DENO_INIT.call_once(|| {
unsafe { libdeno::deno_init() };
});
let config = libdeno::deno_config {
will_snapshot: 0,
load_snapshot: snapshot,
shared: libdeno::deno_buf::empty(), // TODO Use for message passing.
recv_cb: pre_dispatch,
};
let libdeno_isolate = unsafe { libdeno::deno_new(config) };
// This channel handles sending async messages back to the runtime.
let (tx, rx) = mpsc::channel::<(usize, Buf)>();
Self {
libdeno_isolate,
dispatch,
rx,
tx,
ntasks: Cell::new(0),
timeout_due: Cell::new(None),
modules: RefCell::new(Modules::new()),
state,
}
}
#[inline]
pub fn as_raw_ptr(&self) -> *const c_void {
self as *const _ as *const c_void
}
#[inline]
pub unsafe fn from_raw_ptr<'a>(ptr: *const c_void) -> &'a Self {
let ptr = ptr as *const _;
&*ptr
}
#[inline]
pub fn get_timeout_due(&self) -> Option<Instant> {
self.timeout_due.clone().into_inner()
}
#[inline]
pub fn set_timeout_due(&self, inst: Option<Instant>) {
self.timeout_due.set(inst);
}
pub fn last_exception(&self) -> Option<JSError> {
let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) };
if ptr.is_null() {
None
} else {
let cstr = unsafe { CStr::from_ptr(ptr) };
let v8_exception = cstr.to_str().unwrap();
debug!("v8_exception\n{}\n", v8_exception);
let js_error = JSError::from_v8_exception(v8_exception).unwrap();
let js_error_mapped = js_error.apply_source_map(&self.state.dir);
Some(js_error_mapped)
}
}
/// Same as execute2() but the filename defaults to "<anonymous>".
pub fn execute(&self, js_source: &str) -> Result<(), JSError> {
self.execute2("<anonymous>", js_source)
}
/// Executes the provided JavaScript source code. The js_filename argument is
/// provided only for debugging purposes.
pub fn execute2(
&self,
js_filename: &str,
js_source: &str,
) -> Result<(), JSError> {
let filename = CString::new(js_filename).unwrap();
let source = CString::new(js_source).unwrap();
unsafe {
libdeno::deno_execute(
self.libdeno_isolate,
self.as_raw_ptr(),
filename.as_ptr(),
source.as_ptr(),
)
};
if let Some(err) = self.last_exception() {
return Err(err);
}
Ok(())
}
pub fn mod_new(
&mut self,
main: bool,
name: String,
source: String,
) -> Result<libdeno::deno_mod, JSError> {
let name_ = CString::new(name.clone()).unwrap();
let name_ptr = name_.as_ptr() as *const c_char;
let source_ = CString::new(source.clone()).unwrap();
let source_ptr = source_.as_ptr() as *const c_char;
let id = unsafe {
libdeno::deno_mod_new(self.libdeno_isolate, main, name_ptr, source_ptr)
};
if let Some(js_error) = self.last_exception() {
assert_eq!(id, 0);
return Err(js_error);
}
self.modules.borrow_mut().register(id, &name);
Ok(id)
}
// TODO(ry) make this return a future.
pub fn mod_load_deps(
&mut self,
id: libdeno::deno_mod,
) -> Result<(), RustOrJsError> {
// basically iterate over the imports, start loading them.
let referrer_name =
{ self.modules.borrow_mut().get_name(id).unwrap().clone() };
let len =
unsafe { libdeno::deno_mod_imports_len(self.libdeno_isolate, id) };
for i in 0..len {
let specifier_ptr =
unsafe { libdeno::deno_mod_imports_get(self.libdeno_isolate, id, i) };
let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) };
let specifier: &str = specifier_c.to_str().unwrap();
// TODO(ry) This shouldn't be necessary here. builtin modules should be
// taken care of at the libdeno level.
if specifier == "deno" {
continue;
}
let (name, _local_filename) = self
.state
.dir
.resolve_module(specifier, &referrer_name)
.map_err(DenoError::from)
.map_err(RustOrJsError::from)?;
debug!("mod_load_deps {} {}", i, name);
if !self.modules.borrow_mut().is_registered(&name) {
let out = fetch_module_meta_data_and_maybe_compile(
&self.state,
specifier,
&referrer_name,
)?;
let child_id =
self.mod_new(false, out.module_name.clone(), out.js_source())?;
self.mod_load_deps(child_id)?;
}
}
Ok(())
}
pub fn mod_instantiate(&self, id: libdeno::deno_mod) -> Result<(), JSError> {
unsafe {
libdeno::deno_mod_instantiate(
self.libdeno_isolate,
self.as_raw_ptr(),
id,
resolve_cb,
)
};
if let Some(js_error) = self.last_exception() {
return Err(js_error);
}
Ok(())
}
pub fn mod_evaluate(&self, id: libdeno::deno_mod) -> Result<(), JSError> {
unsafe {
libdeno::deno_mod_evaluate(self.libdeno_isolate, self.as_raw_ptr(), id)
};
if let Some(js_error) = self.last_exception() {
return Err(js_error);
}
Ok(())
}
/// Executes the provided JavaScript module.
pub fn execute_mod(
&mut self,
js_filename: &str,
is_prefetch: bool,
) -> Result<(), RustOrJsError> {
let out =
fetch_module_meta_data_and_maybe_compile(&self.state, js_filename, ".")
.map_err(RustOrJsError::from)?;
let id = self
.mod_new(true, out.module_name.clone(), out.js_source())
.map_err(RustOrJsError::from)?;
self.mod_load_deps(id)?;
self.mod_instantiate(id).map_err(RustOrJsError::from)?;
if !is_prefetch {
self.mod_evaluate(id).map_err(RustOrJsError::from)?;
}
Ok(())
}
pub fn respond(&self, zero_copy_id: usize, buf: Buf) {
self.state.metrics_op_completed(buf.len());
// This will be cleaned up in the future.
if zero_copy_id > 0 {
unsafe {
libdeno::deno_zero_copy_release(self.libdeno_isolate, zero_copy_id)
}
}
// deno_respond will memcpy the buf into V8's heap,
// so borrowing a reference here is sufficient.
unsafe {
libdeno::deno_respond(
self.libdeno_isolate,
self.as_raw_ptr(),
buf.as_ref().into(),
)
}
}
fn complete_op(&self, zero_copy_id: usize, buf: Buf) {
// Receiving a message on rx exactly corresponds to an async task
// completing.
self.ntasks_decrement();
// Call into JS with the buf.
self.respond(zero_copy_id, buf);
}
fn timeout(&self) {
let dummy_buf = libdeno::deno_buf::empty();
unsafe {
libdeno::deno_respond(self.libdeno_isolate, self.as_raw_ptr(), dummy_buf)
}
}
fn check_promise_errors(&self) {
unsafe {
libdeno::deno_check_promise_errors(self.libdeno_isolate);
}
}
// TODO Use Park abstraction? Note at time of writing Tokio default runtime
// does not have new_with_park().
pub fn event_loop(&self) -> Result<(), JSError> {
// Main thread event loop.
while !self.is_idle() {
match recv_deadline(&self.rx, self.get_timeout_due()) {
Ok((zero_copy_id, buf)) => self.complete_op(zero_copy_id, buf),
Err(mpsc::RecvTimeoutError::Timeout) => self.timeout(),
Err(e) => panic!("recv_deadline() failed: {:?}", e),
}
self.check_promise_errors();
if let Some(err) = self.last_exception() {
return Err(err);
}
}
// Check on done
self.check_promise_errors();
if let Some(err) = self.last_exception() {
return Err(err);
}
Ok(())
}
#[inline]
fn ntasks_increment(&self) {
assert!(self.ntasks.get() >= 0);
self.ntasks.set(self.ntasks.get() + 1);
}
#[inline]
fn ntasks_decrement(&self) {
self.ntasks.set(self.ntasks.get() - 1);
assert!(self.ntasks.get() >= 0);
}
#[inline]
fn is_idle(&self) -> bool {
self.ntasks.get() == 0 && self.get_timeout_due().is_none()
}
}
impl Drop for Isolate {
fn drop(&mut self) {
unsafe { libdeno::deno_delete(self.libdeno_isolate) }
}
}
fn fetch_module_meta_data_and_maybe_compile(
state: &Arc<IsolateState>,
specifier: &str,
referrer: &str,
) -> Result<ModuleMetaData, DenoError> {
let mut out = state.dir.fetch_module_meta_data(specifier, referrer)?;
if (out.media_type == msg::MediaType::TypeScript
&& out.maybe_output_code.is_none())
|| state.flags.recompile
{
debug!(">>>>> compile_sync START");
out = compile_sync(state, specifier, &referrer, &out);
debug!(">>>>> compile_sync END");
state.dir.code_cache(&out)?;
}
Ok(out)
}
extern "C" fn resolve_cb(
user_data: *mut c_void,
specifier_ptr: *const c_char,
referrer: libdeno::deno_mod,
) -> libdeno::deno_mod {
let isolate = unsafe { Isolate::from_raw_ptr(user_data) };
let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) };
let specifier: &str = specifier_c.to_str().unwrap();
isolate
.state
.metrics
.resolve_count
.fetch_add(1, Ordering::Relaxed);
isolate.modules.borrow_mut().resolve_cb(
&isolate.state.dir,
specifier,
referrer,
)
}
// Dereferences the C pointer into the Rust Isolate object.
extern "C" fn pre_dispatch(
user_data: *mut c_void,
control_buf: libdeno::deno_buf,
zero_copy_buf: libdeno::deno_buf,
) {
// for metrics
let bytes_sent_control = control_buf.len();
let bytes_sent_zero_copy = zero_copy_buf.len();
let zero_copy_id = zero_copy_buf.zero_copy_id;
// We should ensure that there is no other `&mut Isolate` exists.
// And also, it should be in the same thread with other `&Isolate`s.
let isolate = unsafe { Isolate::from_raw_ptr(user_data) };
let dispatch = isolate.dispatch;
let (is_sync, op) = dispatch(isolate, control_buf, zero_copy_buf);
isolate
.state
.metrics_op_dispatched(bytes_sent_control, bytes_sent_zero_copy);
if is_sync {
// Execute op synchronously.
let buf = tokio_util::block_on(op).unwrap();
let buf_size = buf.len();
if buf_size == 0 {
// FIXME
isolate.state.metrics_op_completed(buf.len());
} else {
// Set the synchronous response, the value returned from isolate.send().
isolate.respond(zero_copy_id, buf);
}
} else {
// Execute op asynchronously.
let tx = isolate.tx.clone();
// TODO Ideally Tokio would could tell us how many tasks are executing, but
// it cannot currently. Therefore we track top-level promises/tasks
// manually.
isolate.ntasks_increment();
let task = op
.and_then(move |buf| {
let sender = tx; // tx is moved to new thread
sender.send((zero_copy_id, buf)).expect("tx.send error");
Ok(())
}).map_err(|_| ());
tokio::spawn(task);
}
}
fn recv_deadline<T>(
rx: &mpsc::Receiver<T>,
maybe_due: Option<Instant>,
) -> Result<T, mpsc::RecvTimeoutError> {
match maybe_due {
None => rx.recv().map_err(|e| e.into()),
Some(due) => {
// Subtracting two Instants causes a panic if the resulting duration
// would become negative. Avoid this.
let now = Instant::now();
let timeout = if due > now {
due - now
} else {
Duration::new(0, 0)
};
// TODO: use recv_deadline() instead of recv_timeout() when this
// feature becomes stable/available.
rx.recv_timeout(timeout)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures;
#[test]
fn test_dispatch_sync() {
let state = IsolateState::mock();
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, dispatch_sync);
tokio_util::init(|| {
isolate
.execute(
r#"
const m = new Uint8Array([4, 5, 6]);
let n = libdeno.send(m);
if (!(n.byteLength === 3 &&
n[0] === 1 &&
n[1] === 2 &&
n[2] === 3)) {
throw Error("assert error");
}
"#,
).expect("execute error");
isolate.event_loop().ok();
});
}
fn dispatch_sync(
_isolate: &Isolate,
control: libdeno::deno_buf,
data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
assert_eq!(control[0], 4);
assert_eq!(control[1], 5);
assert_eq!(control[2], 6);
assert_eq!(data.len(), 0);
// Send back some sync response.
let vec: Vec<u8> = vec![1, 2, 3];
let control = vec.into_boxed_slice();
let op = Box::new(futures::future::ok(control));
(true, op)
}
#[test]
fn test_metrics_sync() {
let state = IsolateState::mock();
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, metrics_dispatch_sync);
tokio_util::init(|| {
// Verify that metrics have been properly initialized.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 0);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 0);
}
isolate
.execute(
r#"
const control = new Uint8Array([4, 5, 6]);
const data = new Uint8Array([42, 43, 44, 45, 46]);
libdeno.send(control, data);
"#,
).expect("execute error");;
isolate.event_loop().unwrap();
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 4);
});
}
#[test]
fn test_metrics_async() {
let state = IsolateState::mock();
let snapshot = libdeno::deno_buf::empty();
let isolate = Isolate::new(snapshot, state, metrics_dispatch_async);
tokio_util::init(|| {
// Verify that metrics have been properly initialized.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 0);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 0);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 0);
}
isolate
.execute(
r#"
const control = new Uint8Array([4, 5, 6]);
const data = new Uint8Array([42, 43, 44, 45, 46]);
let r = libdeno.send(control, data);
libdeno.recv(() => {});
if (r != null) throw Error("expected null");
"#,
).expect("execute error");
// Make sure relevant metrics are updated before task is executed.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
// Note we cannot check ops_completed nor bytes_received because that
// would be a race condition. It might be nice to have use a oneshot
// with metrics_dispatch_async() to properly validate them.
}
isolate.event_loop().unwrap();
// Make sure relevant metrics are updated after task is executed.
{
let metrics = &isolate.state.metrics;
assert_eq!(metrics.ops_dispatched.load(Ordering::SeqCst), 1);
assert_eq!(metrics.ops_completed.load(Ordering::SeqCst), 1);
assert_eq!(metrics.bytes_sent_control.load(Ordering::SeqCst), 3);
assert_eq!(metrics.bytes_sent_data.load(Ordering::SeqCst), 5);
assert_eq!(metrics.bytes_received.load(Ordering::SeqCst), 4);
}
});
}
fn metrics_dispatch_sync(
_isolate: &Isolate,
_control: libdeno::deno_buf,
_data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
// Send back some sync response
let vec: Box<[u8]> = vec![1, 2, 3, 4].into_boxed_slice();
let op = Box::new(futures::future::ok(vec));
(true, op)
}
fn metrics_dispatch_async(
_isolate: &Isolate,
_control: libdeno::deno_buf,
_data: libdeno::deno_buf,
) -> (bool, Box<Op>) {
// Send back some sync response
let vec: Box<[u8]> = vec![1, 2, 3, 4].into_boxed_slice();
let op = Box::new(futures::future::ok(vec));
(false, op)
}
#[test]
fn thread_safety() {
fn is_thread_safe<T: Sync + Send>() {}
is_thread_safe::<IsolateState>();
}
#[test]
fn execute_mod() {
let filename = std::env::current_dir()
.unwrap()
.join("tests/esm_imports_a.js");
let filename = filename.to_str().unwrap();
let argv = vec![String::from("./deno"), String::from(filename)];
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
let state = Arc::new(IsolateState::new(flags, rest_argv, None));
let snapshot = libdeno::deno_buf::empty();
let mut isolate = Isolate::new(snapshot, state, dispatch_sync);
tokio_util::init(|| {
isolate
.execute_mod(filename, false)
.expect("execute_mod error");
isolate.event_loop().ok();
});
let metrics = &isolate.state.metrics;
assert_eq!(metrics.resolve_count.load(Ordering::SeqCst), 1);
}
#[test]
fn execute_mod_circular() {
let filename = std::env::current_dir().unwrap().join("tests/circular1.js");
let filename = filename.to_str().unwrap();
let argv = vec![String::from("./deno"), String::from(filename)];
let (flags, rest_argv, _) = flags::set_flags(argv).unwrap();
let state = Arc::new(IsolateState::new(flags, rest_argv, None));
let snapshot = libdeno::deno_buf::empty();
let mut isolate = Isolate::new(snapshot, state, dispatch_sync);
tokio_util::init(|| {
isolate
.execute_mod(filename, false)
.expect("execute_mod error");
isolate.event_loop().ok();
});
let metrics = &isolate.state.metrics;
assert_eq!(metrics.resolve_count.load(Ordering::SeqCst), 2);
}
}