0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-10-31 09:14:20 -04:00
denoland-deno/core/libdeno/libdeno_test.cc
Bert Belder 41c7e96f1a
Refactor zero-copy buffers for performance and to prevent memory leaks
* In order to prevent ArrayBuffers from getting garbage collected by V8,
  we used to store a v8::Persistent<ArrayBuffer> in a map. This patch
  introduces a custom ArrayBuffer allocator which doesn't use Persistent
  handles, but instead stores a pointer to the actual ArrayBuffer data
  alongside with a reference count. Since creating Persistent handles
  has quite a bit of overhead, this change significantly increases
  performance. Various HTTP server benchmarks report about 5-10% more
  requests per second than before.

* Previously the Persistent handle that prevented garbage collection had
  to be released manually, and this wasn't always done, which was
  causing memory leaks. This has been resolved by introducing a new
  `PinnedBuf` type in both Rust and C++ that automatically re-enables
  garbage collection when it goes out of scope.

* Zero-copy buffers are now correctly wrapped in an Option if there is a
  possibility that they're not present. This clears up a correctness
  issue where we were creating zero-length slices from a null pointer,
  which is against the rules.
2019-05-01 21:11:09 +02:00

313 lines
11 KiB
C++

// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license.
#include "test.h"
TEST(LibDenoTest, InitializesCorrectly) {
EXPECT_NE(snapshot.data_ptr, nullptr);
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "1 + 2");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, Snapshotter) {
Deno* d1 = deno_new(deno_config{1, empty_snapshot, empty, nullptr});
deno_execute(d1, nullptr, "a.js", "a = 1 + 2");
EXPECT_EQ(nullptr, deno_last_exception(d1));
deno_snapshot test_snapshot = deno_snapshot_new(d1);
deno_delete(d1);
Deno* d2 = deno_new(deno_config{0, test_snapshot, empty, nullptr});
deno_execute(d2, nullptr, "b.js", "if (a != 3) throw Error('x');");
EXPECT_EQ(nullptr, deno_last_exception(d2));
deno_delete(d2);
deno_snapshot_delete(test_snapshot);
}
TEST(LibDenoTest, CanCallFunction) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_lock(d);
deno_execute(d, nullptr, "a.js",
"if (CanCallFunction() != 'foo') throw Error();");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_unlock(d);
deno_delete(d);
}
TEST(LibDenoTest, ErrorsCorrectly) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "throw Error()");
EXPECT_NE(nullptr, deno_last_exception(d));
deno_delete(d);
}
deno_buf strbuf(const char* str) {
auto len = strlen(str);
deno_buf buf;
buf.alloc_ptr = new uint8_t[len];
buf.alloc_len = len;
buf.data_ptr = buf.alloc_ptr;
buf.data_len = len;
memcpy(buf.data_ptr, str, len);
return buf;
}
void assert_null(deno_pinned_buf b) {
EXPECT_EQ(b.data_ptr, nullptr);
EXPECT_EQ(b.data_len, 0u);
EXPECT_EQ(b.pin, nullptr);
}
TEST(LibDenoTest, RecvReturnEmpty) {
static int count = 0;
auto recv_cb = [](auto _, auto buf, auto zero_copy_buf) {
assert_null(zero_copy_buf);
count++;
EXPECT_EQ(static_cast<size_t>(3), buf.data_len);
EXPECT_EQ(buf.data_ptr[0], 'a');
EXPECT_EQ(buf.data_ptr[1], 'b');
EXPECT_EQ(buf.data_ptr[2], 'c');
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, nullptr, "a.js", "RecvReturnEmpty()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 2);
deno_delete(d);
}
TEST(LibDenoTest, RecvReturnBar) {
static int count = 0;
auto recv_cb = [](auto user_data, auto buf, auto zero_copy_buf) {
auto d = reinterpret_cast<Deno*>(user_data);
assert_null(zero_copy_buf);
count++;
EXPECT_EQ(static_cast<size_t>(3), buf.data_len);
EXPECT_EQ(buf.data_ptr[0], 'a');
EXPECT_EQ(buf.data_ptr[1], 'b');
EXPECT_EQ(buf.data_ptr[2], 'c');
deno_respond(d, user_data, strbuf("bar"));
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, d, "a.js", "RecvReturnBar()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 1);
deno_delete(d);
}
TEST(LibDenoTest, DoubleRecvFails) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "DoubleRecvFails()");
EXPECT_NE(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, SendRecvSlice) {
static int count = 0;
auto recv_cb = [](auto user_data, auto buf, auto zero_copy_buf) {
auto d = reinterpret_cast<Deno*>(user_data);
assert_null(zero_copy_buf);
static const size_t alloc_len = 1024;
size_t i = count++;
// Check the size and offset of the slice.
size_t data_offset = buf.data_ptr - buf.alloc_ptr;
EXPECT_EQ(data_offset, i * 11);
EXPECT_EQ(buf.data_len, alloc_len - i * 30);
EXPECT_EQ(buf.alloc_len, alloc_len);
// Check values written by the JS side.
EXPECT_EQ(buf.data_ptr[0], 100 + i);
EXPECT_EQ(buf.data_ptr[buf.data_len - 1], 100 - i);
// Make copy of the backing buffer -- this is currently necessary
// because deno_respond() takes ownership over the buffer, but we are
// not given ownership of `buf` by our caller.
uint8_t* alloc_ptr = new uint8_t[alloc_len];
memcpy(alloc_ptr, buf.alloc_ptr, alloc_len);
// Make a slice that is a bit shorter than the original.
deno_buf buf2{alloc_ptr, alloc_len, alloc_ptr + data_offset,
buf.data_len - 19};
// Place some values into the buffer for the JS side to verify.
buf2.data_ptr[0] = 200 + i;
buf2.data_ptr[buf2.data_len - 1] = 200 - i;
// Send back.
deno_respond(d, user_data, buf2);
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, d, "a.js", "SendRecvSlice()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 5);
deno_delete(d);
}
TEST(LibDenoTest, JSSendArrayBufferViewTypes) {
static int count = 0;
auto recv_cb = [](auto _, auto buf, auto zero_copy_buf) {
assert_null(zero_copy_buf);
count++;
size_t data_offset = buf.data_ptr - buf.alloc_ptr;
EXPECT_EQ(data_offset, 2468u);
EXPECT_EQ(buf.data_len, 1000u);
EXPECT_EQ(buf.alloc_len, 4321u);
EXPECT_EQ(buf.data_ptr[0], count);
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, nullptr, "a.js", "JSSendArrayBufferViewTypes()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 3);
deno_delete(d);
}
TEST(LibDenoTest, TypedArraySnapshots) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "TypedArraySnapshots()");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, SnapshotBug) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "SnapshotBug()");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, GlobalErrorHandling) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "GlobalErrorHandling()");
std::string expected =
"{\"message\":\"Uncaught ReferenceError: notdefined is not defined\","
"\"sourceLine\":\" "
"notdefined()\",\"scriptResourceName\":\"helloworld.js\","
"\"lineNumber\":3,\"startPosition\":3,\"endPosition\":4,\"errorLevel\":8,"
"\"startColumn\":1,\"endColumn\":2,\"isSharedCrossOrigin\":false,"
"\"isOpaque\":false,\"frames\":[{\"line\":3,\"column\":2,"
"\"functionName\":\"\",\"scriptName\":\"helloworld.js\",\"isEval\":true,"
"\"isConstructor\":false,\"isWasm\":false},";
std::string actual(deno_last_exception(d), 0, expected.length());
EXPECT_STREQ(expected.c_str(), actual.c_str());
deno_delete(d);
}
TEST(LibDenoTest, ZeroCopyBuf) {
static int count = 0;
static deno_pinned_buf zero_copy_buf2;
auto recv_cb = [](auto user_data, deno_buf buf,
deno_pinned_buf zero_copy_buf) {
count++;
EXPECT_NE(zero_copy_buf.pin, nullptr);
zero_copy_buf.data_ptr[0] = 4;
zero_copy_buf.data_ptr[1] = 2;
zero_copy_buf2 = zero_copy_buf;
EXPECT_EQ(2u, buf.data_len);
EXPECT_EQ(2u, zero_copy_buf.data_len);
EXPECT_EQ(buf.data_ptr[0], 1);
EXPECT_EQ(buf.data_ptr[1], 2);
// Note zero_copy_buf won't actually be freed here because in
// libdeno_test.js zeroCopyBuf is a rooted global. We just want to exercise
// the API here.
deno_pinned_buf_delete(&zero_copy_buf);
};
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
deno_execute(d, d, "a.js", "ZeroCopyBuf()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(count, 1);
// zero_copy_buf was subsequently changed in JS, let's check that our copy
// reflects that.
EXPECT_EQ(zero_copy_buf2.data_ptr[0], 9);
EXPECT_EQ(zero_copy_buf2.data_ptr[1], 8);
deno_delete(d);
}
TEST(LibDenoTest, CheckPromiseErrors) {
static int count = 0;
auto recv_cb = [](auto _, auto buf, auto zero_copy_buf) { count++; };
Deno* d = deno_new(deno_config{0, snapshot, empty, recv_cb});
EXPECT_EQ(deno_last_exception(d), nullptr);
deno_execute(d, nullptr, "a.js", "CheckPromiseErrors()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(deno_last_exception(d), nullptr);
EXPECT_EQ(count, 1);
// We caught the exception. So still no errors after calling
// deno_check_promise_errors().
deno_check_promise_errors(d);
EXPECT_EQ(deno_last_exception(d), nullptr);
deno_delete(d);
}
TEST(LibDenoTest, LastException) {
Deno* d = deno_new(deno_config{0, empty_snapshot, empty, nullptr});
EXPECT_EQ(deno_last_exception(d), nullptr);
deno_execute(d, nullptr, "a.js", "\n\nthrow Error('boo');\n\n");
EXPECT_STREQ(deno_last_exception(d),
"{\"message\":\"Uncaught Error: boo\",\"sourceLine\":\"throw "
"Error('boo');\",\"scriptResourceName\":\"a.js\",\"lineNumber\":"
"3,\"startPosition\":8,\"endPosition\":9,\"errorLevel\":8,"
"\"startColumn\":6,\"endColumn\":7,\"isSharedCrossOrigin\":"
"false,\"isOpaque\":false,\"frames\":[{\"line\":3,\"column\":7,"
"\"functionName\":\"\",\"scriptName\":\"a.js\",\"isEval\":false,"
"\"isConstructor\":false,\"isWasm\":false}]}");
deno_delete(d);
}
TEST(LibDenoTest, EncodeErrorBug) {
Deno* d = deno_new(deno_config{0, empty_snapshot, empty, nullptr});
EXPECT_EQ(deno_last_exception(d), nullptr);
deno_execute(d, nullptr, "a.js", "eval('a')");
EXPECT_STREQ(
deno_last_exception(d),
"{\"message\":\"Uncaught ReferenceError: a is not "
"defined\",\"sourceLine\":\"a\",\"lineNumber\":1,\"startPosition\":0,"
"\"endPosition\":1,\"errorLevel\":8,\"startColumn\":0,\"endColumn\":1,"
"\"isSharedCrossOrigin\":false,\"isOpaque\":false,\"frames\":[{\"line\":"
"1,\"column\":1,\"functionName\":\"\",\"scriptName\":\"<unknown>\","
"\"isEval\":true,\"isConstructor\":false,\"isWasm\":false},{\"line\":1,"
"\"column\":1,\"functionName\":\"\",\"scriptName\":\"a.js\",\"isEval\":"
"false,\"isConstructor\":false,\"isWasm\":false}]}");
deno_delete(d);
}
TEST(LibDenoTest, Shared) {
uint8_t s[] = {0, 1, 2};
deno_buf shared = {nullptr, 0, s, 3};
Deno* d = deno_new(deno_config{0, snapshot, shared, nullptr});
deno_execute(d, nullptr, "a.js", "Shared()");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(s[0], 42);
EXPECT_EQ(s[1], 43);
EXPECT_EQ(s[2], 44);
deno_delete(d);
}
TEST(LibDenoTest, Utf8Bug) {
Deno* d = deno_new(deno_config{0, empty_snapshot, empty, nullptr});
// The following is a valid UTF-8 javascript which just defines a string
// literal. We had a bug where libdeno would choke on this.
deno_execute(d, nullptr, "a.js", "x = \"\xEF\xBF\xBD\"");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, LibDenoEvalContext) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "LibDenoEvalContext();");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, LibDenoEvalContextError) {
Deno* d = deno_new(deno_config{0, snapshot, empty, nullptr});
deno_execute(d, nullptr, "a.js", "LibDenoEvalContextError();");
EXPECT_EQ(nullptr, deno_last_exception(d));
deno_delete(d);
}
TEST(LibDenoTest, SharedAtomics) {
int32_t s[] = {0, 1, 2};
deno_buf shared = {nullptr, 0, reinterpret_cast<uint8_t*>(s), sizeof s};
Deno* d = deno_new(deno_config{0, empty_snapshot, shared, nullptr});
deno_execute(d, nullptr, "a.js",
"Atomics.add(new Int32Array(Deno.core.shared), 0, 1)");
EXPECT_EQ(nullptr, deno_last_exception(d));
EXPECT_EQ(s[0], 1);
EXPECT_EQ(s[1], 1);
EXPECT_EQ(s[2], 2);
deno_delete(d);
}