1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-23 15:49:44 -05:00
denoland-deno/core/libdeno/deno.h
Bert Belder 41c7e96f1a
Refactor zero-copy buffers for performance and to prevent memory leaks
* In order to prevent ArrayBuffers from getting garbage collected by V8,
  we used to store a v8::Persistent<ArrayBuffer> in a map. This patch
  introduces a custom ArrayBuffer allocator which doesn't use Persistent
  handles, but instead stores a pointer to the actual ArrayBuffer data
  alongside with a reference count. Since creating Persistent handles
  has quite a bit of overhead, this change significantly increases
  performance. Various HTTP server benchmarks report about 5-10% more
  requests per second than before.

* Previously the Persistent handle that prevented garbage collection had
  to be released manually, and this wasn't always done, which was
  causing memory leaks. This has been resolved by introducing a new
  `PinnedBuf` type in both Rust and C++ that automatically re-enables
  garbage collection when it goes out of scope.

* Zero-copy buffers are now correctly wrapped in an Option if there is a
  possibility that they're not present. This clears up a correctness
  issue where we were creating zero-length slices from a null pointer,
  which is against the rules.
2019-05-01 21:11:09 +02:00

125 lines
4.2 KiB
C

// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license.
#ifndef DENO_H_
#define DENO_H_
#include <stddef.h>
#include <stdint.h>
#include "buffer.h"
// Neither Rust nor Go support calling directly into C++ functions, therefore
// the public interface to libdeno is done in C.
#ifdef __cplusplus
extern "C" {
#endif
typedef deno::PinnedBuf::Raw deno_pinned_buf;
// Data that gets transmitted.
typedef struct {
uint8_t* alloc_ptr; // Start of memory allocation (from `new uint8_t[len]`).
size_t alloc_len; // Length of the memory allocation.
uint8_t* data_ptr; // Start of logical contents (within the allocation).
size_t data_len; // Length of logical contents.
} deno_buf;
typedef struct {
uint8_t* data_ptr;
size_t data_len;
} deno_snapshot;
typedef struct deno_s Deno;
// A callback to receive a message from a libdeno.send() javascript call.
// control_buf is valid for only for the lifetime of this callback.
// data_buf is valid until deno_respond() is called.
typedef void (*deno_recv_cb)(void* user_data, deno_buf control_buf,
deno_pinned_buf zero_copy_buf);
void deno_init();
const char* deno_v8_version();
void deno_set_v8_flags(int* argc, char** argv);
typedef struct {
int will_snapshot; // Default 0. If calling deno_snapshot_new 1.
deno_snapshot load_snapshot; // A startup snapshot to use.
deno_buf shared; // Shared buffer to be mapped to libdeno.shared
deno_recv_cb recv_cb; // Maps to libdeno.send() calls.
} deno_config;
// Create a new deno isolate.
// Warning: If config.will_snapshot is set, deno_snapshot_new() must be called
// or an error will result.
Deno* deno_new(deno_config config);
void deno_delete(Deno* d);
// Generate a snapshot. The resulting buf can be used in as the load_snapshot
// member in deno_confg.
// When calling this function, the caller must have created the isolate "d" with
// "will_snapshot" set to 1.
// The caller must free the returned data with deno_snapshot_delete().
deno_snapshot deno_snapshot_new(Deno* d);
// Only for use with data returned from deno_snapshot_new.
void deno_snapshot_delete(deno_snapshot);
void deno_lock(Deno* d);
void deno_unlock(Deno* d);
// Compile and execute a traditional JavaScript script that does not use
// module import statements.
// If it succeeded deno_last_exception() will return NULL.
void deno_execute(Deno* d, void* user_data, const char* js_filename,
const char* js_source);
// deno_respond sends up to one message back for every deno_recv_cb made.
//
// If this is called during deno_recv_cb, the issuing libdeno.send() in
// javascript will synchronously return the specified buf as an ArrayBuffer (or
// null if buf is empty).
//
// If this is called after deno_recv_cb has returned, the deno_respond
// will call into the JS callback specified by libdeno.recv().
//
// (Ideally, but not currently: After calling deno_respond(), the caller no
// longer owns `buf` and must not use it; deno_respond() is responsible for
// releasing its memory.)
//
// If a JS exception was encountered, deno_last_exception() will be non-NULL.
void deno_respond(Deno* d, void* user_data, deno_buf buf);
// consumes zero_copy
void deno_pinned_buf_delete(deno_pinned_buf* buf);
void deno_check_promise_errors(Deno* d);
const char* deno_last_exception(Deno* d);
void deno_terminate_execution(Deno* d);
// Module API
typedef int deno_mod;
// Returns zero on error - check deno_last_exception().
deno_mod deno_mod_new(Deno* d, bool main, const char* name, const char* source);
size_t deno_mod_imports_len(Deno* d, deno_mod id);
// Returned pointer is valid for the lifetime of the Deno isolate "d".
const char* deno_mod_imports_get(Deno* d, deno_mod id, size_t index);
typedef deno_mod (*deno_resolve_cb)(void* user_data, const char* specifier,
deno_mod referrer);
// If it succeeded deno_last_exception() will return NULL.
void deno_mod_instantiate(Deno* d, void* user_data, deno_mod id,
deno_resolve_cb cb);
// If it succeeded deno_last_exception() will return NULL.
void deno_mod_evaluate(Deno* d, void* user_data, deno_mod id);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // DENO_H_