1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-12-11 18:17:48 -05:00
denoland-deno/cli/ops/io.rs

452 lines
13 KiB
Rust

use super::dispatch_minimal::MinimalOp;
use crate::http_util::HttpBody;
use crate::op_error::OpError;
use crate::state::State;
use deno_core::CoreIsolate;
use deno_core::ResourceTable;
use deno_core::ZeroCopyBuf;
use futures::future::poll_fn;
use futures::future::FutureExt;
use futures::ready;
use std::collections::HashMap;
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::task::Context;
use std::task::Poll;
use tokio::io::{AsyncRead, AsyncWrite};
use tokio::net::TcpStream;
use tokio_rustls::client::TlsStream as ClientTlsStream;
use tokio_rustls::server::TlsStream as ServerTlsStream;
#[cfg(not(windows))]
use std::os::unix::io::FromRawFd;
#[cfg(windows)]
use std::os::windows::io::FromRawHandle;
#[cfg(windows)]
extern crate winapi;
lazy_static! {
/// Due to portability issues on Windows handle to stdout is created from raw
/// file descriptor. The caveat of that approach is fact that when this
/// handle is dropped underlying file descriptor is closed - that is highly
/// not desirable in case of stdout. That's why we store this global handle
/// that is then cloned when obtaining stdio for process. In turn when
/// resource table is dropped storing reference to that handle, the handle
/// itself won't be closed (so Deno.core.print) will still work.
// TODO(ry) It should be possible to close stdout.
static ref STDOUT_HANDLE: std::fs::File = {
#[cfg(not(windows))]
let stdout = unsafe { std::fs::File::from_raw_fd(1) };
#[cfg(windows)]
let stdout = unsafe {
std::fs::File::from_raw_handle(winapi::um::processenv::GetStdHandle(
winapi::um::winbase::STD_OUTPUT_HANDLE,
))
};
stdout
};
static ref STDERR_HANDLE: std::fs::File = {
#[cfg(not(windows))]
let stderr = unsafe { std::fs::File::from_raw_fd(2) };
#[cfg(windows)]
let stderr = unsafe {
std::fs::File::from_raw_handle(winapi::um::processenv::GetStdHandle(
winapi::um::winbase::STD_ERROR_HANDLE,
))
};
stderr
};
}
pub fn init(i: &mut CoreIsolate, s: &State) {
i.register_op("op_read", s.stateful_minimal_op2(op_read));
i.register_op("op_write", s.stateful_minimal_op2(op_write));
}
pub fn get_stdio() -> (
StreamResourceHolder,
StreamResourceHolder,
StreamResourceHolder,
) {
let stdin = StreamResourceHolder::new(StreamResource::Stdin(
tokio::io::stdin(),
TTYMetadata::default(),
));
let stdout = StreamResourceHolder::new(StreamResource::FsFile(Some({
let stdout = STDOUT_HANDLE.try_clone().unwrap();
(tokio::fs::File::from_std(stdout), FileMetadata::default())
})));
let stderr = StreamResourceHolder::new(StreamResource::FsFile(Some({
let stderr = STDERR_HANDLE.try_clone().unwrap();
(tokio::fs::File::from_std(stderr), FileMetadata::default())
})));
(stdin, stdout, stderr)
}
fn no_buffer_specified() -> OpError {
OpError::type_error("no buffer specified".to_string())
}
#[cfg(unix)]
use nix::sys::termios;
#[derive(Default)]
pub struct TTYMetadata {
#[cfg(unix)]
pub mode: Option<termios::Termios>,
}
#[derive(Default)]
pub struct FileMetadata {
pub tty: TTYMetadata,
}
pub struct StreamResourceHolder {
pub resource: StreamResource,
waker: HashMap<usize, futures::task::AtomicWaker>,
waker_counter: AtomicUsize,
}
impl StreamResourceHolder {
pub fn new(resource: StreamResource) -> StreamResourceHolder {
StreamResourceHolder {
resource,
// Atleast one task is expecter for the resource
waker: HashMap::with_capacity(1),
// Tracks wakers Ids
waker_counter: AtomicUsize::new(0),
}
}
}
impl Drop for StreamResourceHolder {
fn drop(&mut self) {
self.wake_tasks();
}
}
impl StreamResourceHolder {
pub fn track_task(&mut self, cx: &Context) -> Result<usize, OpError> {
let waker = futures::task::AtomicWaker::new();
waker.register(cx.waker());
// Its OK if it overflows
let task_waker_id = self.waker_counter.fetch_add(1, Ordering::Relaxed);
self.waker.insert(task_waker_id, waker);
Ok(task_waker_id)
}
pub fn wake_tasks(&mut self) {
for waker in self.waker.values() {
waker.wake();
}
}
pub fn untrack_task(&mut self, task_waker_id: usize) {
self.waker.remove(&task_waker_id);
}
}
pub enum StreamResource {
Stdin(tokio::io::Stdin, TTYMetadata),
FsFile(Option<(tokio::fs::File, FileMetadata)>),
TcpStream(Option<tokio::net::TcpStream>),
#[cfg(not(windows))]
UnixStream(tokio::net::UnixStream),
ServerTlsStream(Box<ServerTlsStream<TcpStream>>),
ClientTlsStream(Box<ClientTlsStream<TcpStream>>),
HttpBody(Box<HttpBody>),
ChildStdin(tokio::process::ChildStdin),
ChildStdout(tokio::process::ChildStdout),
ChildStderr(tokio::process::ChildStderr),
}
trait UnpinAsyncRead: AsyncRead + Unpin {}
trait UnpinAsyncWrite: AsyncWrite + Unpin {}
impl<T: AsyncRead + Unpin> UnpinAsyncRead for T {}
impl<T: AsyncWrite + Unpin> UnpinAsyncWrite for T {}
/// `DenoAsyncRead` is the same as the `tokio_io::AsyncRead` trait
/// but uses an `OpError` error instead of `std::io:Error`
pub trait DenoAsyncRead {
fn poll_read(
&mut self,
cx: &mut Context,
buf: &mut [u8],
) -> Poll<Result<usize, OpError>>;
}
impl DenoAsyncRead for StreamResource {
fn poll_read(
&mut self,
cx: &mut Context,
buf: &mut [u8],
) -> Poll<Result<usize, OpError>> {
use StreamResource::*;
let f: &mut dyn UnpinAsyncRead = match self {
FsFile(Some((f, _))) => f,
FsFile(None) => return Poll::Ready(Err(OpError::resource_unavailable())),
Stdin(f, _) => f,
TcpStream(Some(f)) => f,
#[cfg(not(windows))]
UnixStream(f) => f,
ClientTlsStream(f) => f,
ServerTlsStream(f) => f,
ChildStdout(f) => f,
ChildStderr(f) => f,
HttpBody(f) => f,
_ => return Err(OpError::bad_resource_id()).into(),
};
let v = ready!(Pin::new(f).poll_read(cx, buf))?;
Ok(v).into()
}
}
pub fn op_read(
isolate: &mut CoreIsolate,
_state: &State,
is_sync: bool,
rid: i32,
zero_copy: Option<ZeroCopyBuf>,
) -> MinimalOp {
debug!("read rid={}", rid);
if zero_copy.is_none() {
return MinimalOp::Sync(Err(no_buffer_specified()));
}
let resource_table = isolate.resource_table.clone();
let mut buf = zero_copy.unwrap();
if is_sync {
MinimalOp::Sync({
// First we look up the rid in the resource table.
let mut resource_table = resource_table.borrow_mut();
std_file_resource(&mut resource_table, rid as u32, move |r| match r {
Ok(std_file) => {
use std::io::Read;
std_file
.read(&mut buf)
.map(|n: usize| n as i32)
.map_err(OpError::from)
}
Err(_) => Err(OpError::type_error(
"sync read not allowed on this resource".to_string(),
)),
})
})
} else {
MinimalOp::Async(
poll_fn(move |cx| {
let mut resource_table = resource_table.borrow_mut();
let resource_holder = resource_table
.get_mut::<StreamResourceHolder>(rid as u32)
.ok_or_else(OpError::bad_resource_id)?;
let mut task_tracker_id: Option<usize> = None;
let nread = match resource_holder
.resource
.poll_read(cx, &mut buf.as_mut()[..])
.map_err(OpError::from)
{
Poll::Ready(t) => {
if let Some(id) = task_tracker_id {
resource_holder.untrack_task(id);
}
t
}
Poll::Pending => {
task_tracker_id.replace(resource_holder.track_task(cx)?);
return Poll::Pending;
}
}?;
Poll::Ready(Ok(nread as i32))
})
.boxed_local(),
)
}
}
/// `DenoAsyncWrite` is the same as the `tokio_io::AsyncWrite` trait
/// but uses an `OpError` error instead of `std::io:Error`
pub trait DenoAsyncWrite {
fn poll_write(
&mut self,
cx: &mut Context,
buf: &[u8],
) -> Poll<Result<usize, OpError>>;
fn poll_close(&mut self, cx: &mut Context) -> Poll<Result<(), OpError>>;
fn poll_flush(&mut self, cx: &mut Context) -> Poll<Result<(), OpError>>;
}
impl DenoAsyncWrite for StreamResource {
fn poll_write(
&mut self,
cx: &mut Context,
buf: &[u8],
) -> Poll<Result<usize, OpError>> {
use StreamResource::*;
let f: &mut dyn UnpinAsyncWrite = match self {
FsFile(Some((f, _))) => f,
FsFile(None) => return Poll::Pending,
TcpStream(Some(f)) => f,
#[cfg(not(windows))]
UnixStream(f) => f,
ClientTlsStream(f) => f,
ServerTlsStream(f) => f,
ChildStdin(f) => f,
_ => return Err(OpError::bad_resource_id()).into(),
};
let v = ready!(Pin::new(f).poll_write(cx, buf))?;
Ok(v).into()
}
fn poll_flush(&mut self, cx: &mut Context) -> Poll<Result<(), OpError>> {
use StreamResource::*;
let f: &mut dyn UnpinAsyncWrite = match self {
FsFile(Some((f, _))) => f,
FsFile(None) => return Poll::Pending,
TcpStream(Some(f)) => f,
#[cfg(not(windows))]
UnixStream(f) => f,
ClientTlsStream(f) => f,
ServerTlsStream(f) => f,
ChildStdin(f) => f,
_ => return Err(OpError::bad_resource_id()).into(),
};
ready!(Pin::new(f).poll_flush(cx))?;
Ok(()).into()
}
fn poll_close(&mut self, _cx: &mut Context) -> Poll<Result<(), OpError>> {
unimplemented!()
}
}
pub fn op_write(
isolate: &mut CoreIsolate,
_state: &State,
is_sync: bool,
rid: i32,
zero_copy: Option<ZeroCopyBuf>,
) -> MinimalOp {
debug!("write rid={}", rid);
if zero_copy.is_none() {
return MinimalOp::Sync(Err(no_buffer_specified()));
}
let buf = zero_copy.unwrap();
if is_sync {
MinimalOp::Sync({
// First we look up the rid in the resource table.
let mut resource_table = isolate.resource_table.borrow_mut();
std_file_resource(&mut resource_table, rid as u32, move |r| match r {
Ok(std_file) => {
use std::io::Write;
std_file
.write(&buf)
.map(|nwritten: usize| nwritten as i32)
.map_err(OpError::from)
}
Err(_) => Err(OpError::type_error(
"sync read not allowed on this resource".to_string(),
)),
})
})
} else {
let resource_table = isolate.resource_table.clone();
MinimalOp::Async(
async move {
let nwritten = poll_fn(|cx| {
let mut resource_table = resource_table.borrow_mut();
let resource_holder = resource_table
.get_mut::<StreamResourceHolder>(rid as u32)
.ok_or_else(OpError::bad_resource_id)?;
resource_holder.resource.poll_write(cx, &buf.as_ref()[..])
})
.await?;
// TODO(bartlomieju): this step was added during upgrade to Tokio 0.2
// and the reasons for the need to explicitly flush are not fully known.
// Figure out why it's needed and preferably remove it.
// https://github.com/denoland/deno/issues/3565
poll_fn(|cx| {
let mut resource_table = resource_table.borrow_mut();
let resource_holder = resource_table
.get_mut::<StreamResourceHolder>(rid as u32)
.ok_or_else(OpError::bad_resource_id)?;
resource_holder.resource.poll_flush(cx)
})
.await?;
Ok(nwritten as i32)
}
.boxed_local(),
)
}
}
/// Helper function for operating on a std::fs::File stored in the resource table.
///
/// We store file system file resources as tokio::fs::File, so this is a little
/// utility function that gets a std::fs:File when you need to do blocking
/// operations.
///
/// Returns ErrorKind::Busy if the resource is being used by another op.
pub fn std_file_resource<F, T>(
resource_table: &mut ResourceTable,
rid: u32,
mut f: F,
) -> Result<T, OpError>
where
F: FnMut(
Result<&mut std::fs::File, &mut StreamResource>,
) -> Result<T, OpError>,
{
// First we look up the rid in the resource table.
let mut r = resource_table.get_mut::<StreamResourceHolder>(rid);
if let Some(ref mut resource_holder) = r {
// Sync write only works for FsFile. It doesn't make sense to do this
// for non-blocking sockets. So we error out if not FsFile.
match &mut resource_holder.resource {
StreamResource::FsFile(option_file_metadata) => {
// The object in the resource table is a tokio::fs::File - but in
// order to do a blocking write on it, we must turn it into a
// std::fs::File. Hopefully this code compiles down to nothing.
if let Some((tokio_file, metadata)) = option_file_metadata.take() {
match tokio_file.try_into_std() {
Ok(mut std_file) => {
let result = f(Ok(&mut std_file));
// Turn the std_file handle back into a tokio file, put it back
// in the resource table.
let tokio_file = tokio::fs::File::from_std(std_file);
resource_holder.resource =
StreamResource::FsFile(Some((tokio_file, metadata)));
// return the result.
result
}
Err(tokio_file) => {
// This function will return an error containing the file if
// some operation is in-flight.
resource_holder.resource =
StreamResource::FsFile(Some((tokio_file, metadata)));
Err(OpError::resource_unavailable())
}
}
} else {
Err(OpError::resource_unavailable())
}
}
_ => f(Err(&mut resource_holder.resource)),
}
} else {
Err(OpError::bad_resource_id())
}
}