1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-03 21:08:56 -05:00
denoland-deno/ext/io/pipe.rs

379 lines
11 KiB
Rust

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
use std::io;
use std::pin::Pin;
use std::process::Stdio;
pub type RawPipeHandle = super::RawIoHandle;
// The synchronous read end of a unidirectional pipe.
pub struct PipeRead {
file: std::fs::File,
}
// The asynchronous read end of a unidirectional pipe.
pub struct AsyncPipeRead {
#[cfg(windows)]
/// We use a `ChildStdout` here as it's a much better fit for a Windows named pipe on Windows. We
/// might also be able to use `tokio::net::windows::named_pipe::NamedPipeClient` in the future
/// if those can be created from raw handles down the road.
read: tokio::process::ChildStdout,
#[cfg(not(windows))]
read: tokio::net::unix::pipe::Receiver,
}
// The synchronous write end of a unidirectional pipe.
pub struct PipeWrite {
file: std::fs::File,
}
// The asynchronous write end of a unidirectional pipe.
pub struct AsyncPipeWrite {
#[cfg(windows)]
/// We use a `ChildStdin` here as it's a much better fit for a Windows named pipe on Windows. We
/// might also be able to use `tokio::net::windows::named_pipe::NamedPipeClient` in the future
/// if those can be created from raw handles down the road.
write: tokio::process::ChildStdin,
#[cfg(not(windows))]
write: tokio::net::unix::pipe::Sender,
}
impl PipeRead {
/// Converts this sync reader into an async reader. May fail if the Tokio runtime is
/// unavailable.
#[cfg(windows)]
pub fn into_async(self) -> io::Result<AsyncPipeRead> {
let owned: std::os::windows::io::OwnedHandle = self.file.into();
let stdout = std::process::ChildStdout::from(owned);
Ok(AsyncPipeRead {
read: tokio::process::ChildStdout::from_std(stdout)?,
})
}
/// Converts this sync reader into an async reader. May fail if the Tokio runtime is
/// unavailable.
#[cfg(not(windows))]
pub fn into_async(self) -> io::Result<AsyncPipeRead> {
Ok(AsyncPipeRead {
read: tokio::net::unix::pipe::Receiver::from_file(self.file)?,
})
}
/// Creates a new [`PipeRead`] instance that shares the same underlying file handle
/// as the existing [`PipeRead`] instance.
pub fn try_clone(&self) -> io::Result<Self> {
Ok(Self {
file: self.file.try_clone()?,
})
}
}
impl AsyncPipeRead {
/// Converts this async reader into an sync reader. May fail if the Tokio runtime is
/// unavailable.
#[cfg(windows)]
pub fn into_sync(self) -> io::Result<PipeRead> {
let owned = self.read.into_owned_handle()?;
Ok(PipeRead { file: owned.into() })
}
/// Converts this async reader into an sync reader. May fail if the Tokio runtime is
/// unavailable.
#[cfg(not(windows))]
pub fn into_sync(self) -> io::Result<PipeRead> {
let file = self.read.into_nonblocking_fd()?.into();
Ok(PipeRead { file })
}
}
impl std::io::Read for PipeRead {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.file.read(buf)
}
fn read_vectored(
&mut self,
bufs: &mut [io::IoSliceMut<'_>],
) -> io::Result<usize> {
self.file.read_vectored(bufs)
}
}
impl tokio::io::AsyncRead for AsyncPipeRead {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> std::task::Poll<io::Result<()>> {
Pin::new(&mut self.get_mut().read).poll_read(cx, buf)
}
}
impl PipeWrite {
/// Converts this sync writer into an async writer. May fail if the Tokio runtime is
/// unavailable.
#[cfg(windows)]
pub fn into_async(self) -> io::Result<AsyncPipeWrite> {
let owned: std::os::windows::io::OwnedHandle = self.file.into();
let stdin = std::process::ChildStdin::from(owned);
Ok(AsyncPipeWrite {
write: tokio::process::ChildStdin::from_std(stdin)?,
})
}
/// Converts this sync writer into an async writer. May fail if the Tokio runtime is
/// unavailable.
#[cfg(not(windows))]
pub fn into_async(self) -> io::Result<AsyncPipeWrite> {
Ok(AsyncPipeWrite {
write: tokio::net::unix::pipe::Sender::from_file(self.file)?,
})
}
/// Creates a new [`PipeWrite`] instance that shares the same underlying file handle
/// as the existing [`PipeWrite`] instance.
pub fn try_clone(&self) -> io::Result<Self> {
Ok(Self {
file: self.file.try_clone()?,
})
}
}
impl AsyncPipeWrite {
/// Converts this async writer into an sync writer. May fail if the Tokio runtime is
/// unavailable.
#[cfg(windows)]
pub fn into_sync(self) -> io::Result<PipeWrite> {
let owned = self.write.into_owned_handle()?;
Ok(PipeWrite { file: owned.into() })
}
/// Converts this async writer into an sync writer. May fail if the Tokio runtime is
/// unavailable.
#[cfg(not(windows))]
pub fn into_sync(self) -> io::Result<PipeWrite> {
let file = self.write.into_nonblocking_fd()?.into();
Ok(PipeWrite { file })
}
}
impl std::io::Write for PipeWrite {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.file.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.file.flush()
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.file.write_vectored(bufs)
}
}
impl tokio::io::AsyncWrite for AsyncPipeWrite {
#[inline(always)]
fn poll_write(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<Result<usize, io::Error>> {
Pin::new(&mut self.get_mut().write).poll_write(cx, buf)
}
#[inline(always)]
fn poll_flush(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), io::Error>> {
Pin::new(&mut self.get_mut().write).poll_flush(cx)
}
#[inline(always)]
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), io::Error>> {
Pin::new(&mut self.get_mut().write).poll_shutdown(cx)
}
#[inline(always)]
fn is_write_vectored(&self) -> bool {
self.write.is_write_vectored()
}
#[inline(always)]
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
bufs: &[io::IoSlice<'_>],
) -> std::task::Poll<Result<usize, io::Error>> {
Pin::new(&mut self.get_mut().write).poll_write_vectored(cx, bufs)
}
}
impl From<PipeRead> for Stdio {
fn from(val: PipeRead) -> Self {
Stdio::from(val.file)
}
}
impl From<PipeWrite> for Stdio {
fn from(val: PipeWrite) -> Self {
Stdio::from(val.file)
}
}
impl From<PipeRead> for std::fs::File {
fn from(val: PipeRead) -> Self {
val.file
}
}
impl From<PipeWrite> for std::fs::File {
fn from(val: PipeWrite) -> Self {
val.file
}
}
#[cfg(not(windows))]
impl From<PipeRead> for std::os::unix::io::OwnedFd {
fn from(val: PipeRead) -> Self {
val.file.into()
}
}
#[cfg(not(windows))]
impl From<PipeWrite> for std::os::unix::io::OwnedFd {
fn from(val: PipeWrite) -> Self {
val.file.into()
}
}
#[cfg(windows)]
impl From<PipeRead> for std::os::windows::io::OwnedHandle {
fn from(val: PipeRead) -> Self {
val.file.into()
}
}
#[cfg(windows)]
impl From<PipeWrite> for std::os::windows::io::OwnedHandle {
fn from(val: PipeWrite) -> Self {
val.file.into()
}
}
/// Create a unidirectional pipe pair that starts off as a pair of synchronous file handles,
/// but either side may be promoted to an async-capable reader/writer.
///
/// On Windows, we use a named pipe because that's the only way to get reliable async I/O
/// support. On Unix platforms, we use the `os_pipe` library, which uses `pipe2` under the hood
/// (or `pipe` on OSX).
pub fn pipe() -> io::Result<(PipeRead, PipeWrite)> {
pipe_impl()
}
/// Creates a unidirectional pipe on top of a named pipe (which is technically bidirectional).
#[cfg(windows)]
pub fn pipe_impl() -> io::Result<(PipeRead, PipeWrite)> {
// SAFETY: We're careful with handles here
unsafe {
use std::os::windows::io::FromRawHandle;
use std::os::windows::io::OwnedHandle;
let (server, client) = crate::winpipe::create_named_pipe()?;
let read = std::fs::File::from(OwnedHandle::from_raw_handle(client));
let write = std::fs::File::from(OwnedHandle::from_raw_handle(server));
Ok((PipeRead { file: read }, PipeWrite { file: write }))
}
}
/// Creates a unidirectional pipe for unix platforms.
#[cfg(not(windows))]
pub fn pipe_impl() -> io::Result<(PipeRead, PipeWrite)> {
use std::os::unix::io::OwnedFd;
let (read, write) = os_pipe::pipe()?;
let read = std::fs::File::from(Into::<OwnedFd>::into(read));
let write = std::fs::File::from(Into::<OwnedFd>::into(write));
Ok((PipeRead { file: read }, PipeWrite { file: write }))
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::Read;
use std::io::Write;
use tokio::io::AsyncReadExt;
use tokio::io::AsyncWriteExt;
#[test]
fn test_pipe() {
let (mut read, mut write) = pipe().unwrap();
// Write to the server and read from the client
write.write_all(b"hello").unwrap();
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"hello");
}
#[tokio::test]
async fn test_async_pipe() {
let (read, write) = pipe().unwrap();
let mut read = read.into_async().unwrap();
let mut write = write.into_async().unwrap();
write.write_all(b"hello").await.unwrap();
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).await.unwrap();
assert_eq!(&buf, b"hello");
}
/// Test a round-trip through async mode and back.
#[tokio::test]
async fn test_pipe_transmute() {
let (mut read, mut write) = pipe().unwrap();
// Sync
write.write_all(b"hello").unwrap();
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"hello");
let mut read = read.into_async().unwrap();
let mut write = write.into_async().unwrap();
// Async
write.write_all(b"hello").await.unwrap();
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).await.unwrap();
assert_eq!(&buf, b"hello");
let mut read = read.into_sync().unwrap();
let mut write = write.into_sync().unwrap();
// Sync
write.write_all(b"hello").unwrap();
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"hello");
}
#[tokio::test]
async fn test_async_pipe_is_nonblocking() {
let (read, write) = pipe().unwrap();
let mut read = read.into_async().unwrap();
let mut write = write.into_async().unwrap();
let a = tokio::spawn(async move {
let mut buf: [u8; 5] = Default::default();
read.read_exact(&mut buf).await.unwrap();
assert_eq!(&buf, b"hello");
});
let b = tokio::spawn(async move {
write.write_all(b"hello").await.unwrap();
});
a.await.unwrap();
b.await.unwrap();
}
}