1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-22 15:06:54 -05:00
denoland-deno/core/modules.rs

923 lines
26 KiB
Rust

// Copyright 2018 the Deno authors. All rights reserved. MIT license.
// Implementation note: one could imagine combining this module with Isolate to
// provide a more intuitive high-level API. However, due to the complexity
// inherent in asynchronous module loading, we would like the Isolate to remain
// small and simple for users who do not use modules or if they do can load them
// synchronously. The isolate.rs module should never depend on this module.
use crate::isolate::Isolate;
use crate::js_errors::JSError;
use crate::libdeno::deno_mod;
use futures::Async;
use futures::Future;
use futures::Poll;
use std::collections::HashMap;
use std::collections::HashSet;
use std::error::Error;
use std::fmt;
use std::marker::PhantomData;
/// Represent result of fetching the source code of a module.
/// Contains both module name and code.
/// Module name might be different from initial URL used for loading
/// due to redirections.
/// e.g. Both https://example.com/a.ts and https://example.com/b.ts
/// may point to https://example.com/c.ts. By specifying module_name
/// all be https://example.com/c.ts in module_name (for aliasing),
/// we avoid recompiling the same code for 3 different times.
pub struct SourceCodeInfo {
pub module_name: String,
pub code: String,
}
pub type SourceCodeInfoFuture<E> =
dyn Future<Item = SourceCodeInfo, Error = E> + Send;
pub trait Loader {
type Dispatch: crate::isolate::Dispatch;
type Error: std::error::Error + 'static;
/// Returns an absolute URL.
/// When implementing an spec-complaint VM, this should be exactly the
/// algorithm described here:
/// https://html.spec.whatwg.org/multipage/webappapis.html#resolve-a-module-specifier
fn resolve(specifier: &str, referrer: &str) -> Result<String, Self::Error>;
/// Given an absolute url, load its source code.
fn load(&mut self, url: &str) -> Box<SourceCodeInfoFuture<Self::Error>>;
fn isolate_and_modules<'a: 'b + 'c, 'b, 'c>(
&'a mut self,
) -> (&'b mut Isolate<Self::Dispatch>, &'c mut Modules);
fn isolate<'a: 'b, 'b>(&'a mut self) -> &'b mut Isolate<Self::Dispatch> {
let (isolate, _) = self.isolate_and_modules();
isolate
}
fn modules<'a: 'b, 'b>(&'a mut self) -> &'b mut Modules {
let (_, modules) = self.isolate_and_modules();
modules
}
}
struct PendingLoad<E: Error> {
url: String,
is_root: bool,
source_code_info_future: Box<SourceCodeInfoFuture<E>>,
}
/// This future is used to implement parallel async module loading without
/// complicating the Isolate API. Note that RecursiveLoad will take ownership of
/// an Isolate during load.
pub struct RecursiveLoad<L: Loader> {
loader: Option<L>,
pending: Vec<PendingLoad<L::Error>>,
is_pending: HashSet<String>,
phantom: PhantomData<L>,
// TODO(ry) The following can all be combined into a single enum State type.
root: Option<String>, // Empty before polled.
root_specifier: Option<String>, // Empty after first poll
root_id: Option<deno_mod>,
}
impl<L: Loader> RecursiveLoad<L> {
/// Starts a new parallel load of the given URL.
pub fn new(url: &str, loader: L) -> Self {
Self {
loader: Some(loader),
root: None,
root_specifier: Some(url.to_string()),
root_id: None,
pending: Vec::new(),
is_pending: HashSet::new(),
phantom: PhantomData,
}
}
fn take_loader(&mut self) -> L {
self.loader.take().unwrap()
}
fn add(
&mut self,
specifier: &str,
referrer: &str,
parent_id: Option<deno_mod>,
) -> Result<String, L::Error> {
let url = L::resolve(specifier, referrer)?;
let is_root = if let Some(parent_id) = parent_id {
let loader = self.loader.as_mut().unwrap();
let modules = loader.modules();
modules.add_child(parent_id, &url);
false
} else {
true
};
{
let loader = self.loader.as_mut().unwrap();
let modules = loader.modules();
// #B We only add modules that have not yet been resolved for RecursiveLoad.
// Only short circuit after add_child().
// This impacts possible conditions in #A.
if modules.is_registered(&url) {
return Ok(url);
}
}
if !self.is_pending.contains(&url) {
self.is_pending.insert(url.clone());
let source_code_info_future = {
let loader = self.loader.as_mut().unwrap();
loader.load(&url)
};
self.pending.push(PendingLoad {
url: url.clone(),
source_code_info_future,
is_root,
});
}
Ok(url)
}
}
// TODO(ry) This is basically the same thing as RustOrJsError. They should be
// combined into one type.
#[derive(Debug, PartialEq)]
pub enum JSErrorOr<E> {
JSError(JSError),
Other(E),
}
impl<L: Loader> Future for RecursiveLoad<L> {
type Item = (deno_mod, L);
type Error = (JSErrorOr<L::Error>, L);
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
if self.root.is_none() && self.root_specifier.is_some() {
let s = self.root_specifier.take().unwrap();
match self.add(&s, ".", None) {
Err(err) => {
return Err((JSErrorOr::Other(err), self.take_loader()));
}
Ok(root) => {
self.root = Some(root);
}
}
}
assert!(self.root_specifier.is_none());
assert!(self.root.is_some());
let mut i = 0;
while i < self.pending.len() {
let pending = &mut self.pending[i];
match pending.source_code_info_future.poll() {
Err(err) => {
return Err((JSErrorOr::Other(err), self.take_loader()));
}
Ok(Async::NotReady) => {
i += 1;
}
Ok(Async::Ready(source_code_info)) => {
// We have completed loaded one of the modules.
let completed = self.pending.remove(i);
// #A There are 3 cases to handle at this moment:
// 1. Source code resolved result have the same module name as requested
// and is not yet registered
// -> register
// 2. Source code resolved result have a different name as requested:
// 2a. The module with resolved module name has been registered
// -> alias
// 2b. The module with resolved module name has not yet been registerd
// -> register & alias
let is_module_registered = {
let loader = self.loader.as_mut().unwrap();
let modules = loader.modules();
modules.is_registered(&source_code_info.module_name)
};
let need_alias = &source_code_info.module_name != &completed.url;
if !is_module_registered {
let module_name = &source_code_info.module_name;
let result = {
let loader = self.loader.as_mut().unwrap();
let isolate = loader.isolate();
isolate.mod_new(
completed.is_root,
module_name,
&source_code_info.code,
)
};
if let Err(err) = result {
return Err((JSErrorOr::JSError(err), self.take_loader()));
}
let mod_id = result.unwrap();
if completed.is_root {
assert!(self.root_id.is_none());
self.root_id = Some(mod_id);
}
// Register new module.
{
let loader = self.loader.as_mut().unwrap();
let modules = loader.modules();
modules.register(mod_id, module_name);
// If necessary, register the alias.
if need_alias {
let module_alias = &completed.url;
modules.alias(module_alias, module_name);
}
}
// Now we must iterate over all imports of the module and load them.
let imports = {
let loader = self.loader.as_mut().unwrap();
let isolate = loader.isolate();
isolate.mod_get_imports(mod_id)
};
let referrer = module_name;
for specifier in imports {
self
.add(&specifier, referrer, Some(mod_id))
.map_err(|e| (JSErrorOr::Other(e), self.take_loader()))?;
}
} else if need_alias {
let loader = self.loader.as_mut().unwrap();
let modules = loader.modules();
modules.alias(&completed.url, &source_code_info.module_name);
}
}
}
}
if !self.pending.is_empty() {
return Ok(Async::NotReady);
}
let root_id = self.root_id.unwrap();
let mut loader = self.take_loader();
let (isolate, modules) = loader.isolate_and_modules();
let result = {
let mut resolve_cb =
|specifier: &str, referrer_id: deno_mod| -> deno_mod {
let referrer = modules.get_name(referrer_id).unwrap();
match L::resolve(specifier, &referrer) {
Ok(url) => match modules.get_id(&url) {
Some(id) => id,
None => 0,
},
// We should have already resolved and loaded this module, so
// resolve() will not fail this time.
Err(_err) => unreachable!(),
}
};
isolate.mod_instantiate(root_id, &mut resolve_cb)
};
match result {
Err(err) => Err((JSErrorOr::JSError(err), loader)),
Ok(()) => Ok(Async::Ready((root_id, loader))),
}
}
}
struct ModuleInfo {
name: String,
children: Vec<String>,
}
impl ModuleInfo {
fn has_child(&self, child_name: &str) -> bool {
for c in self.children.iter() {
if c == child_name {
return true;
}
}
false
}
}
/// A symbolic module entity.
pub enum SymbolicModule {
/// This module is an alias to another module.
/// This is useful such that multiple names could point to
/// the same underlying module (particularly due to redirects).
Alias(String),
/// This module associates with a V8 module by id.
Mod(deno_mod),
}
#[derive(Default)]
/// Alias-able module name map
pub struct ModuleNameMap {
inner: HashMap<String, SymbolicModule>,
}
impl ModuleNameMap {
pub fn new() -> Self {
ModuleNameMap {
inner: HashMap::new(),
}
}
/// Get the id of a module.
/// If this module is internally represented as an alias,
/// follow the alias chain to get the final module id.
pub fn get(&self, name: &str) -> Option<deno_mod> {
let mut mod_name = name;
loop {
let cond = self.inner.get(mod_name);
match cond {
Some(SymbolicModule::Alias(target)) => {
mod_name = target;
}
Some(SymbolicModule::Mod(mod_id)) => {
return Some(*mod_id);
}
_ => {
return None;
}
}
}
}
/// Insert a name assocated module id.
pub fn insert(&mut self, name: String, id: deno_mod) {
self.inner.insert(name, SymbolicModule::Mod(id));
}
/// Create an alias to another module.
pub fn alias(&mut self, name: String, target: String) {
self.inner.insert(name, SymbolicModule::Alias(target));
}
/// Check if a name is an alias to another module.
pub fn is_alias(&self, name: &str) -> bool {
let cond = self.inner.get(name);
match cond {
Some(SymbolicModule::Alias(_)) => true,
_ => false,
}
}
}
/// A collection of JS modules.
#[derive(Default)]
pub struct Modules {
info: HashMap<deno_mod, ModuleInfo>,
by_name: ModuleNameMap,
}
impl Modules {
pub fn new() -> Modules {
Self {
info: HashMap::new(),
by_name: ModuleNameMap::new(),
}
}
pub fn get_id(&self, name: &str) -> Option<deno_mod> {
self.by_name.get(name)
}
pub fn get_children(&self, id: deno_mod) -> Option<&Vec<String>> {
self.info.get(&id).map(|i| &i.children)
}
pub fn get_children2(&self, name: &str) -> Option<&Vec<String>> {
self.get_id(name).and_then(|id| self.get_children(id))
}
pub fn get_name(&self, id: deno_mod) -> Option<&String> {
self.info.get(&id).map(|i| &i.name)
}
pub fn is_registered(&self, name: &str) -> bool {
self.by_name.get(name).is_some()
}
pub fn add_child(&mut self, parent_id: deno_mod, child_name: &str) -> bool {
self
.info
.get_mut(&parent_id)
.map(move |i| {
if !i.has_child(&child_name) {
i.children.push(child_name.to_string());
}
}).is_some()
}
pub fn register(&mut self, id: deno_mod, name: &str) {
let name = String::from(name);
debug!("register_complete {}", name);
let _r = self.by_name.insert(name.clone(), id);
// TODO should this be an assert or not ? assert!(r.is_none());
self.info.insert(
id,
ModuleInfo {
name,
children: Vec::new(),
},
);
}
pub fn alias(&mut self, name: &str, target: &str) {
self.by_name.alias(name.to_owned(), target.to_owned());
}
pub fn is_alias(&self, name: &str) -> bool {
self.by_name.is_alias(name)
}
pub fn deps(&self, url: &str) -> Option<Deps> {
Deps::new(self, url)
}
}
/// This is a tree structure representing the dependencies of a given module.
/// Use Modules::deps to construct it. The 'deps' member is None if this module
/// was already seen elsewher in the tree.
#[derive(Debug, PartialEq)]
pub struct Deps {
pub name: String,
pub deps: Option<Vec<Deps>>,
prefix: String,
is_last: bool,
}
impl Deps {
fn new(modules: &Modules, module_name: &str) -> Option<Deps> {
let mut seen = HashSet::new();
Self::helper(&mut seen, "".to_string(), true, modules, module_name)
}
fn helper(
seen: &mut HashSet<String>,
prefix: String,
is_last: bool,
modules: &Modules,
name: &str, // TODO(ry) rename url
) -> Option<Deps> {
if seen.contains(name) {
Some(Deps {
name: name.to_string(),
prefix,
deps: None,
is_last,
})
} else {
let children = modules.get_children2(name)?;
seen.insert(name.to_string());
let child_count = children.len();
let deps: Vec<Deps> = children
.iter()
.enumerate()
.map(|(index, dep_name)| {
let new_is_last = index == child_count - 1;
let mut new_prefix = prefix.clone();
new_prefix.push(if is_last { ' ' } else { '│' });
new_prefix.push(' ');
Self::helper(seen, new_prefix, new_is_last, modules, dep_name)
})
// If any of the children are missing, return None.
.collect::<Option<_>>()?;
Some(Deps {
name: name.to_string(),
prefix,
deps: Some(deps),
is_last,
})
}
}
}
impl fmt::Display for Deps {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut has_children = false;
if let Some(ref deps) = self.deps {
has_children = !deps.is_empty();
}
write!(
f,
"{}{}─{} {}",
self.prefix,
if self.is_last { "" } else { "" },
if has_children { "" } else { "" },
self.name
)?;
if let Some(ref deps) = self.deps {
for d in deps {
write!(f, "\n{}", d)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::isolate::js_check;
use crate::isolate::tests::*;
use std::fmt;
struct MockLoader {
pub loads: Vec<String>,
pub isolate: Isolate<TestDispatch>,
pub modules: Modules,
}
impl MockLoader {
fn new() -> Self {
let modules = Modules::new();
let isolate = TestDispatch::setup(TestDispatchMode::AsyncImmediate);
Self {
loads: Vec::new(),
isolate,
modules,
}
}
}
fn mock_source_code(url: &str) -> Option<(&'static str, &'static str)> {
// (code, real_module_name)
match url {
"a.js" => Some((A_SRC, "a.js")),
"b.js" => Some((B_SRC, "b.js")),
"c.js" => Some((C_SRC, "c.js")),
"d.js" => Some((D_SRC, "d.js")),
"circular1.js" => Some((CIRCULAR1_SRC, "circular1.js")),
"circular2.js" => Some((CIRCULAR2_SRC, "circular2.js")),
"circular3.js" => Some((CIRCULAR3_SRC, "circular3.js")),
"redirect1.js" => Some((REDIRECT1_SRC, "redirect1.js")),
// pretend redirect
"./redirect2.js" => Some((REDIRECT2_SRC, "./dir/redirect2.js")),
"./dir/redirect3.js" => Some((REDIRECT3_SRC, "./redirect3.js")),
"slow.js" => Some((SLOW_SRC, "slow.js")),
"never_ready.js" => Some(("should never be loaded", "never_ready.js")),
"main.js" => Some((MAIN_SRC, "main.js")),
"bad_import.js" => Some((BAD_IMPORT_SRC, "bad_import.js")),
_ => None,
}
}
#[derive(Debug, PartialEq)]
enum MockError {
ResolveErr,
LoadErr,
}
impl fmt::Display for MockError {
fn fmt(&self, _f: &mut fmt::Formatter) -> fmt::Result {
unimplemented!()
}
}
impl Error for MockError {
fn cause(&self) -> Option<&Error> {
unimplemented!()
}
}
struct DelayedSourceCodeFuture {
url: String,
counter: u32,
}
impl Future for DelayedSourceCodeFuture {
type Item = SourceCodeInfo;
type Error = MockError;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
self.counter += 1;
if self.url == "never_ready.js"
|| (self.url == "slow.js" && self.counter < 2)
{
return Ok(Async::NotReady);
}
match mock_source_code(&self.url) {
Some(src) => Ok(Async::Ready(SourceCodeInfo {
code: src.0.to_owned(),
module_name: src.1.to_owned(),
})),
None => Err(MockError::LoadErr),
}
}
}
impl Loader for MockLoader {
type Dispatch = TestDispatch;
type Error = MockError;
fn resolve(specifier: &str, referrer: &str) -> Result<String, Self::Error> {
eprintln!(">> RESOLVING, S: {}, R: {}", specifier, referrer);
let output_specifier =
if specifier.starts_with("./") && referrer.starts_with("./") {
// Special fake path resolving logic (for redirect test)
// if both started with "./"
eprintln!(">> SPECIAL!");
let prefix = {
let mut iter = referrer.rsplitn(2, '/');
let _ = iter.next();
iter.next().unwrap()
};
let suffix = {
let mut iter = specifier.splitn(2, '/');
let _ = iter.next();
iter.next().unwrap()
};
format!("{}/{}", &prefix, &suffix)
} else {
specifier.to_owned()
};
if mock_source_code(&output_specifier).is_some() {
Ok(output_specifier)
} else {
Err(MockError::ResolveErr)
}
}
fn load(&mut self, url: &str) -> Box<SourceCodeInfoFuture<Self::Error>> {
self.loads.push(url.to_string());
let url = url.to_string();
Box::new(DelayedSourceCodeFuture { url, counter: 0 })
}
fn isolate_and_modules<'a: 'b + 'c, 'b, 'c>(
&'a mut self,
) -> (&'b mut Isolate<Self::Dispatch>, &'c mut Modules) {
(&mut self.isolate, &mut self.modules)
}
}
const A_SRC: &str = r#"
import { b } from "b.js";
import { c } from "c.js";
if (b() != 'b') throw Error();
if (c() != 'c') throw Error();
if (!import.meta.main) throw Error();
if (import.meta.url != 'a.js') throw Error();
"#;
const B_SRC: &str = r#"
import { c } from "c.js";
if (c() != 'c') throw Error();
export function b() { return 'b'; }
if (import.meta.main) throw Error();
if (import.meta.url != 'b.js') throw Error();
"#;
const C_SRC: &str = r#"
import { d } from "d.js";
export function c() { return 'c'; }
if (d() != 'd') throw Error();
if (import.meta.main) throw Error();
if (import.meta.url != 'c.js') throw Error();
"#;
const D_SRC: &str = r#"
export function d() { return 'd'; }
if (import.meta.main) throw Error();
if (import.meta.url != 'd.js') throw Error();
"#;
#[test]
fn test_recursive_load() {
let loader = MockLoader::new();
let mut recursive_load = RecursiveLoad::new("a.js", loader);
let result = recursive_load.poll();
assert!(result.is_ok());
if let Async::Ready((a_id, mut loader)) = result.ok().unwrap() {
js_check(loader.isolate.mod_evaluate(a_id));
assert_eq!(loader.loads, vec!["a.js", "b.js", "c.js", "d.js"]);
let modules = &loader.modules;
assert_eq!(modules.get_id("a.js"), Some(a_id));
let b_id = modules.get_id("b.js").unwrap();
let c_id = modules.get_id("c.js").unwrap();
let d_id = modules.get_id("d.js").unwrap();
assert_eq!(
modules.get_children(a_id),
Some(&vec!["b.js".to_string(), "c.js".to_string()])
);
assert_eq!(modules.get_children(b_id), Some(&vec!["c.js".to_string()]));
assert_eq!(modules.get_children(c_id), Some(&vec!["d.js".to_string()]));
assert_eq!(modules.get_children(d_id), Some(&vec![]));
} else {
unreachable!();
}
}
const CIRCULAR1_SRC: &str = r#"
import "circular2.js";
Deno.core.print("circular1");
"#;
const CIRCULAR2_SRC: &str = r#"
import "circular3.js";
Deno.core.print("circular2");
"#;
const CIRCULAR3_SRC: &str = r#"
import "circular1.js";
import "circular2.js";
Deno.core.print("circular3");
"#;
#[test]
fn test_circular_load() {
let loader = MockLoader::new();
let mut recursive_load = RecursiveLoad::new("circular1.js", loader);
let result = recursive_load.poll();
assert!(result.is_ok());
if let Async::Ready((circular1_id, mut loader)) = result.ok().unwrap() {
js_check(loader.isolate.mod_evaluate(circular1_id));
assert_eq!(
loader.loads,
vec!["circular1.js", "circular2.js", "circular3.js"]
);
let modules = &loader.modules;
assert_eq!(modules.get_id("circular1.js"), Some(circular1_id));
let circular2_id = modules.get_id("circular2.js").unwrap();
assert_eq!(
modules.get_children(circular1_id),
Some(&vec!["circular2.js".to_string()])
);
assert_eq!(
modules.get_children(circular2_id),
Some(&vec!["circular3.js".to_string()])
);
assert!(modules.get_id("circular3.js").is_some());
let circular3_id = modules.get_id("circular3.js").unwrap();
assert_eq!(
modules.get_children(circular3_id),
Some(&vec![
"circular1.js".to_string(),
"circular2.js".to_string()
])
);
} else {
unreachable!();
}
}
const REDIRECT1_SRC: &str = r#"
import "./redirect2.js";
Deno.core.print("redirect1");
"#;
const REDIRECT2_SRC: &str = r#"
import "./redirect3.js";
Deno.core.print("redirect2");
"#;
const REDIRECT3_SRC: &str = r#"
Deno.core.print("redirect3");
"#;
#[test]
fn test_redirect_load() {
let loader = MockLoader::new();
let mut recursive_load = RecursiveLoad::new("redirect1.js", loader);
let result = recursive_load.poll();
assert!(result.is_ok());
if let Async::Ready((redirect1_id, mut loader)) = result.ok().unwrap() {
js_check(loader.isolate.mod_evaluate(redirect1_id));
assert_eq!(
loader.loads,
vec!["redirect1.js", "./redirect2.js", "./dir/redirect3.js"]
);
let modules = &loader.modules;
assert_eq!(modules.get_id("redirect1.js"), Some(redirect1_id));
let redirect2_id = modules.get_id("./dir/redirect2.js").unwrap();
assert!(modules.is_alias("./redirect2.js"));
assert!(!modules.is_alias("./dir/redirect2.js"));
assert_eq!(modules.get_id("./redirect2.js").unwrap(), redirect2_id);
let redirect3_id = modules.get_id("./redirect3.js").unwrap();
assert!(modules.is_alias("./dir/redirect3.js"));
assert!(!modules.is_alias("./redirect3.js"));
assert_eq!(modules.get_id("./dir/redirect3.js").unwrap(), redirect3_id);
} else {
unreachable!();
}
}
// main.js
const MAIN_SRC: &str = r#"
// never_ready.js never loads.
import "never_ready.js";
// slow.js resolves after one tick.
import "slow.js";
"#;
// slow.js
const SLOW_SRC: &str = r#"
// Circular import of never_ready.js
// Does this trigger two Loader calls? It shouldn't.
import "never_ready.js";
import "a.js";
"#;
#[test]
fn slow_never_ready_modules() {
let loader = MockLoader::new();
let mut recursive_load = RecursiveLoad::new("main.js", loader);
let result = recursive_load.poll();
assert!(result.is_ok());
assert!(result.ok().unwrap().is_not_ready());
{
let loader = recursive_load.loader.as_ref().unwrap();
assert_eq!(loader.loads, vec!["main.js", "never_ready.js", "slow.js"]);
}
for _ in 0..10 {
let result = recursive_load.poll();
assert!(result.is_ok());
assert!(result.ok().unwrap().is_not_ready());
let loader = recursive_load.loader.as_ref().unwrap();
assert_eq!(
loader.loads,
vec![
"main.js",
"never_ready.js",
"slow.js",
"a.js",
"b.js",
"c.js",
"d.js"
]
);
}
}
// bad_import.js
const BAD_IMPORT_SRC: &str = r#"
import "foo";
"#;
#[test]
fn loader_disappears_after_error() {
let loader = MockLoader::new();
let mut recursive_load = RecursiveLoad::new("bad_import.js", loader);
let result = recursive_load.poll();
assert!(result.is_err());
let (either_err, _loader) = result.err().unwrap();
assert_eq!(either_err, JSErrorOr::Other(MockError::ResolveErr));
assert!(recursive_load.loader.is_none());
}
#[test]
fn empty_deps() {
let modules = Modules::new();
assert!(modules.deps("foo").is_none());
}
#[test]
fn deps() {
// "foo" -> "bar"
let mut modules = Modules::new();
modules.register(1, "foo");
modules.register(2, "bar");
modules.add_child(1, "bar");
let maybe_deps = modules.deps("foo");
assert!(maybe_deps.is_some());
let mut foo_deps = maybe_deps.unwrap();
assert_eq!(foo_deps.name, "foo");
assert!(foo_deps.deps.is_some());
let foo_children = foo_deps.deps.take().unwrap();
assert_eq!(foo_children.len(), 1);
let bar_deps = &foo_children[0];
assert_eq!(bar_deps.name, "bar");
assert_eq!(bar_deps.deps, Some(vec![]));
}
}