0
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-10-31 09:14:20 -04:00
denoland-deno/core/isolate.rs
2019-04-04 09:35:52 -04:00

961 lines
27 KiB
Rust

// Copyright 2018 the Deno authors. All rights reserved. MIT license.
// Do not add dependenies to modules.rs. it should remain decoupled from the
// isolate to keep the Isolate struct from becoming too bloating for users who
// do not need asynchronous module loading.
use crate::js_errors::JSError;
use crate::libdeno;
use crate::libdeno::deno_buf;
use crate::libdeno::deno_mod;
use crate::shared_queue::SharedQueue;
use crate::shared_queue::RECOMMENDED_SIZE;
use futures::Async;
use futures::Future;
use futures::Poll;
use libc::c_void;
use std::ffi::CStr;
use std::ffi::CString;
use std::sync::{Arc, Mutex, Once, ONCE_INIT};
pub type Buf = Box<[u8]>;
pub type Op = dyn Future<Item = Buf, Error = ()> + Send;
struct PendingOp {
op: Box<Op>,
polled_recently: bool,
zero_copy_id: usize, // non-zero if associated zero-copy buffer.
}
impl Future for PendingOp {
type Item = Buf;
type Error = ();
fn poll(&mut self) -> Poll<Buf, ()> {
// Do not call poll on ops we've already polled this turn.
if self.polled_recently {
Ok(Async::NotReady)
} else {
self.polled_recently = true;
let op = &mut self.op;
op.poll().map_err(|()| {
// Ops should not error. If an op experiences an error it needs to
// encode that error into a buf, so it can be returned to JS.
panic!("ops should not error")
})
}
}
}
/// Stores a script used to initalize a Isolate
pub struct Script {
pub source: String,
pub filename: String,
}
/// Represents data used to initialize isolate at startup
/// either a binary snapshot or a javascript source file
/// in the form of the StartupScript struct.
pub enum StartupData {
Script(Script),
Snapshot(deno_buf),
}
/// Defines the behavior of an Isolate.
pub trait Behavior {
/// Allow for a behavior to define the snapshot or script used at
/// startup to initalize the isolate. Called exactly once when an
/// Isolate is created.
fn startup_data(&mut self) -> Option<StartupData>;
/// Called whenever Deno.core.dispatch() is called in JavaScript. zero_copy_buf
/// corresponds to the second argument of Deno.core.dispatch().
fn dispatch(
&mut self,
control: &[u8],
zero_copy_buf: deno_buf,
) -> (bool, Box<Op>);
}
/// A single execution context of JavaScript. Corresponds roughly to the "Web
/// Worker" concept in the DOM. An Isolate is a Future that can be used with
/// Tokio. The Isolate future complete when there is an error or when all
/// pending ops have completed.
///
/// Ops are created in JavaScript by calling Deno.core.dispatch(), and in Rust
/// by implementing deno::Behavior::dispatch. An Op corresponds exactly to a
/// Promise in JavaScript.
pub struct Isolate<B: Behavior> {
libdeno_isolate: *const libdeno::isolate,
shared_libdeno_isolate: Arc<Mutex<Option<*const libdeno::isolate>>>,
behavior: B,
needs_init: bool,
shared: SharedQueue,
pending_ops: Vec<PendingOp>,
polled_recently: bool,
}
unsafe impl<B: Behavior> Send for Isolate<B> {}
impl<B: Behavior> Drop for Isolate<B> {
fn drop(&mut self) {
// remove shared_libdeno_isolate reference
*self.shared_libdeno_isolate.lock().unwrap() = None;
unsafe { libdeno::deno_delete(self.libdeno_isolate) }
}
}
static DENO_INIT: Once = ONCE_INIT;
impl<B: Behavior> Isolate<B> {
pub fn new(mut behavior: B) -> Self {
DENO_INIT.call_once(|| {
unsafe { libdeno::deno_init() };
});
let shared = SharedQueue::new(RECOMMENDED_SIZE);
let needs_init = true;
// Seperate into Option values for eatch startup type
let (startup_snapshot, startup_script) = match behavior.startup_data() {
Some(StartupData::Snapshot(d)) => (Some(d), None),
Some(StartupData::Script(d)) => (None, Some(d)),
None => (None, None),
};
let config = libdeno::deno_config {
will_snapshot: 0,
load_snapshot: match startup_snapshot {
Some(s) => s,
None => libdeno::deno_buf::empty(),
},
shared: shared.as_deno_buf(),
recv_cb: Self::pre_dispatch,
};
let libdeno_isolate = unsafe { libdeno::deno_new(config) };
let mut core_isolate = Self {
libdeno_isolate,
shared_libdeno_isolate: Arc::new(Mutex::new(Some(libdeno_isolate))),
behavior,
shared,
needs_init,
pending_ops: Vec::new(),
polled_recently: false,
};
// If we want to use execute this has to happen here sadly.
if let Some(s) = startup_script {
core_isolate
.execute(s.filename.as_str(), s.source.as_str())
.unwrap()
};
core_isolate
}
/// Get a thread safe handle on the isolate.
pub fn shared_isolate_handle(&mut self) -> IsolateHandle {
IsolateHandle {
shared_libdeno_isolate: self.shared_libdeno_isolate.clone(),
}
}
/// Executes a bit of built-in JavaScript to provide Deno.sharedQueue.
pub fn shared_init(&mut self) {
if self.needs_init {
self.needs_init = false;
js_check(
self.execute("shared_queue.js", include_str!("shared_queue.js")),
);
}
}
extern "C" fn pre_dispatch(
user_data: *mut c_void,
control_argv0: deno_buf,
zero_copy_buf: deno_buf,
) {
let isolate = unsafe { Isolate::<B>::from_raw_ptr(user_data) };
let zero_copy_id = zero_copy_buf.zero_copy_id;
let control_shared = isolate.shared.shift();
let (is_sync, op) = if control_argv0.len() > 0 {
// The user called Deno.core.send(control)
isolate
.behavior
.dispatch(control_argv0.as_ref(), zero_copy_buf)
} else if let Some(c) = control_shared {
// The user called Deno.sharedQueue.push(control)
isolate.behavior.dispatch(&c, zero_copy_buf)
} else {
// The sharedQueue is empty. The shouldn't happen usually, but it's also
// not technically a failure.
#[cfg(test)]
unreachable!();
#[cfg(not(test))]
return;
};
// At this point the SharedQueue should be empty.
assert_eq!(isolate.shared.size(), 0);
if is_sync {
let res_record = op.wait().unwrap();
// For sync messages, we always return the response via Deno.core.send's
// return value.
// TODO(ry) check that if JSError thrown during respond(), that it will be
// picked up.
let _ = isolate.respond(Some(&res_record));
} else {
isolate.pending_ops.push(PendingOp {
op,
polled_recently: false,
zero_copy_id,
});
isolate.polled_recently = false;
}
}
fn zero_copy_release(&self, zero_copy_id: usize) {
unsafe {
libdeno::deno_zero_copy_release(self.libdeno_isolate, zero_copy_id)
}
}
#[inline]
unsafe fn from_raw_ptr<'a>(ptr: *const c_void) -> &'a mut Self {
let ptr = ptr as *mut _;
&mut *ptr
}
#[inline]
fn as_raw_ptr(&self) -> *const c_void {
self as *const _ as *const c_void
}
pub fn execute(
&mut self,
js_filename: &str,
js_source: &str,
) -> Result<(), JSError> {
self.shared_init();
let filename = CString::new(js_filename).unwrap();
let source = CString::new(js_source).unwrap();
unsafe {
libdeno::deno_execute(
self.libdeno_isolate,
self.as_raw_ptr(),
filename.as_ptr(),
source.as_ptr(),
)
};
if let Some(err) = self.last_exception() {
return Err(err);
}
Ok(())
}
fn last_exception(&self) -> Option<JSError> {
let ptr = unsafe { libdeno::deno_last_exception(self.libdeno_isolate) };
if ptr.is_null() {
None
} else {
let cstr = unsafe { CStr::from_ptr(ptr) };
let v8_exception = cstr.to_str().unwrap();
debug!("v8_exception\n{}\n", v8_exception);
let js_error = JSError::from_v8_exception(v8_exception).unwrap();
Some(js_error)
}
}
fn check_promise_errors(&self) {
unsafe {
libdeno::deno_check_promise_errors(self.libdeno_isolate);
}
}
fn respond(&mut self, maybe_buf: Option<&[u8]>) -> Result<(), JSError> {
let buf = match maybe_buf {
None => deno_buf::empty(),
Some(r) => deno_buf::from(r),
};
unsafe {
libdeno::deno_respond(self.libdeno_isolate, self.as_raw_ptr(), buf)
}
if let Some(err) = self.last_exception() {
Err(err)
} else {
Ok(())
}
}
/// Low-level module creation.
pub fn mod_new(
&self,
main: bool,
name: &str,
source: &str,
) -> Result<deno_mod, JSError> {
let name_ = CString::new(name.to_string()).unwrap();
let name_ptr = name_.as_ptr() as *const libc::c_char;
let source_ = CString::new(source.to_string()).unwrap();
let source_ptr = source_.as_ptr() as *const libc::c_char;
let id = unsafe {
libdeno::deno_mod_new(self.libdeno_isolate, main, name_ptr, source_ptr)
};
if let Some(js_error) = self.last_exception() {
assert_eq!(id, 0);
return Err(js_error);
}
Ok(id)
}
pub fn mod_get_imports(&self, id: deno_mod) -> Vec<String> {
let len =
unsafe { libdeno::deno_mod_imports_len(self.libdeno_isolate, id) };
let mut out = Vec::new();
for i in 0..len {
let specifier_ptr =
unsafe { libdeno::deno_mod_imports_get(self.libdeno_isolate, id, i) };
let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) };
let specifier: &str = specifier_c.to_str().unwrap();
out.push(specifier.to_string());
}
out
}
}
/// Called during mod_instantiate() to resolve imports.
type ResolveFn<'a> = dyn FnMut(&str, deno_mod) -> deno_mod + 'a;
/// Used internally by Isolate::mod_instantiate to wrap ResolveFn and
/// encapsulate pointer casts.
struct ResolveContext<'a> {
resolve_fn: &'a mut ResolveFn<'a>,
}
impl<'a> ResolveContext<'a> {
#[inline]
fn as_raw_ptr(&mut self) -> *mut c_void {
self as *mut _ as *mut c_void
}
#[inline]
unsafe fn from_raw_ptr(ptr: *mut c_void) -> &'a mut Self {
&mut *(ptr as *mut _)
}
}
impl<B: Behavior> Isolate<B> {
pub fn mod_instantiate(
&mut self,
id: deno_mod,
resolve_fn: &mut ResolveFn,
) -> Result<(), JSError> {
let libdeno_isolate = self.libdeno_isolate;
let mut ctx = ResolveContext { resolve_fn };
unsafe {
libdeno::deno_mod_instantiate(
libdeno_isolate,
ctx.as_raw_ptr(),
id,
Self::resolve_cb,
)
};
if let Some(js_error) = self.last_exception() {
return Err(js_error);
}
Ok(())
}
/// Called during mod_instantiate() only.
extern "C" fn resolve_cb(
user_data: *mut libc::c_void,
specifier_ptr: *const libc::c_char,
referrer: deno_mod,
) -> deno_mod {
let ResolveContext { resolve_fn } =
unsafe { ResolveContext::from_raw_ptr(user_data) };
let specifier_c: &CStr = unsafe { CStr::from_ptr(specifier_ptr) };
let specifier: &str = specifier_c.to_str().unwrap();
resolve_fn(specifier, referrer)
}
pub fn mod_evaluate(&mut self, id: deno_mod) -> Result<(), JSError> {
self.shared_init();
unsafe {
libdeno::deno_mod_evaluate(self.libdeno_isolate, self.as_raw_ptr(), id)
};
if let Some(js_error) = self.last_exception() {
return Err(js_error);
}
Ok(())
}
}
struct LockerScope {
libdeno_isolate: *const libdeno::isolate,
}
impl LockerScope {
fn new(libdeno_isolate: *const libdeno::isolate) -> LockerScope {
unsafe { libdeno::deno_lock(libdeno_isolate) }
LockerScope { libdeno_isolate }
}
}
impl Drop for LockerScope {
fn drop(&mut self) {
unsafe { libdeno::deno_unlock(self.libdeno_isolate) }
}
}
impl<B: Behavior> Future for Isolate<B> {
type Item = ();
type Error = JSError;
fn poll(&mut self) -> Poll<(), JSError> {
// Lock the current thread for V8.
let _locker = LockerScope::new(self.libdeno_isolate);
// Clear poll_recently state both on the Isolate itself and
// on the pending ops.
self.polled_recently = false;
for pending in self.pending_ops.iter_mut() {
pending.polled_recently = false;
}
while !self.polled_recently {
let mut completed_count = 0;
self.polled_recently = true;
assert_eq!(self.shared.size(), 0);
let mut overflow_response: Option<Buf> = None;
let mut i = 0;
while i < self.pending_ops.len() {
assert!(overflow_response.is_none());
let pending = &mut self.pending_ops[i];
match pending.poll() {
Err(()) => panic!("unexpected error"),
Ok(Async::NotReady) => {
i += 1;
}
Ok(Async::Ready(buf)) => {
let completed = self.pending_ops.remove(i);
if completed.zero_copy_id > 0 {
self.zero_copy_release(completed.zero_copy_id);
}
let successful_push = self.shared.push(&buf);
if !successful_push {
// If we couldn't push the response to the shared queue, because
// there wasn't enough size, we will return the buffer via the
// legacy route, using the argument of deno_respond.
overflow_response = Some(buf);
// reset `polled_recently` so pending ops can be
// done even if shared space overflows
self.polled_recently = false;
break;
}
completed_count += 1;
}
}
}
if completed_count > 0 {
self.respond(None)?;
// The other side should have shifted off all the messages.
assert_eq!(self.shared.size(), 0);
}
if overflow_response.is_some() {
let buf = overflow_response.take().unwrap();
self.respond(Some(&buf))?;
}
}
self.check_promise_errors();
if let Some(err) = self.last_exception() {
return Err(err);
}
// We're idle if pending_ops is empty.
if self.pending_ops.is_empty() {
Ok(futures::Async::Ready(()))
} else {
Ok(futures::Async::NotReady)
}
}
}
/// IsolateHandle is a thread safe handle on an Isolate. It exposed thread safe V8 functions.
#[derive(Clone)]
pub struct IsolateHandle {
shared_libdeno_isolate: Arc<Mutex<Option<*const libdeno::isolate>>>,
}
unsafe impl Send for IsolateHandle {}
impl IsolateHandle {
/// Terminate the execution of any currently running javascript.
/// After terminating execution it is probably not wise to continue using
/// the isolate.
pub fn terminate_execution(&self) {
unsafe {
if let Some(isolate) = *self.shared_libdeno_isolate.lock().unwrap() {
libdeno::deno_terminate_execution(isolate)
}
}
}
}
pub fn js_check(r: Result<(), JSError>) {
if let Err(e) = r {
panic!(e.to_string());
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use std::sync::atomic::{AtomicUsize, Ordering};
pub enum TestBehaviorMode {
AsyncImmediate,
OverflowReqSync,
OverflowResSync,
OverflowReqAsync,
OverflowResAsync,
}
pub struct TestBehavior {
pub dispatch_count: usize,
mode: TestBehaviorMode,
}
impl TestBehavior {
pub fn setup(mode: TestBehaviorMode) -> Isolate<Self> {
let mut isolate = Isolate::new(TestBehavior {
dispatch_count: 0,
mode,
});
js_check(isolate.execute(
"setup.js",
r#"
function assert(cond) {
if (!cond) {
throw Error("assert");
}
}
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 0);
isolate
}
}
impl Behavior for TestBehavior {
fn startup_data(&mut self) -> Option<StartupData> {
None
}
fn dispatch(
&mut self,
control: &[u8],
_zero_copy_buf: deno_buf,
) -> (bool, Box<Op>) {
self.dispatch_count += 1;
match self.mode {
TestBehaviorMode::AsyncImmediate => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let buf = vec![43u8].into_boxed_slice();
(false, Box::new(futures::future::ok(buf)))
}
TestBehaviorMode::OverflowReqSync => {
assert_eq!(control.len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
(true, Box::new(futures::future::ok(buf)))
}
TestBehaviorMode::OverflowResSync => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 99;
let buf = vec.into_boxed_slice();
(true, Box::new(futures::future::ok(buf)))
}
TestBehaviorMode::OverflowReqAsync => {
assert_eq!(control.len(), 100 * 1024 * 1024);
let buf = vec![43u8].into_boxed_slice();
(false, Box::new(futures::future::ok(buf)))
}
TestBehaviorMode::OverflowResAsync => {
assert_eq!(control.len(), 1);
assert_eq!(control[0], 42);
let mut vec = Vec::<u8>::new();
vec.resize(100 * 1024 * 1024, 0);
vec[0] = 4;
let buf = vec.into_boxed_slice();
(false, Box::new(futures::future::ok(buf)))
}
}
}
}
#[test]
fn test_dispatch() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
js_check(isolate.execute(
"filename.js",
r#"
let control = new Uint8Array([42]);
Deno.core.send(control);
async function main() {
Deno.core.send(control);
}
main();
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 2);
}
#[test]
fn test_mods() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
let mod_a = isolate
.mod_new(
true,
"a.js",
r#"
import { b } from 'b.js'
if (b() != 'b') throw Error();
let control = new Uint8Array([42]);
Deno.core.send(control);
"#,
).unwrap();
assert_eq!(isolate.behavior.dispatch_count, 0);
let imports = isolate.mod_get_imports(mod_a);
assert_eq!(imports, vec!["b.js".to_string()]);
let mod_b = isolate
.mod_new(false, "b.js", "export function b() { return 'b' }")
.unwrap();
let imports = isolate.mod_get_imports(mod_b);
assert_eq!(imports.len(), 0);
let resolve_count = Arc::new(AtomicUsize::new(0));
let resolve_count_ = resolve_count.clone();
let mut resolve = move |specifier: &str, _referrer: deno_mod| -> deno_mod {
resolve_count_.fetch_add(1, Ordering::SeqCst);
assert_eq!(specifier, "b.js");
mod_b
};
js_check(isolate.mod_instantiate(mod_b, &mut resolve));
assert_eq!(isolate.behavior.dispatch_count, 0);
assert_eq!(resolve_count.load(Ordering::SeqCst), 0);
js_check(isolate.mod_instantiate(mod_a, &mut resolve));
assert_eq!(isolate.behavior.dispatch_count, 0);
assert_eq!(resolve_count.load(Ordering::SeqCst), 1);
js_check(isolate.mod_evaluate(mod_a));
assert_eq!(isolate.behavior.dispatch_count, 1);
assert_eq!(resolve_count.load(Ordering::SeqCst), 1);
}
#[test]
fn test_poll_async_immediate_ops() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
js_check(isolate.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler((buf) => {
nrecv++;
});
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 0);
js_check(isolate.execute(
"check1.js",
r#"
assert(nrecv == 0);
let control = new Uint8Array([42]);
Deno.core.send(control);
assert(nrecv == 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 1);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
assert_eq!(isolate.behavior.dispatch_count, 1);
js_check(isolate.execute(
"check2.js",
r#"
assert(nrecv == 1);
Deno.core.send(control);
assert(nrecv == 1);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 2);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
js_check(isolate.execute("check3.js", "assert(nrecv == 2)"));
assert_eq!(isolate.behavior.dispatch_count, 2);
// We are idle, so the next poll should be the last.
assert_eq!(Ok(Async::Ready(())), isolate.poll());
}
#[test]
fn test_shared() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
js_check(isolate.execute(
"setup2.js",
r#"
let nrecv = 0;
Deno.core.setAsyncHandler((buf) => {
assert(buf.byteLength === 1);
assert(buf[0] === 43);
nrecv++;
});
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 0);
js_check(isolate.execute(
"send1.js",
r#"
let control = new Uint8Array([42]);
Deno.core.sharedQueue.push(control);
Deno.core.send();
assert(nrecv === 0);
Deno.core.sharedQueue.push(control);
Deno.core.send();
assert(nrecv === 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 2);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
js_check(isolate.execute("send1.js", "assert(nrecv === 2);"));
}
#[test]
fn terminate_execution() {
let (tx, rx) = std::sync::mpsc::channel::<bool>();
let tx_clone = tx.clone();
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
let shared = isolate.shared_isolate_handle();
let t1 = std::thread::spawn(move || {
// allow deno to boot and run
std::thread::sleep(std::time::Duration::from_millis(100));
// terminate execution
shared.terminate_execution();
// allow shutdown
std::thread::sleep(std::time::Duration::from_millis(100));
// unless reported otherwise the test should fail after this point
tx_clone.send(false).ok();
});
let t2 = std::thread::spawn(move || {
// run an infinite loop
let res = isolate.execute(
"infinite_loop.js",
r#"
let i = 0;
while (true) { i++; }
"#,
);
// execute() terminated, which means terminate_execution() was successful.
tx.send(true).ok();
if let Err(e) = res {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated");
} else {
panic!("should return an error");
}
// make sure the isolate is still unusable
let res = isolate.execute("simple.js", "1+1;");
if let Err(e) = res {
assert_eq!(e.to_string(), "Uncaught Error: execution terminated");
} else {
panic!("should return an error");
}
});
if !rx.recv().unwrap() {
panic!("should have terminated")
}
t1.join().unwrap();
t2.join().unwrap();
}
#[test]
fn dangling_shared_isolate() {
let shared = {
// isolate is dropped at the end of this block
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
isolate.shared_isolate_handle()
};
// this should not SEGFAULT
shared.terminate_execution();
}
#[test]
fn overflow_req_sync() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowReqSync);
js_check(isolate.execute(
"overflow_req_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler((buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(control);
assert(response instanceof Uint8Array);
assert(response.length == 1);
assert(response[0] == 43);
assert(asyncRecv == 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 1);
}
#[test]
fn overflow_res_sync() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResSync);
js_check(isolate.execute(
"overflow_res_sync.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler((buf) => { asyncRecv++ });
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(control);
assert(response instanceof Uint8Array);
assert(response.length == 100 * 1024 * 1024);
assert(response[0] == 99);
assert(asyncRecv == 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 1);
}
#[test]
fn overflow_req_async() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowReqAsync);
js_check(isolate.execute(
"overflow_req_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler((buf) => {
assert(buf.byteLength === 1);
assert(buf[0] === 43);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array(100 * 1024 * 1024);
let response = Deno.core.dispatch(control);
// Async messages always have null response.
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 1);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
}
#[test]
fn overflow_res_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler((buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(control);
assert(response == null);
assert(asyncRecv == 0);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 1);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
js_check(isolate.execute("check.js", "assert(asyncRecv == 1);"));
}
#[test]
fn overflow_res_multiple_dispatch_async() {
// TODO(ry) This test is quite slow due to memcpy-ing 100MB into JS. We
// should optimize this.
let mut isolate = TestBehavior::setup(TestBehaviorMode::OverflowResAsync);
js_check(isolate.execute(
"overflow_res_multiple_dispatch_async.js",
r#"
let asyncRecv = 0;
Deno.core.setAsyncHandler((buf) => {
assert(buf.byteLength === 100 * 1024 * 1024);
assert(buf[0] === 4);
asyncRecv++;
});
// Large message that will overflow the shared space.
let control = new Uint8Array([42]);
let response = Deno.core.dispatch(control);
assert(response == null);
assert(asyncRecv == 0);
// Dispatch another message to verify that pending ops
// are done even if shared space overflows
Deno.core.dispatch(control);
"#,
));
assert_eq!(isolate.behavior.dispatch_count, 2);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
js_check(isolate.execute("check.js", "assert(asyncRecv == 2);"));
}
#[test]
fn test_js() {
let mut isolate = TestBehavior::setup(TestBehaviorMode::AsyncImmediate);
js_check(
isolate
.execute("shared_queue_test.js", include_str!("shared_queue_test.js")),
);
assert_eq!(Ok(Async::Ready(())), isolate.poll());
}
}