mirror of
https://github.com/denoland/deno.git
synced 2024-12-28 10:09:20 -05:00
9496dfc685
Towards #18455 This commit implements the keypair generation for asymmetric keys for the `generateKeyPair` API. See how key material is managed in this implementation: https://www.notion.so/denolandinc/node-crypto-design-99fc33f568d24e47a5e4b36002c5325d?pvs=4 Private and public key encoding depend on `KeyObject#export` which is not implemented. I've also skipped ED448 and X448 since we need a crate for that in WebCrypto too.
903 lines
22 KiB
Rust
903 lines
22 KiB
Rust
// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
|
||
use deno_core::error::generic_error;
|
||
use deno_core::error::type_error;
|
||
use deno_core::error::AnyError;
|
||
use deno_core::op;
|
||
use deno_core::serde_v8;
|
||
use deno_core::OpState;
|
||
use deno_core::ResourceId;
|
||
use deno_core::StringOrBuffer;
|
||
use deno_core::ZeroCopyBuf;
|
||
use hkdf::Hkdf;
|
||
use num_bigint::BigInt;
|
||
use num_traits::FromPrimitive;
|
||
use rand::distributions::Distribution;
|
||
use rand::distributions::Uniform;
|
||
use rand::thread_rng;
|
||
use rand::Rng;
|
||
use std::future::Future;
|
||
use std::rc::Rc;
|
||
|
||
use rsa::padding::PaddingScheme;
|
||
use rsa::pkcs8::DecodePrivateKey;
|
||
use rsa::pkcs8::DecodePublicKey;
|
||
use rsa::PublicKey;
|
||
use rsa::RsaPrivateKey;
|
||
use rsa::RsaPublicKey;
|
||
|
||
mod cipher;
|
||
mod dh;
|
||
mod digest;
|
||
mod primes;
|
||
pub mod x509;
|
||
|
||
#[op]
|
||
pub fn op_node_check_prime(num: serde_v8::BigInt, checks: usize) -> bool {
|
||
primes::is_probably_prime(&num, checks)
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_check_prime_bytes(
|
||
bytes: &[u8],
|
||
checks: usize,
|
||
) -> Result<bool, AnyError> {
|
||
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
|
||
Ok(primes::is_probably_prime(&candidate, checks))
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_check_prime_async(
|
||
num: serde_v8::BigInt,
|
||
checks: usize,
|
||
) -> Result<bool, AnyError> {
|
||
// TODO(@littledivy): use rayon for CPU-bound tasks
|
||
Ok(
|
||
tokio::task::spawn_blocking(move || {
|
||
primes::is_probably_prime(&num, checks)
|
||
})
|
||
.await?,
|
||
)
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_check_prime_bytes_async(
|
||
bytes: &[u8],
|
||
checks: usize,
|
||
) -> Result<impl Future<Output = Result<bool, AnyError>> + 'static, AnyError> {
|
||
let candidate = BigInt::from_bytes_be(num_bigint::Sign::Plus, bytes);
|
||
// TODO(@littledivy): use rayon for CPU-bound tasks
|
||
Ok(async move {
|
||
Ok(
|
||
tokio::task::spawn_blocking(move || {
|
||
primes::is_probably_prime(&candidate, checks)
|
||
})
|
||
.await?,
|
||
)
|
||
})
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_create_hash(state: &mut OpState, algorithm: &str) -> u32 {
|
||
state
|
||
.resource_table
|
||
.add(match digest::Context::new(algorithm) {
|
||
Ok(context) => context,
|
||
Err(_) => return 0,
|
||
})
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_hash_update(state: &mut OpState, rid: u32, data: &[u8]) -> bool {
|
||
let context = match state.resource_table.get::<digest::Context>(rid) {
|
||
Ok(context) => context,
|
||
_ => return false,
|
||
};
|
||
context.update(data);
|
||
true
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_hash_update_str(
|
||
state: &mut OpState,
|
||
rid: u32,
|
||
data: &str,
|
||
) -> bool {
|
||
let context = match state.resource_table.get::<digest::Context>(rid) {
|
||
Ok(context) => context,
|
||
_ => return false,
|
||
};
|
||
context.update(data.as_bytes());
|
||
true
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_hash_digest(
|
||
state: &mut OpState,
|
||
rid: ResourceId,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
let context = state.resource_table.take::<digest::Context>(rid)?;
|
||
let context = Rc::try_unwrap(context)
|
||
.map_err(|_| type_error("Hash context is already in use"))?;
|
||
Ok(context.digest()?.into())
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_hash_digest_hex(
|
||
state: &mut OpState,
|
||
rid: ResourceId,
|
||
) -> Result<String, AnyError> {
|
||
let context = state.resource_table.take::<digest::Context>(rid)?;
|
||
let context = Rc::try_unwrap(context)
|
||
.map_err(|_| type_error("Hash context is already in use"))?;
|
||
let digest = context.digest()?;
|
||
Ok(hex::encode(digest))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_hash_clone(
|
||
state: &mut OpState,
|
||
rid: ResourceId,
|
||
) -> Result<ResourceId, AnyError> {
|
||
let context = state.resource_table.get::<digest::Context>(rid)?;
|
||
Ok(state.resource_table.add(context.as_ref().clone()))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_private_encrypt(
|
||
key: StringOrBuffer,
|
||
msg: StringOrBuffer,
|
||
padding: u32,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
|
||
|
||
let mut rng = rand::thread_rng();
|
||
match padding {
|
||
1 => Ok(
|
||
key
|
||
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
|
||
.into(),
|
||
),
|
||
4 => Ok(
|
||
key
|
||
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
|
||
.into(),
|
||
),
|
||
_ => Err(type_error("Unknown padding")),
|
||
}
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_private_decrypt(
|
||
key: StringOrBuffer,
|
||
msg: StringOrBuffer,
|
||
padding: u32,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
let key = RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)?;
|
||
|
||
match padding {
|
||
1 => Ok(
|
||
key
|
||
.decrypt(PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
|
||
.into(),
|
||
),
|
||
4 => Ok(
|
||
key
|
||
.decrypt(PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
|
||
.into(),
|
||
),
|
||
_ => Err(type_error("Unknown padding")),
|
||
}
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_public_encrypt(
|
||
key: StringOrBuffer,
|
||
msg: StringOrBuffer,
|
||
padding: u32,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
let key = RsaPublicKey::from_public_key_pem((&key).try_into()?)?;
|
||
|
||
let mut rng = rand::thread_rng();
|
||
match padding {
|
||
1 => Ok(
|
||
key
|
||
.encrypt(&mut rng, PaddingScheme::new_pkcs1v15_encrypt(), &msg)?
|
||
.into(),
|
||
),
|
||
4 => Ok(
|
||
key
|
||
.encrypt(&mut rng, PaddingScheme::new_oaep::<sha1::Sha1>(), &msg)?
|
||
.into(),
|
||
),
|
||
_ => Err(type_error("Unknown padding")),
|
||
}
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_create_cipheriv(
|
||
state: &mut OpState,
|
||
algorithm: &str,
|
||
key: &[u8],
|
||
iv: &[u8],
|
||
) -> u32 {
|
||
state.resource_table.add(
|
||
match cipher::CipherContext::new(algorithm, key, iv) {
|
||
Ok(context) => context,
|
||
Err(_) => return 0,
|
||
},
|
||
)
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_cipheriv_encrypt(
|
||
state: &mut OpState,
|
||
rid: u32,
|
||
input: &[u8],
|
||
output: &mut [u8],
|
||
) -> bool {
|
||
let context = match state.resource_table.get::<cipher::CipherContext>(rid) {
|
||
Ok(context) => context,
|
||
Err(_) => return false,
|
||
};
|
||
context.encrypt(input, output);
|
||
true
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_cipheriv_final(
|
||
state: &mut OpState,
|
||
rid: u32,
|
||
input: &[u8],
|
||
output: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
let context = state.resource_table.take::<cipher::CipherContext>(rid)?;
|
||
let context = Rc::try_unwrap(context)
|
||
.map_err(|_| type_error("Cipher context is already in use"))?;
|
||
context.r#final(input, output)
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_create_decipheriv(
|
||
state: &mut OpState,
|
||
algorithm: &str,
|
||
key: &[u8],
|
||
iv: &[u8],
|
||
) -> u32 {
|
||
state.resource_table.add(
|
||
match cipher::DecipherContext::new(algorithm, key, iv) {
|
||
Ok(context) => context,
|
||
Err(_) => return 0,
|
||
},
|
||
)
|
||
}
|
||
|
||
#[op(fast)]
|
||
pub fn op_node_decipheriv_decrypt(
|
||
state: &mut OpState,
|
||
rid: u32,
|
||
input: &[u8],
|
||
output: &mut [u8],
|
||
) -> bool {
|
||
let context = match state.resource_table.get::<cipher::DecipherContext>(rid) {
|
||
Ok(context) => context,
|
||
Err(_) => return false,
|
||
};
|
||
context.decrypt(input, output);
|
||
true
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_decipheriv_final(
|
||
state: &mut OpState,
|
||
rid: u32,
|
||
input: &[u8],
|
||
output: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
let context = state.resource_table.take::<cipher::DecipherContext>(rid)?;
|
||
let context = Rc::try_unwrap(context)
|
||
.map_err(|_| type_error("Cipher context is already in use"))?;
|
||
context.r#final(input, output)
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_sign(
|
||
digest: &[u8],
|
||
digest_type: &str,
|
||
key: StringOrBuffer,
|
||
key_type: &str,
|
||
key_format: &str,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
match key_type {
|
||
"rsa" => {
|
||
use rsa::pkcs1v15::SigningKey;
|
||
use signature::hazmat::PrehashSigner;
|
||
let key = match key_format {
|
||
"pem" => RsaPrivateKey::from_pkcs8_pem((&key).try_into()?)
|
||
.map_err(|_| type_error("Invalid RSA private key"))?,
|
||
// TODO(kt3k): Support der and jwk formats
|
||
_ => {
|
||
return Err(type_error(format!(
|
||
"Unsupported key format: {}",
|
||
key_format
|
||
)))
|
||
}
|
||
};
|
||
Ok(
|
||
match digest_type {
|
||
"sha224" => {
|
||
let signing_key = SigningKey::<sha2::Sha224>::new_with_prefix(key);
|
||
signing_key.sign_prehash(digest)?.to_vec()
|
||
}
|
||
"sha256" => {
|
||
let signing_key = SigningKey::<sha2::Sha256>::new_with_prefix(key);
|
||
signing_key.sign_prehash(digest)?.to_vec()
|
||
}
|
||
"sha384" => {
|
||
let signing_key = SigningKey::<sha2::Sha384>::new_with_prefix(key);
|
||
signing_key.sign_prehash(digest)?.to_vec()
|
||
}
|
||
"sha512" => {
|
||
let signing_key = SigningKey::<sha2::Sha512>::new_with_prefix(key);
|
||
signing_key.sign_prehash(digest)?.to_vec()
|
||
}
|
||
_ => {
|
||
return Err(type_error(format!(
|
||
"Unknown digest algorithm: {}",
|
||
digest_type
|
||
)))
|
||
}
|
||
}
|
||
.into(),
|
||
)
|
||
}
|
||
_ => Err(type_error(format!(
|
||
"Signing with {} keys is not supported yet",
|
||
key_type
|
||
))),
|
||
}
|
||
}
|
||
|
||
#[op]
|
||
fn op_node_verify(
|
||
digest: &[u8],
|
||
digest_type: &str,
|
||
key: StringOrBuffer,
|
||
key_type: &str,
|
||
key_format: &str,
|
||
signature: &[u8],
|
||
) -> Result<bool, AnyError> {
|
||
match key_type {
|
||
"rsa" => {
|
||
use rsa::pkcs1v15::VerifyingKey;
|
||
use signature::hazmat::PrehashVerifier;
|
||
let key = match key_format {
|
||
"pem" => RsaPublicKey::from_public_key_pem((&key).try_into()?)
|
||
.map_err(|_| type_error("Invalid RSA public key"))?,
|
||
// TODO(kt3k): Support der and jwk formats
|
||
_ => {
|
||
return Err(type_error(format!(
|
||
"Unsupported key format: {}",
|
||
key_format
|
||
)))
|
||
}
|
||
};
|
||
Ok(match digest_type {
|
||
"sha224" => VerifyingKey::<sha2::Sha224>::new_with_prefix(key)
|
||
.verify_prehash(digest, &signature.to_vec().try_into()?)
|
||
.is_ok(),
|
||
"sha256" => VerifyingKey::<sha2::Sha256>::new_with_prefix(key)
|
||
.verify_prehash(digest, &signature.to_vec().try_into()?)
|
||
.is_ok(),
|
||
"sha384" => VerifyingKey::<sha2::Sha384>::new_with_prefix(key)
|
||
.verify_prehash(digest, &signature.to_vec().try_into()?)
|
||
.is_ok(),
|
||
"sha512" => VerifyingKey::<sha2::Sha512>::new_with_prefix(key)
|
||
.verify_prehash(digest, &signature.to_vec().try_into()?)
|
||
.is_ok(),
|
||
_ => {
|
||
return Err(type_error(format!(
|
||
"Unknown digest algorithm: {}",
|
||
digest_type
|
||
)))
|
||
}
|
||
})
|
||
}
|
||
_ => Err(type_error(format!(
|
||
"Verifying with {} keys is not supported yet",
|
||
key_type
|
||
))),
|
||
}
|
||
}
|
||
|
||
fn pbkdf2_sync(
|
||
password: &[u8],
|
||
salt: &[u8],
|
||
iterations: u32,
|
||
digest: &str,
|
||
derived_key: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
macro_rules! pbkdf2_hmac {
|
||
($digest:ty) => {{
|
||
pbkdf2::pbkdf2_hmac::<$digest>(password, salt, iterations, derived_key)
|
||
}};
|
||
}
|
||
|
||
match digest {
|
||
"md4" => pbkdf2_hmac!(md4::Md4),
|
||
"md5" => pbkdf2_hmac!(md5::Md5),
|
||
"ripemd160" => pbkdf2_hmac!(ripemd::Ripemd160),
|
||
"sha1" => pbkdf2_hmac!(sha1::Sha1),
|
||
"sha224" => pbkdf2_hmac!(sha2::Sha224),
|
||
"sha256" => pbkdf2_hmac!(sha2::Sha256),
|
||
"sha384" => pbkdf2_hmac!(sha2::Sha384),
|
||
"sha512" => pbkdf2_hmac!(sha2::Sha512),
|
||
_ => return Err(type_error("Unknown digest")),
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_pbkdf2(
|
||
password: StringOrBuffer,
|
||
salt: StringOrBuffer,
|
||
iterations: u32,
|
||
digest: &str,
|
||
derived_key: &mut [u8],
|
||
) -> bool {
|
||
pbkdf2_sync(&password, &salt, iterations, digest, derived_key).is_ok()
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_pbkdf2_async(
|
||
password: StringOrBuffer,
|
||
salt: StringOrBuffer,
|
||
iterations: u32,
|
||
digest: String,
|
||
keylen: usize,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
let mut derived_key = vec![0; keylen];
|
||
pbkdf2_sync(&password, &salt, iterations, &digest, &mut derived_key)
|
||
.map(|_| derived_key.into())
|
||
})
|
||
.await?
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_generate_secret(buf: &mut [u8]) {
|
||
rand::thread_rng().fill(buf);
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_generate_secret_async(len: i32) -> ZeroCopyBuf {
|
||
tokio::task::spawn_blocking(move || {
|
||
let mut buf = vec![0u8; len as usize];
|
||
rand::thread_rng().fill(&mut buf[..]);
|
||
buf.into()
|
||
})
|
||
.await
|
||
.unwrap()
|
||
}
|
||
|
||
fn hkdf_sync(
|
||
hash: &str,
|
||
ikm: &[u8],
|
||
salt: &[u8],
|
||
info: &[u8],
|
||
okm: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
macro_rules! hkdf {
|
||
($hash:ty) => {{
|
||
let hk = Hkdf::<$hash>::new(Some(salt), ikm);
|
||
hk.expand(info, okm)
|
||
.map_err(|_| type_error("HKDF-Expand failed"))?;
|
||
}};
|
||
}
|
||
|
||
match hash {
|
||
"md4" => hkdf!(md4::Md4),
|
||
"md5" => hkdf!(md5::Md5),
|
||
"ripemd160" => hkdf!(ripemd::Ripemd160),
|
||
"sha1" => hkdf!(sha1::Sha1),
|
||
"sha224" => hkdf!(sha2::Sha224),
|
||
"sha256" => hkdf!(sha2::Sha256),
|
||
"sha384" => hkdf!(sha2::Sha384),
|
||
"sha512" => hkdf!(sha2::Sha512),
|
||
_ => return Err(type_error("Unknown digest")),
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_hkdf(
|
||
hash: &str,
|
||
ikm: &[u8],
|
||
salt: &[u8],
|
||
info: &[u8],
|
||
okm: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
hkdf_sync(hash, ikm, salt, info, okm)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_hkdf_async(
|
||
hash: String,
|
||
ikm: ZeroCopyBuf,
|
||
salt: ZeroCopyBuf,
|
||
info: ZeroCopyBuf,
|
||
okm_len: usize,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
let mut okm = vec![0u8; okm_len];
|
||
hkdf_sync(&hash, &ikm, &salt, &info, &mut okm)?;
|
||
Ok(okm.into())
|
||
})
|
||
.await?
|
||
}
|
||
|
||
use rsa::pkcs1::EncodeRsaPrivateKey;
|
||
use rsa::pkcs1::EncodeRsaPublicKey;
|
||
|
||
use self::primes::Prime;
|
||
|
||
fn generate_rsa(
|
||
modulus_length: usize,
|
||
public_exponent: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
let mut rng = rand::thread_rng();
|
||
let private_key = RsaPrivateKey::new_with_exp(
|
||
&mut rng,
|
||
modulus_length,
|
||
&rsa::BigUint::from_usize(public_exponent).unwrap(),
|
||
)?;
|
||
let public_key = private_key.to_public_key();
|
||
let private_key_der = private_key.to_pkcs1_der()?.as_bytes().to_vec();
|
||
let public_key_der = public_key.to_pkcs1_der()?.to_vec();
|
||
|
||
Ok((private_key_der.into(), public_key_der.into()))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_generate_rsa(
|
||
modulus_length: usize,
|
||
public_exponent: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
generate_rsa(modulus_length, public_exponent)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_generate_rsa_async(
|
||
modulus_length: usize,
|
||
public_exponent: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
generate_rsa(modulus_length, public_exponent)
|
||
})
|
||
.await?
|
||
}
|
||
|
||
fn dsa_generate(
|
||
modulus_length: usize,
|
||
divisor_length: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
let mut rng = rand::thread_rng();
|
||
use dsa::pkcs8::EncodePrivateKey;
|
||
use dsa::pkcs8::EncodePublicKey;
|
||
use dsa::Components;
|
||
use dsa::KeySize;
|
||
use dsa::SigningKey;
|
||
|
||
let key_size = match (modulus_length, divisor_length) {
|
||
#[allow(deprecated)]
|
||
(1024, 160) => KeySize::DSA_1024_160,
|
||
(2048, 224) => KeySize::DSA_2048_224,
|
||
(2048, 256) => KeySize::DSA_2048_256,
|
||
(3072, 256) => KeySize::DSA_3072_256,
|
||
_ => return Err(type_error("Invalid modulus_length or divisor_length")),
|
||
};
|
||
let components = Components::generate(&mut rng, key_size);
|
||
let signing_key = SigningKey::generate(&mut rng, components);
|
||
let verifying_key = signing_key.verifying_key();
|
||
|
||
Ok((
|
||
signing_key
|
||
.to_pkcs8_der()
|
||
.map_err(|_| type_error("Not valid pkcs8"))?
|
||
.as_bytes()
|
||
.to_vec()
|
||
.into(),
|
||
verifying_key
|
||
.to_public_key_der()
|
||
.map_err(|_| type_error("Not valid spki"))?
|
||
.to_vec()
|
||
.into(),
|
||
))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_dsa_generate(
|
||
modulus_length: usize,
|
||
divisor_length: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
dsa_generate(modulus_length, divisor_length)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_dsa_generate_async(
|
||
modulus_length: usize,
|
||
divisor_length: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
dsa_generate(modulus_length, divisor_length)
|
||
})
|
||
.await?
|
||
}
|
||
|
||
fn ec_generate(
|
||
named_curve: &str,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
use ring::signature::EcdsaKeyPair;
|
||
use ring::signature::KeyPair;
|
||
|
||
let curve = match named_curve {
|
||
"P-256" => &ring::signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
||
"P-384" => &ring::signature::ECDSA_P384_SHA384_FIXED_SIGNING,
|
||
_ => return Err(type_error("Unsupported named curve")),
|
||
};
|
||
|
||
let rng = ring::rand::SystemRandom::new();
|
||
|
||
let pkcs8 = EcdsaKeyPair::generate_pkcs8(curve, &rng)
|
||
.map_err(|_| type_error("Failed to generate EC key"))?;
|
||
|
||
let public_key = EcdsaKeyPair::from_pkcs8(curve, pkcs8.as_ref())
|
||
.map_err(|_| type_error("Failed to generate EC key"))?
|
||
.public_key()
|
||
.as_ref()
|
||
.to_vec();
|
||
Ok((pkcs8.as_ref().to_vec().into(), public_key.into()))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_ec_generate(
|
||
named_curve: &str,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
ec_generate(named_curve)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_ec_generate_async(
|
||
named_curve: String,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(move || ec_generate(&named_curve)).await?
|
||
}
|
||
|
||
fn ed25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
use ring::signature::Ed25519KeyPair;
|
||
use ring::signature::KeyPair;
|
||
|
||
let mut rng = thread_rng();
|
||
let mut seed = vec![0u8; 32];
|
||
rng.fill(seed.as_mut_slice());
|
||
|
||
let pair = Ed25519KeyPair::from_seed_unchecked(&seed)
|
||
.map_err(|_| type_error("Failed to generate Ed25519 key"))?;
|
||
|
||
let public_key = pair.public_key().as_ref().to_vec();
|
||
Ok((seed.into(), public_key.into()))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_ed25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError>
|
||
{
|
||
ed25519_generate()
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_ed25519_generate_async(
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(ed25519_generate).await?
|
||
}
|
||
|
||
fn x25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
// u-coordinate of the base point.
|
||
const X25519_BASEPOINT_BYTES: [u8; 32] = [
|
||
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0,
|
||
];
|
||
|
||
let mut pkey = [0; 32];
|
||
|
||
let mut rng = thread_rng();
|
||
rng.fill(pkey.as_mut_slice());
|
||
|
||
let pkey_copy = pkey.to_vec();
|
||
// https://www.rfc-editor.org/rfc/rfc7748#section-6.1
|
||
// pubkey = x25519(a, 9) which is constant-time Montgomery ladder.
|
||
// https://eprint.iacr.org/2014/140.pdf page 4
|
||
// https://eprint.iacr.org/2017/212.pdf algorithm 8
|
||
// pubkey is in LE order.
|
||
let pubkey = x25519_dalek::x25519(pkey, X25519_BASEPOINT_BYTES);
|
||
|
||
Ok((pkey_copy.into(), pubkey.to_vec().into()))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_x25519_generate() -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError>
|
||
{
|
||
x25519_generate()
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_x25519_generate_async(
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(x25519_generate).await?
|
||
}
|
||
|
||
fn dh_generate_group(
|
||
group_name: &str,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
let dh = match group_name {
|
||
"modp5" => dh::DiffieHellman::group::<dh::Modp1536>(),
|
||
"modp14" => dh::DiffieHellman::group::<dh::Modp2048>(),
|
||
"modp15" => dh::DiffieHellman::group::<dh::Modp3072>(),
|
||
"modp16" => dh::DiffieHellman::group::<dh::Modp4096>(),
|
||
"modp17" => dh::DiffieHellman::group::<dh::Modp6144>(),
|
||
"modp18" => dh::DiffieHellman::group::<dh::Modp8192>(),
|
||
_ => return Err(type_error("Unsupported group name")),
|
||
};
|
||
|
||
Ok((
|
||
dh.private_key.into_vec().into(),
|
||
dh.public_key.into_vec().into(),
|
||
))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_dh_generate_group(
|
||
group_name: &str,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
dh_generate_group(group_name)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_dh_generate_group_async(
|
||
group_name: String,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(move || dh_generate_group(&group_name)).await?
|
||
}
|
||
|
||
fn dh_generate(
|
||
prime: Option<&[u8]>,
|
||
prime_len: usize,
|
||
generator: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
let prime = prime
|
||
.map(|p| p.into())
|
||
.unwrap_or_else(|| Prime::generate(prime_len));
|
||
let dh = dh::DiffieHellman::new(prime, generator);
|
||
|
||
Ok((
|
||
dh.private_key.into_vec().into(),
|
||
dh.public_key.into_vec().into(),
|
||
))
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_dh_generate(
|
||
prime: Option<&[u8]>,
|
||
prime_len: usize,
|
||
generator: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
dh_generate(prime, prime_len, generator)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_dh_generate_async(
|
||
prime: Option<ZeroCopyBuf>,
|
||
prime_len: usize,
|
||
generator: usize,
|
||
) -> Result<(ZeroCopyBuf, ZeroCopyBuf), AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
dh_generate(prime.as_deref(), prime_len, generator)
|
||
})
|
||
.await?
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_random_int(min: i32, max: i32) -> Result<i32, AnyError> {
|
||
let mut rng = rand::thread_rng();
|
||
// Uniform distribution is required to avoid Modulo Bias
|
||
// https://en.wikipedia.org/wiki/Fisher–Yates_shuffle#Modulo_bias
|
||
let dist = Uniform::from(min..max);
|
||
|
||
Ok(dist.sample(&mut rng))
|
||
}
|
||
|
||
#[allow(clippy::too_many_arguments)]
|
||
fn scrypt(
|
||
password: StringOrBuffer,
|
||
salt: StringOrBuffer,
|
||
keylen: u32,
|
||
cost: u32,
|
||
block_size: u32,
|
||
parallelization: u32,
|
||
_maxmem: u32,
|
||
output_buffer: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
// Construct Params
|
||
let params = scrypt::Params::new(
|
||
cost as u8,
|
||
block_size,
|
||
parallelization,
|
||
keylen as usize,
|
||
)
|
||
.unwrap();
|
||
|
||
// Call into scrypt
|
||
let res = scrypt::scrypt(&password, &salt, ¶ms, output_buffer);
|
||
if res.is_ok() {
|
||
Ok(())
|
||
} else {
|
||
// TODO(lev): key derivation failed, so what?
|
||
Err(generic_error("scrypt key derivation failed"))
|
||
}
|
||
}
|
||
|
||
#[op]
|
||
pub fn op_node_scrypt_sync(
|
||
password: StringOrBuffer,
|
||
salt: StringOrBuffer,
|
||
keylen: u32,
|
||
cost: u32,
|
||
block_size: u32,
|
||
parallelization: u32,
|
||
maxmem: u32,
|
||
output_buffer: &mut [u8],
|
||
) -> Result<(), AnyError> {
|
||
scrypt(
|
||
password,
|
||
salt,
|
||
keylen,
|
||
cost,
|
||
block_size,
|
||
parallelization,
|
||
maxmem,
|
||
output_buffer,
|
||
)
|
||
}
|
||
|
||
#[op]
|
||
pub async fn op_node_scrypt_async(
|
||
password: StringOrBuffer,
|
||
salt: StringOrBuffer,
|
||
keylen: u32,
|
||
cost: u32,
|
||
block_size: u32,
|
||
parallelization: u32,
|
||
maxmem: u32,
|
||
) -> Result<ZeroCopyBuf, AnyError> {
|
||
tokio::task::spawn_blocking(move || {
|
||
let mut output_buffer = vec![0u8; keylen as usize];
|
||
let res = scrypt(
|
||
password,
|
||
salt,
|
||
keylen,
|
||
cost,
|
||
block_size,
|
||
parallelization,
|
||
maxmem,
|
||
&mut output_buffer,
|
||
);
|
||
|
||
if res.is_ok() {
|
||
Ok(output_buffer.into())
|
||
} else {
|
||
// TODO(lev): rethrow the error?
|
||
Err(generic_error("scrypt failure"))
|
||
}
|
||
})
|
||
.await?
|
||
}
|