mirror of
https://github.com/denoland/deno.git
synced 2024-11-25 15:29:32 -05:00
c6f1107e9c
There are more uses of `deno.land/std` in the codebase, but for URL parsing purposes rather than network calls or documentation.
426 lines
11 KiB
JavaScript
426 lines
11 KiB
JavaScript
// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
|
|
// deno-lint-ignore-file
|
|
|
|
/*
|
|
* @module mod
|
|
* @description
|
|
* This module provides a `display()` function for the Jupyter Deno Kernel, similar to IPython's display.
|
|
* It can be used to asynchronously display objects in Jupyter frontends. There are also tagged template functions
|
|
* for quickly creating HTML, Markdown, and SVG views.
|
|
*
|
|
* @example
|
|
* Displaying objects asynchronously in Jupyter frontends.
|
|
* ```typescript
|
|
* import { display, html, md } from "https://deno.land/x/deno_jupyter/mod.ts";
|
|
*
|
|
* await display(html`<h1>Hello, world!</h1>`);
|
|
* await display(md`# Notebooks in TypeScript via Deno ![Deno logo](https://github.com/denoland.png?size=32)
|
|
*
|
|
* * TypeScript ${Deno.version.typescript}
|
|
* * V8 ${Deno.version.v8}
|
|
* * Deno ${Deno.version.deno}
|
|
*
|
|
* Interactive compute with Jupyter _built into Deno_!
|
|
* `);
|
|
* ```
|
|
*
|
|
* @example
|
|
* Emitting raw MIME bundles.
|
|
* ```typescript
|
|
* import { display } from "https://deno.land/x/deno_jupyter/mod.ts";
|
|
*
|
|
* await display({
|
|
* "text/plain": "Hello, world!",
|
|
* "text/html": "<h1>Hello, world!</h1>",
|
|
* "text/markdown": "# Hello, world!",
|
|
* }, { raw: true });
|
|
* ```
|
|
*/
|
|
import { core, internals } from "ext:core/mod.js";
|
|
|
|
const $display = Symbol.for("Jupyter.display");
|
|
|
|
/** Escape copied from https://jsr.io/@std/html/0.221.0/entities.ts */
|
|
const rawToEntityEntries = [
|
|
["&", "&"],
|
|
["<", "<"],
|
|
[">", ">"],
|
|
['"', """],
|
|
["'", "'"],
|
|
];
|
|
|
|
const rawToEntity = new Map(rawToEntityEntries);
|
|
|
|
const rawRe = new RegExp(`[${[...rawToEntity.keys()].join("")}]`, "g");
|
|
|
|
function escapeHTML(str) {
|
|
return str.replaceAll(
|
|
rawRe,
|
|
(m) => rawToEntity.has(m) ? rawToEntity.get(m) : m,
|
|
);
|
|
}
|
|
|
|
/** Duck typing our way to common visualization and tabular libraries */
|
|
/** Vegalite */
|
|
function isVegaLike(obj) {
|
|
return obj !== null && typeof obj === "object" && "toSpec" in obj;
|
|
}
|
|
function extractVega(obj) {
|
|
const spec = obj.toSpec();
|
|
if (!("$schema" in spec)) {
|
|
return null;
|
|
}
|
|
if (typeof spec !== "object") {
|
|
return null;
|
|
}
|
|
let mediaType = "application/vnd.vega.v5+json";
|
|
if (spec.$schema === "https://vega.github.io/schema/vega-lite/v4.json") {
|
|
mediaType = "application/vnd.vegalite.v4+json";
|
|
} else if (
|
|
spec.$schema === "https://vega.github.io/schema/vega-lite/v5.json"
|
|
) {
|
|
mediaType = "application/vnd.vegalite.v5+json";
|
|
}
|
|
return {
|
|
[mediaType]: spec,
|
|
};
|
|
}
|
|
/** Polars */
|
|
function isDataFrameLike(obj) {
|
|
const isObject = obj !== null && typeof obj === "object";
|
|
if (!isObject) {
|
|
return false;
|
|
}
|
|
const df = obj;
|
|
return df.schema !== void 0 && typeof df.schema === "object" &&
|
|
df.head !== void 0 && typeof df.head === "function" &&
|
|
df.toRecords !== void 0 && typeof df.toRecords === "function";
|
|
}
|
|
/**
|
|
* Map Polars DataType to JSON Schema data types.
|
|
* @param dataType - The Polars DataType.
|
|
* @returns The corresponding JSON Schema data type.
|
|
*/
|
|
function mapPolarsTypeToJSONSchema(colType) {
|
|
const typeMapping = {
|
|
Null: "null",
|
|
Bool: "boolean",
|
|
Int8: "integer",
|
|
Int16: "integer",
|
|
Int32: "integer",
|
|
Int64: "integer",
|
|
UInt8: "integer",
|
|
UInt16: "integer",
|
|
UInt32: "integer",
|
|
UInt64: "integer",
|
|
Float32: "number",
|
|
Float64: "number",
|
|
Date: "string",
|
|
Datetime: "string",
|
|
Utf8: "string",
|
|
Categorical: "string",
|
|
List: "array",
|
|
Struct: "object",
|
|
};
|
|
// These colTypes are weird. When you console.dir or console.log them
|
|
// they show a `DataType` field, however you can't access it directly until you
|
|
// convert it to JSON
|
|
const dataType = colType.toJSON()["DataType"];
|
|
return typeMapping[dataType] || "string";
|
|
}
|
|
|
|
function extractDataFrame(df) {
|
|
const fields = [];
|
|
const schema = {
|
|
fields,
|
|
};
|
|
let data = [];
|
|
// Convert DataFrame schema to Tabular DataResource schema
|
|
for (const [colName, colType] of Object.entries(df.schema)) {
|
|
const dataType = mapPolarsTypeToJSONSchema(colType);
|
|
schema.fields.push({
|
|
name: colName,
|
|
type: dataType,
|
|
});
|
|
}
|
|
// Convert DataFrame data to row-oriented JSON
|
|
//
|
|
// TODO(rgbkrk): Determine how to get the polars format max rows
|
|
// Since pl.setTblRows just sets env var POLARS_FMT_MAX_ROWS,
|
|
// we probably just have to pick a number for now.
|
|
//
|
|
|
|
data = df.head(50).toRecords();
|
|
let htmlTable = "<table>";
|
|
htmlTable += "<thead><tr>";
|
|
schema.fields.forEach((field) => {
|
|
htmlTable += `<th>${escapeHTML(String(field.name))}</th>`;
|
|
});
|
|
htmlTable += "</tr></thead>";
|
|
htmlTable += "<tbody>";
|
|
df.head(10).toRecords().forEach((row) => {
|
|
htmlTable += "<tr>";
|
|
schema.fields.forEach((field) => {
|
|
htmlTable += `<td>${escapeHTML(String(row[field.name]))}</td>`;
|
|
});
|
|
htmlTable += "</tr>";
|
|
});
|
|
htmlTable += "</tbody></table>";
|
|
return {
|
|
"application/vnd.dataresource+json": { data, schema },
|
|
"text/html": htmlTable,
|
|
};
|
|
}
|
|
|
|
/** Canvas */
|
|
function isCanvasLike(obj) {
|
|
return obj !== null && typeof obj === "object" && "toDataURL" in obj;
|
|
}
|
|
|
|
/** Possible HTML and SVG Elements */
|
|
function isSVGElementLike(obj) {
|
|
return obj !== null && typeof obj === "object" && "outerHTML" in obj &&
|
|
typeof obj.outerHTML === "string" && obj.outerHTML.startsWith("<svg");
|
|
}
|
|
|
|
function isHTMLElementLike(obj) {
|
|
return obj !== null && typeof obj === "object" && "outerHTML" in obj &&
|
|
typeof obj.outerHTML === "string";
|
|
}
|
|
|
|
/** Check to see if an object already contains a `Symbol.for("Jupyter.display") */
|
|
function hasDisplaySymbol(obj) {
|
|
return obj !== null && typeof obj === "object" && $display in obj &&
|
|
typeof obj[$display] === "function";
|
|
}
|
|
|
|
function makeDisplayable(obj) {
|
|
return {
|
|
[$display]: () => obj,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Format an object for displaying in Deno
|
|
*
|
|
* @param obj - The object to be displayed
|
|
* @returns MediaBundle
|
|
*/
|
|
async function format(obj) {
|
|
if (hasDisplaySymbol(obj)) {
|
|
return await obj[$display]();
|
|
}
|
|
if (typeof obj !== "object") {
|
|
return {
|
|
"text/plain": Deno[Deno.internal].inspectArgs(["%o", obj], {
|
|
colors: !Deno.noColor,
|
|
}),
|
|
};
|
|
}
|
|
|
|
if (isCanvasLike(obj)) {
|
|
const dataURL = obj.toDataURL();
|
|
const parts = dataURL.split(",");
|
|
const mime = parts[0].split(":")[1].split(";")[0];
|
|
const data = parts[1];
|
|
return {
|
|
[mime]: data,
|
|
};
|
|
}
|
|
if (isVegaLike(obj)) {
|
|
return extractVega(obj);
|
|
}
|
|
if (isDataFrameLike(obj)) {
|
|
return extractDataFrame(obj);
|
|
}
|
|
if (isSVGElementLike(obj)) {
|
|
return {
|
|
"image/svg+xml": obj.outerHTML,
|
|
};
|
|
}
|
|
if (isHTMLElementLike(obj)) {
|
|
return {
|
|
"text/html": obj.outerHTML,
|
|
};
|
|
}
|
|
return {
|
|
"text/plain": Deno[Deno.internal].inspectArgs(["%o", obj], {
|
|
colors: !Deno.noColor,
|
|
}),
|
|
};
|
|
}
|
|
|
|
/**
|
|
* This function creates a tagged template function for a given media type.
|
|
* The tagged template function takes a template string and returns a displayable object.
|
|
*
|
|
* @param mediatype - The media type for the tagged template function.
|
|
* @returns A function that takes a template string and returns a displayable object.
|
|
*/
|
|
function createTaggedTemplateDisplayable(mediatype) {
|
|
return (strings, ...values) => {
|
|
const payload = strings.reduce(
|
|
(acc, string, i) =>
|
|
acc + string + (values[i] !== undefined ? values[i] : ""),
|
|
"",
|
|
);
|
|
return makeDisplayable({ [mediatype]: payload });
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Show Markdown in Jupyter frontends with a tagged template function.
|
|
*
|
|
* Takes a template string and returns a displayable object for Jupyter frontends.
|
|
*
|
|
* @example
|
|
* Create a Markdown view.
|
|
*
|
|
* ```typescript
|
|
* md`# Notebooks in TypeScript via Deno ![Deno logo](https://github.com/denoland.png?size=32)
|
|
*
|
|
* * TypeScript ${Deno.version.typescript}
|
|
* * V8 ${Deno.version.v8}
|
|
* * Deno ${Deno.version.deno}
|
|
*
|
|
* Interactive compute with Jupyter _built into Deno_!
|
|
* `
|
|
* ```
|
|
*/
|
|
const md = createTaggedTemplateDisplayable("text/markdown");
|
|
|
|
/**
|
|
* Show HTML in Jupyter frontends with a tagged template function.
|
|
*
|
|
* Takes a template string and returns a displayable object for Jupyter frontends.
|
|
*
|
|
* @example
|
|
* Create an HTML view.
|
|
* ```typescript
|
|
* html`<h1>Hello, world!</h1>`
|
|
* ```
|
|
*/
|
|
const html = createTaggedTemplateDisplayable("text/html");
|
|
/**
|
|
* SVG Tagged Template Function.
|
|
*
|
|
* Takes a template string and returns a displayable object for Jupyter frontends.
|
|
*
|
|
* Example usage:
|
|
*
|
|
* svg`<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100">
|
|
* <circle cx="50" cy="50" r="40" stroke="green" stroke-width="4" fill="yellow" />
|
|
* </svg>`
|
|
*/
|
|
const svg = createTaggedTemplateDisplayable("image/svg+xml");
|
|
|
|
function isMediaBundle(obj) {
|
|
if (obj == null || typeof obj !== "object" || Array.isArray(obj)) {
|
|
return false;
|
|
}
|
|
for (const key in obj) {
|
|
if (typeof key !== "string") {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
async function formatInner(obj, raw) {
|
|
if (raw && isMediaBundle(obj)) {
|
|
return obj;
|
|
} else {
|
|
return await format(obj);
|
|
}
|
|
}
|
|
|
|
internals.jupyter = { formatInner };
|
|
|
|
function enableJupyter() {
|
|
const { op_jupyter_broadcast } = core.ops;
|
|
|
|
async function broadcast(
|
|
msgType,
|
|
content,
|
|
{ metadata = {}, buffers = [] } = {},
|
|
) {
|
|
await op_jupyter_broadcast(msgType, content, metadata, buffers);
|
|
}
|
|
|
|
async function broadcastResult(executionCount, result) {
|
|
try {
|
|
if (result === undefined) {
|
|
return;
|
|
}
|
|
|
|
const data = await format(result);
|
|
await broadcast("execute_result", {
|
|
execution_count: executionCount,
|
|
data,
|
|
metadata: {},
|
|
});
|
|
} catch (err) {
|
|
if (err instanceof Error) {
|
|
const stack = err.stack || "";
|
|
await broadcast("error", {
|
|
ename: err.name,
|
|
evalue: err.message,
|
|
traceback: stack.split("\n"),
|
|
});
|
|
} else if (typeof err == "string") {
|
|
await broadcast("error", {
|
|
ename: "Error",
|
|
evalue: err,
|
|
traceback: [],
|
|
});
|
|
} else {
|
|
await broadcast("error", {
|
|
ename: "Error",
|
|
evalue:
|
|
"An error occurred while formatting a result, but it could not be identified",
|
|
traceback: [],
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
internals.jupyter.broadcastResult = broadcastResult;
|
|
|
|
/**
|
|
* Display function for Jupyter Deno Kernel.
|
|
* Mimics the behavior of IPython's `display(obj, raw=True)` function to allow
|
|
* asynchronous displaying of objects in Jupyter.
|
|
*
|
|
* @param obj - The object to be displayed
|
|
* @param options - Display options
|
|
*/
|
|
async function display(obj, options = { raw: false, update: false }) {
|
|
const bundle = await formatInner(obj, options.raw);
|
|
let messageType = "display_data";
|
|
if (options.update) {
|
|
messageType = "update_display_data";
|
|
}
|
|
let transient = {};
|
|
if (options.display_id) {
|
|
transient = { display_id: options.display_id };
|
|
}
|
|
await broadcast(messageType, {
|
|
data: bundle,
|
|
metadata: {},
|
|
transient,
|
|
});
|
|
return;
|
|
}
|
|
|
|
globalThis.Deno.jupyter = {
|
|
broadcast,
|
|
display,
|
|
format,
|
|
md,
|
|
html,
|
|
svg,
|
|
$display,
|
|
};
|
|
}
|
|
|
|
internals.enableJupyter = enableJupyter;
|