1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2025-01-04 13:28:47 -05:00
denoland-deno/ext/tls/tls_key.rs
Bartek Iwańczuk 8db420d552
chore: upgrade to reqwest 0.12.4 and rustls 0.22 (#24388)
Reland of https://github.com/denoland/deno/pull/24056 that doesn't
suffer from the problem that was discovered in
https://github.com/denoland/deno/pull/24261.

It uses upgraded `hyper` and `hyper-util` that fixed the previous
problem in https://github.com/hyperium/hyper/pull/3691.
2024-07-02 02:09:47 +02:00

335 lines
9.5 KiB
Rust

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
//! These represent the various types of TLS keys we support for both client and server
//! connections.
//!
//! A TLS key will most often be static, and will loaded from a certificate and key file
//! or string. These are represented by `TlsKey`, which is stored in `TlsKeys::Static`.
//!
//! In more complex cases, you may need a `TlsKeyResolver`/`TlsKeyLookup` pair, which
//! requires polling of the `TlsKeyLookup` lookup queue. The underlying channels that used for
//! key lookup can handle closing one end of the pair, in which case they will just
//! attempt to clean up the associated resources.
use deno_core::anyhow::anyhow;
use deno_core::error::AnyError;
use deno_core::futures::future::poll_fn;
use deno_core::futures::future::Either;
use deno_core::futures::FutureExt;
use deno_core::unsync::spawn;
use rustls::ServerConfig;
use rustls_tokio_stream::ServerConfigProvider;
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt::Debug;
use std::future::ready;
use std::future::Future;
use std::io::ErrorKind;
use std::rc::Rc;
use std::sync::Arc;
use tokio::sync::broadcast;
use tokio::sync::mpsc;
use tokio::sync::oneshot;
use webpki::types::CertificateDer;
use webpki::types::PrivateKeyDer;
type ErrorType = Rc<AnyError>;
/// A TLS certificate/private key pair.
/// see https://docs.rs/rustls-pki-types/latest/rustls_pki_types/#cloning-private-keys
#[derive(Debug, PartialEq, Eq)]
pub struct TlsKey(pub Vec<CertificateDer<'static>>, pub PrivateKeyDer<'static>);
impl Clone for TlsKey {
fn clone(&self) -> Self {
Self(self.0.clone(), self.1.clone_key())
}
}
#[derive(Clone, Debug, Default)]
pub enum TlsKeys {
// TODO(mmastrac): We need Option<&T> for cppgc -- this is a workaround
#[default]
Null,
Static(TlsKey),
Resolver(TlsKeyResolver),
}
pub struct TlsKeysHolder(RefCell<TlsKeys>);
impl deno_core::GarbageCollected for TlsKeysHolder {}
impl TlsKeysHolder {
pub fn take(&self) -> TlsKeys {
std::mem::take(&mut *self.0.borrow_mut())
}
}
impl From<TlsKeys> for TlsKeysHolder {
fn from(value: TlsKeys) -> Self {
TlsKeysHolder(RefCell::new(value))
}
}
impl TryInto<Option<TlsKey>> for TlsKeys {
type Error = Self;
fn try_into(self) -> Result<Option<TlsKey>, Self::Error> {
match self {
Self::Null => Ok(None),
Self::Static(key) => Ok(Some(key)),
Self::Resolver(_) => Err(self),
}
}
}
impl From<Option<TlsKey>> for TlsKeys {
fn from(value: Option<TlsKey>) -> Self {
match value {
None => TlsKeys::Null,
Some(key) => TlsKeys::Static(key),
}
}
}
enum TlsKeyState {
Resolving(broadcast::Receiver<Result<TlsKey, ErrorType>>),
Resolved(Result<TlsKey, ErrorType>),
}
struct TlsKeyResolverInner {
resolution_tx: mpsc::UnboundedSender<(
String,
broadcast::Sender<Result<TlsKey, ErrorType>>,
)>,
cache: RefCell<HashMap<String, TlsKeyState>>,
}
#[derive(Clone)]
pub struct TlsKeyResolver {
inner: Rc<TlsKeyResolverInner>,
}
impl TlsKeyResolver {
async fn resolve_internal(
&self,
sni: String,
alpn: Vec<Vec<u8>>,
) -> Result<Arc<ServerConfig>, AnyError> {
let key = self.resolve(sni).await?;
let mut tls_config = ServerConfig::builder()
.with_no_client_auth()
.with_single_cert(key.0, key.1.clone_key())?;
tls_config.alpn_protocols = alpn;
Ok(tls_config.into())
}
pub fn into_server_config_provider(
self,
alpn: Vec<Vec<u8>>,
) -> ServerConfigProvider {
let (tx, mut rx) = mpsc::unbounded_channel::<(_, oneshot::Sender<_>)>();
// We don't want to make the resolver multi-threaded, but the `ServerConfigProvider` is
// required to be wrapped in an Arc. To fix this, we spawn a task in our current runtime
// to respond to the requests.
spawn(async move {
while let Some((sni, txr)) = rx.recv().await {
_ = txr.send(self.resolve_internal(sni, alpn.clone()).await);
}
});
Arc::new(move |hello| {
// Take ownership of the SNI information
let sni = hello.server_name().unwrap_or_default().to_owned();
let (txr, rxr) = tokio::sync::oneshot::channel::<_>();
_ = tx.send((sni, txr));
rxr
.map(|res| match res {
Err(e) => Err(std::io::Error::new(ErrorKind::InvalidData, e)),
Ok(Err(e)) => Err(std::io::Error::new(ErrorKind::InvalidData, e)),
Ok(Ok(res)) => Ok(res),
})
.boxed()
})
}
}
impl Debug for TlsKeyResolver {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TlsKeyResolver").finish()
}
}
pub fn new_resolver() -> (TlsKeyResolver, TlsKeyLookup) {
let (resolution_tx, resolution_rx) = mpsc::unbounded_channel();
(
TlsKeyResolver {
inner: Rc::new(TlsKeyResolverInner {
resolution_tx,
cache: Default::default(),
}),
},
TlsKeyLookup {
resolution_rx: RefCell::new(resolution_rx),
pending: Default::default(),
},
)
}
impl TlsKeyResolver {
/// Resolve the certificate and key for a given host. This immediately spawns a task in the
/// background and is therefore cancellation-safe.
pub fn resolve(
&self,
sni: String,
) -> impl Future<Output = Result<TlsKey, AnyError>> {
let mut cache = self.inner.cache.borrow_mut();
let mut recv = match cache.get(&sni) {
None => {
let (tx, rx) = broadcast::channel(1);
cache.insert(sni.clone(), TlsKeyState::Resolving(rx.resubscribe()));
_ = self.inner.resolution_tx.send((sni.clone(), tx));
rx
}
Some(TlsKeyState::Resolving(recv)) => recv.resubscribe(),
Some(TlsKeyState::Resolved(res)) => {
return Either::Left(ready(res.clone().map_err(|_| anyhow!("Failed"))));
}
};
drop(cache);
// Make this cancellation safe
let inner = self.inner.clone();
let handle = spawn(async move {
let res = recv.recv().await?;
let mut cache = inner.cache.borrow_mut();
match cache.get(&sni) {
None | Some(TlsKeyState::Resolving(..)) => {
cache.insert(sni, TlsKeyState::Resolved(res.clone()));
}
Some(TlsKeyState::Resolved(..)) => {
// Someone beat us to it
}
}
res.map_err(|_| anyhow!("Failed"))
});
Either::Right(async move { handle.await? })
}
}
pub struct TlsKeyLookup {
#[allow(clippy::type_complexity)]
resolution_rx: RefCell<
mpsc::UnboundedReceiver<(
String,
broadcast::Sender<Result<TlsKey, ErrorType>>,
)>,
>,
pending:
RefCell<HashMap<String, broadcast::Sender<Result<TlsKey, ErrorType>>>>,
}
impl deno_core::GarbageCollected for TlsKeyLookup {}
impl TlsKeyLookup {
/// Multiple `poll` calls are safe, but this method is not starvation-safe. Generally
/// only one `poll`er should be active at any time.
pub async fn poll(&self) -> Option<String> {
if let Some((sni, sender)) =
poll_fn(|cx| self.resolution_rx.borrow_mut().poll_recv(cx)).await
{
self.pending.borrow_mut().insert(sni.clone(), sender);
Some(sni)
} else {
None
}
}
/// Resolve a previously polled item.
pub fn resolve(&self, sni: String, res: Result<TlsKey, AnyError>) {
_ = self
.pending
.borrow_mut()
.remove(&sni)
.unwrap()
.send(res.map_err(Rc::new));
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use deno_core::unsync::spawn;
fn tls_key_for_test(sni: &str) -> TlsKey {
let manifest_dir =
std::path::PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap());
let sni = sni.replace(".com", "");
let cert_file = manifest_dir.join(format!("testdata/{}_cert.der", sni));
let prikey_file = manifest_dir.join(format!("testdata/{}_prikey.der", sni));
let cert = std::fs::read(cert_file).unwrap();
let prikey = std::fs::read(prikey_file).unwrap();
let cert = CertificateDer::from(cert);
let prikey = PrivateKeyDer::try_from(prikey).unwrap();
TlsKey(vec![cert], prikey)
}
#[tokio::test]
async fn test_resolve_once() {
let (resolver, lookup) = new_resolver();
let task = spawn(async move {
while let Some(sni) = lookup.poll().await {
lookup.resolve(sni.clone(), Ok(tls_key_for_test(&sni)));
}
});
let key = resolver.resolve("example1.com".to_owned()).await.unwrap();
assert_eq!(tls_key_for_test("example1.com"), key);
drop(resolver);
task.await.unwrap();
}
#[tokio::test]
async fn test_resolve_concurrent() {
let (resolver, lookup) = new_resolver();
let task = spawn(async move {
while let Some(sni) = lookup.poll().await {
lookup.resolve(sni.clone(), Ok(tls_key_for_test(&sni)));
}
});
let f1 = resolver.resolve("example1.com".to_owned());
let f2 = resolver.resolve("example1.com".to_owned());
let key = f1.await.unwrap();
assert_eq!(tls_key_for_test("example1.com"), key);
let key = f2.await.unwrap();
assert_eq!(tls_key_for_test("example1.com"), key);
drop(resolver);
task.await.unwrap();
}
#[tokio::test]
async fn test_resolve_multiple_concurrent() {
let (resolver, lookup) = new_resolver();
let task = spawn(async move {
while let Some(sni) = lookup.poll().await {
lookup.resolve(sni.clone(), Ok(tls_key_for_test(&sni)));
}
});
let f1 = resolver.resolve("example1.com".to_owned());
let f2 = resolver.resolve("example2.com".to_owned());
let key = f1.await.unwrap();
assert_eq!(tls_key_for_test("example1.com"), key);
let key = f2.await.unwrap();
assert_eq!(tls_key_for_test("example2.com"), key);
drop(resolver);
task.await.unwrap();
}
}