1
0
Fork 0
mirror of https://github.com/denoland/deno.git synced 2024-11-26 16:09:27 -05:00
denoland-deno/core/ops_bin.rs
2021-03-25 19:17:37 +01:00

377 lines
11 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018-2021 the Deno authors. All rights reserved. MIT license.
use crate::error::AnyError;
use crate::futures::future::FutureExt;
use crate::BufVec;
use crate::Op;
use crate::OpFn;
use crate::OpState;
use crate::ZeroCopyBuf;
use std::boxed::Box;
use std::cell::RefCell;
use std::convert::TryInto;
use std::future::Future;
use std::rc::Rc;
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RequestHeader {
pub request_id: u64,
pub argument: u32,
}
impl RequestHeader {
pub fn from_raw(bytes: &[u8]) -> Option<Self> {
if bytes.len() < 3 * 4 {
return None;
}
Some(Self {
request_id: u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
argument: u32::from_le_bytes(bytes[8..12].try_into().unwrap()),
})
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ResponseHeader {
pub request_id: u64,
pub status: u32,
pub result: u32,
}
impl From<ResponseHeader> for [u8; 16] {
fn from(r: ResponseHeader) -> Self {
let mut resp_header = [0u8; 16];
resp_header[0..8].copy_from_slice(&r.request_id.to_le_bytes());
resp_header[8..12].copy_from_slice(&r.status.to_le_bytes());
resp_header[12..16].copy_from_slice(&r.result.to_le_bytes());
resp_header
}
}
pub trait ValueOrVector {
fn value(&self) -> u32;
fn vector(self) -> Option<Vec<u8>>;
}
impl ValueOrVector for Vec<u8> {
fn value(&self) -> u32 {
self.len() as u32
}
fn vector(self) -> Option<Vec<u8>> {
Some(self)
}
}
impl ValueOrVector for u32 {
fn value(&self) -> u32 {
*self
}
fn vector(self) -> Option<Vec<u8>> {
None
}
}
fn gen_padding_32bit(len: usize) -> &'static [u8] {
&[b' ', b' ', b' '][0..(4 - (len & 3)) & 3]
}
/// Creates an op that passes data synchronously using raw ui8 buffer.
///
/// The provided function `op_fn` has the following parameters:
/// * `&mut OpState`: the op state, can be used to read/write resources in the runtime from an op.
/// * `argument`: the i32 value that is passed to the Rust function.
/// * `&mut [ZeroCopyBuf]`: raw bytes passed along.
///
/// `op_fn` returns an array buffer value, which is directly returned to JavaScript.
///
/// When registering an op like this...
/// ```ignore
/// let mut runtime = JsRuntime::new(...);
/// runtime.register_op("hello", deno_core::bin_op_sync(Self::hello_op));
/// ```
///
/// ...it can be invoked from JS using the provided name, for example:
/// ```js
/// Deno.core.ops();
/// let result = Deno.core.binOpSync("function_name", args);
/// ```
///
/// The `Deno.core.ops()` statement is needed once before any op calls, for initialization.
/// A more complete example is available in the examples directory.
pub fn bin_op_sync<F, R>(op_fn: F) -> Box<OpFn>
where
F: Fn(&mut OpState, u32, &mut [ZeroCopyBuf]) -> Result<R, AnyError> + 'static,
R: ValueOrVector,
{
Box::new(move |state: Rc<RefCell<OpState>>, bufs: BufVec| -> Op {
let mut bufs_iter = bufs.into_iter();
let record_buf = bufs_iter.next().expect("Expected record at position 0");
let mut zero_copy = bufs_iter.collect::<BufVec>();
let req_header = match RequestHeader::from_raw(&record_buf) {
Some(r) => r,
None => {
let error_class = b"TypeError";
let error_message = b"Unparsable control buffer";
let len = error_class.len() + error_message.len();
let padding = gen_padding_32bit(len);
let resp_header = ResponseHeader {
request_id: 0,
status: 1,
result: error_class.len() as u32,
};
return Op::Sync(
error_class
.iter()
.chain(error_message.iter())
.chain(padding)
.chain(&Into::<[u8; 16]>::into(resp_header))
.cloned()
.collect(),
);
}
};
match op_fn(&mut state.borrow_mut(), req_header.argument, &mut zero_copy) {
Ok(possibly_vector) => {
let resp_header = ResponseHeader {
request_id: req_header.request_id,
status: 0,
result: possibly_vector.value(),
};
let resp_encoded_header = Into::<[u8; 16]>::into(resp_header);
let resp_vector = match possibly_vector.vector() {
Some(mut vector) => {
let padding = gen_padding_32bit(vector.len());
vector.extend(padding);
vector.extend(&resp_encoded_header);
vector
}
None => resp_encoded_header.to_vec(),
};
Op::Sync(resp_vector.into_boxed_slice())
}
Err(error) => {
let error_class =
(state.borrow().get_error_class_fn)(&error).as_bytes();
let error_message = error.to_string().as_bytes().to_owned();
let len = error_class.len() + error_message.len();
let padding = gen_padding_32bit(len);
let resp_header = ResponseHeader {
request_id: req_header.request_id,
status: 1,
result: error_class.len() as u32,
};
return Op::Sync(
error_class
.iter()
.chain(error_message.iter())
.chain(padding)
.chain(&Into::<[u8; 16]>::into(resp_header))
.cloned()
.collect(),
);
}
}
})
}
/// Creates an op that passes data asynchronously using raw ui8 buffer.
///
/// The provided function `op_fn` has the following parameters:
/// * `Rc<RefCell<OpState>>`: the op state, can be used to read/write resources in the runtime from an op.
/// * `argument`: the i32 value that is passed to the Rust function.
/// * `BufVec`: raw bytes passed along, usually not needed if the JSON value is used.
///
/// `op_fn` returns a future, whose output is a JSON value. This value will be asynchronously
/// returned to JavaScript.
///
/// When registering an op like this...
/// ```ignore
/// let mut runtime = JsRuntime::new(...);
/// runtime.register_op("hello", deno_core::json_op_async(Self::hello_op));
/// ```
///
/// ...it can be invoked from JS using the provided name, for example:
/// ```js
/// Deno.core.ops();
/// let future = Deno.core.jsonOpAsync("function_name", args);
/// ```
///
/// The `Deno.core.ops()` statement is needed once before any op calls, for initialization.
/// A more complete example is available in the examples directory.
pub fn bin_op_async<F, R, RV>(op_fn: F) -> Box<OpFn>
where
F: Fn(Rc<RefCell<OpState>>, u32, BufVec) -> R + 'static,
R: Future<Output = Result<RV, AnyError>> + 'static,
RV: ValueOrVector,
{
Box::new(move |state: Rc<RefCell<OpState>>, bufs: BufVec| -> Op {
let mut bufs_iter = bufs.into_iter();
let record_buf = bufs_iter.next().expect("Expected record at position 0");
let zero_copy = bufs_iter.collect::<BufVec>();
let req_header = match RequestHeader::from_raw(&record_buf) {
Some(r) => r,
None => {
let error_class = b"TypeError";
let error_message = b"Unparsable control buffer";
let len = error_class.len() + error_message.len();
let padding = gen_padding_32bit(len);
let resp_header = ResponseHeader {
request_id: 0,
status: 1,
result: error_class.len() as u32,
};
return Op::Sync(
error_class
.iter()
.chain(error_message.iter())
.chain(padding)
.chain(&Into::<[u8; 16]>::into(resp_header))
.cloned()
.collect(),
);
}
};
let fut =
op_fn(state.clone(), req_header.argument, zero_copy).map(move |result| {
match result {
Ok(possibly_vector) => {
let resp_header = ResponseHeader {
request_id: req_header.request_id,
status: 0,
result: possibly_vector.value(),
};
let resp_encoded_header = Into::<[u8; 16]>::into(resp_header);
let resp_vector = match possibly_vector.vector() {
Some(mut vector) => {
let padding = gen_padding_32bit(vector.len());
vector.extend(padding);
vector.extend(&resp_encoded_header);
vector
}
None => resp_encoded_header.to_vec(),
};
resp_vector.into_boxed_slice()
}
Err(error) => {
let error_class =
(state.borrow().get_error_class_fn)(&error).as_bytes();
let error_message = error.to_string().as_bytes().to_owned();
let len = error_class.len() + error_message.len();
let padding = gen_padding_32bit(len);
let resp_header = ResponseHeader {
request_id: req_header.request_id,
status: 1,
result: error_class.len() as u32,
};
error_class
.iter()
.chain(error_message.iter())
.chain(padding)
.chain(&Into::<[u8; 16]>::into(resp_header))
.cloned()
.collect()
}
}
});
let temp = Box::pin(fut);
Op::Async(temp)
})
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn padding() {
assert_eq!(gen_padding_32bit(0), &[] as &[u8]);
assert_eq!(gen_padding_32bit(1), &[b' ', b' ', b' ']);
assert_eq!(gen_padding_32bit(2), &[b' ', b' ']);
assert_eq!(gen_padding_32bit(3), &[b' ']);
assert_eq!(gen_padding_32bit(4), &[] as &[u8]);
assert_eq!(gen_padding_32bit(5), &[b' ', b' ', b' ']);
}
#[test]
fn response_header_to_bytes() {
// Max size of an js Number is 1^53 - 1, so use this value as max for 64bit ´request_id´
let resp_header = ResponseHeader {
request_id: 0x0102030405060708u64,
status: 0x090A0B0Cu32,
result: 0x0D0E0F10u32,
};
// All numbers are always little-endian encoded, as the js side also wants this to be fixed
assert_eq!(
&Into::<[u8; 16]>::into(resp_header),
&[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 16, 15, 14, 13]
);
}
#[test]
fn response_header_to_bytes_max_value() {
// Max size of an js Number is 1^53 - 1, so use this value as max for 64bit ´request_id´
let resp_header = ResponseHeader {
request_id: (1u64 << 53u64) - 1u64,
status: 0xFFFFFFFFu32,
result: 0xFFFFFFFFu32,
};
// All numbers are always little-endian encoded, as the js side also wants this to be fixed
assert_eq!(
&Into::<[u8; 16]>::into(resp_header),
&[
255, 255, 255, 255, 255, 255, 31, 0, 255, 255, 255, 255, 255, 255, 255,
255
]
);
}
#[test]
fn request_header_from_bytes() {
let req_header =
RequestHeader::from_raw(&[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9])
.unwrap();
assert_eq!(req_header.request_id, 0x0102030405060708u64);
assert_eq!(req_header.argument, 0x090A0B0Cu32);
}
#[test]
fn request_header_from_bytes_max_value() {
let req_header = RequestHeader::from_raw(&[
255, 255, 255, 255, 255, 255, 31, 0, 255, 255, 255, 255,
])
.unwrap();
assert_eq!(req_header.request_id, (1u64 << 53u64) - 1u64);
assert_eq!(req_header.argument, 0xFFFFFFFFu32);
}
#[test]
fn request_header_from_bytes_too_short() {
let req_header =
RequestHeader::from_raw(&[8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10]);
assert_eq!(req_header, None);
}
#[test]
fn request_header_from_bytes_long() {
let req_header = RequestHeader::from_raw(&[
8, 7, 6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21,
])
.unwrap();
assert_eq!(req_header.request_id, 0x0102030405060708u64);
assert_eq!(req_header.argument, 0x090A0B0Cu32);
}
}