2020-07-05 11:28:13 -04:00
|
|
|
use std::borrow::Borrow;
|
|
|
|
use std::hash::Hash;
|
|
|
|
use std::hash::Hasher;
|
2020-06-29 23:12:13 -04:00
|
|
|
use std::marker::PhantomData;
|
|
|
|
use std::mem::transmute;
|
|
|
|
use std::ops::Deref;
|
|
|
|
use std::ptr::NonNull;
|
|
|
|
|
|
|
|
use crate::Data;
|
|
|
|
use crate::HandleScope;
|
|
|
|
use crate::Isolate;
|
|
|
|
use crate::IsolateHandle;
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
fn v8__Local__New(isolate: *mut Isolate, other: *const Data) -> *const Data;
|
|
|
|
fn v8__Global__New(isolate: *mut Isolate, data: *const Data) -> *const Data;
|
|
|
|
fn v8__Global__Reset(data: *const Data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An object reference managed by the v8 garbage collector.
|
|
|
|
///
|
|
|
|
/// All objects returned from v8 have to be tracked by the garbage
|
|
|
|
/// collector so that it knows that the objects are still alive. Also,
|
|
|
|
/// because the garbage collector may move objects, it is unsafe to
|
|
|
|
/// point directly to an object. Instead, all objects are stored in
|
|
|
|
/// handles which are known by the garbage collector and updated
|
|
|
|
/// whenever an object moves. Handles should always be passed by value
|
|
|
|
/// (except in cases like out-parameters) and they should never be
|
|
|
|
/// allocated on the heap.
|
|
|
|
///
|
|
|
|
/// There are two types of handles: local and persistent handles.
|
|
|
|
///
|
|
|
|
/// Local handles are light-weight and transient and typically used in
|
|
|
|
/// local operations. They are managed by HandleScopes. That means that a
|
|
|
|
/// HandleScope must exist on the stack when they are created and that they are
|
|
|
|
/// only valid inside of the `HandleScope` active during their creation.
|
|
|
|
/// For passing a local handle to an outer `HandleScope`, an
|
|
|
|
/// `EscapableHandleScope` and its `Escape()` method must be used.
|
|
|
|
///
|
|
|
|
/// Persistent handles can be used when storing objects across several
|
|
|
|
/// independent operations and have to be explicitly deallocated when they're no
|
|
|
|
/// longer used.
|
|
|
|
///
|
|
|
|
/// It is safe to extract the object stored in the handle by
|
|
|
|
/// dereferencing the handle (for instance, to extract the *Object from
|
|
|
|
/// a Local<Object>); the value will still be governed by a handle
|
|
|
|
/// behind the scenes and the same rules apply to these values as to
|
|
|
|
/// their handles.
|
|
|
|
///
|
|
|
|
/// Note: Local handles in Rusty V8 differ from the V8 C++ API in that they are
|
|
|
|
/// never empty. In situations where empty handles are needed, use
|
|
|
|
/// Option<Local>.
|
|
|
|
#[repr(C)]
|
2020-11-18 09:17:25 -05:00
|
|
|
#[derive(Debug)]
|
2020-06-29 23:12:13 -04:00
|
|
|
pub struct Local<'s, T>(NonNull<T>, PhantomData<&'s ()>);
|
|
|
|
|
|
|
|
impl<'s, T> Local<'s, T> {
|
|
|
|
/// Construct a new Local from an existing Handle.
|
|
|
|
pub fn new(
|
|
|
|
scope: &mut HandleScope<'s, ()>,
|
|
|
|
handle: impl Handle<Data = T>,
|
|
|
|
) -> Self {
|
|
|
|
let HandleInfo { data, host } = handle.get_handle_info();
|
|
|
|
host.assert_match_isolate(scope);
|
|
|
|
unsafe {
|
|
|
|
scope.cast_local(|sd| {
|
|
|
|
v8__Local__New(sd.get_isolate_ptr(), data.cast().as_ptr()) as *const T
|
|
|
|
})
|
|
|
|
}
|
|
|
|
.unwrap()
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Create a local handle by downcasting from one of its super types.
|
|
|
|
/// This function is unsafe because the cast is unchecked.
|
|
|
|
pub unsafe fn cast<A>(other: Local<'s, A>) -> Self
|
|
|
|
where
|
|
|
|
Local<'s, A>: From<Self>,
|
|
|
|
{
|
|
|
|
transmute(other)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(crate) unsafe fn from_raw(ptr: *const T) -> Option<Self> {
|
|
|
|
NonNull::new(ptr as *mut _).map(|nn| Self::from_non_null(nn))
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(crate) unsafe fn from_non_null(nn: NonNull<T>) -> Self {
|
|
|
|
Self(nn, PhantomData)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(crate) fn as_non_null(self) -> NonNull<T> {
|
|
|
|
self.0
|
|
|
|
}
|
|
|
|
|
|
|
|
pub(crate) fn slice_into_raw(slice: &[Self]) -> &[*const T] {
|
|
|
|
unsafe { &*(slice as *const [Self] as *const [*const T]) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'s, T> Copy for Local<'s, T> {}
|
|
|
|
|
|
|
|
impl<'s, T> Clone for Local<'s, T> {
|
|
|
|
fn clone(&self) -> Self {
|
|
|
|
*self
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'s, T> Deref for Local<'s, T> {
|
|
|
|
type Target = T;
|
|
|
|
fn deref(&self) -> &T {
|
|
|
|
unsafe { self.0.as_ref() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An object reference that is independent of any handle scope. Where
|
|
|
|
/// a Local handle only lives as long as the HandleScope in which it was
|
|
|
|
/// allocated, a global handle remains valid until it is explicitly
|
|
|
|
/// disposed using reset().
|
|
|
|
///
|
|
|
|
/// A global handle contains a reference to a storage cell within
|
|
|
|
/// the V8 engine which holds an object value and which is updated by
|
|
|
|
/// the garbage collector whenever the object is moved.
|
2020-11-18 09:17:25 -05:00
|
|
|
#[derive(Debug)]
|
2020-06-29 23:12:13 -04:00
|
|
|
pub struct Global<T> {
|
|
|
|
data: NonNull<T>,
|
|
|
|
isolate_handle: IsolateHandle,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Global<T> {
|
|
|
|
/// Construct a new Global from an existing Handle.
|
|
|
|
pub fn new(isolate: &mut Isolate, handle: impl Handle<Data = T>) -> Self {
|
|
|
|
let HandleInfo { data, host } = handle.get_handle_info();
|
|
|
|
host.assert_match_isolate(isolate);
|
|
|
|
unsafe { Self::new_raw(isolate, data) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Implementation helper function that contains the code that can be shared
|
|
|
|
/// between `Global::new()` and `Global::clone()`.
|
|
|
|
unsafe fn new_raw(isolate: *mut Isolate, data: NonNull<T>) -> Self {
|
|
|
|
let data = data.cast().as_ptr();
|
|
|
|
let data = v8__Global__New(isolate, data) as *const T;
|
|
|
|
let data = NonNull::new_unchecked(data as *mut _);
|
|
|
|
let isolate_handle = (*isolate).thread_safe_handle();
|
|
|
|
Self {
|
|
|
|
data,
|
|
|
|
isolate_handle,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-10-13 10:47:34 -04:00
|
|
|
pub fn inner<'a>(&'a self, scope: &mut Isolate) -> &'a T {
|
|
|
|
Handle::inner(self, scope)
|
2020-06-29 23:12:13 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Clone for Global<T> {
|
|
|
|
fn clone(&self) -> Self {
|
|
|
|
let HandleInfo { data, host } = self.get_handle_info();
|
|
|
|
unsafe { Self::new_raw(host.get_isolate().as_mut(), data) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Drop for Global<T> {
|
|
|
|
fn drop(&mut self) {
|
|
|
|
unsafe {
|
|
|
|
if self.isolate_handle.get_isolate_ptr().is_null() {
|
|
|
|
// This `Global` handle is associated with an `Isolate` that has already
|
|
|
|
// been disposed.
|
|
|
|
} else {
|
|
|
|
// Destroy the storage cell that contains the contents of this Global.
|
|
|
|
v8__Global__Reset(self.data.cast().as_ptr())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub trait Handle: Sized {
|
|
|
|
type Data;
|
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
fn get_handle_info(&self) -> HandleInfo<Self::Data>;
|
|
|
|
|
|
|
|
/// Returns a reference to the V8 heap object that this handle represents.
|
|
|
|
/// The handle does not get cloned, nor is it converted to a `Local` handle.
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
///
|
|
|
|
/// This function panics in the following situations:
|
|
|
|
/// - The handle is not hosted by the specified Isolate.
|
|
|
|
/// - The Isolate that hosts this handle has been disposed.
|
2021-10-13 10:47:34 -04:00
|
|
|
fn inner<'a>(&'a self, isolate: &mut Isolate) -> &'a Self::Data {
|
2020-06-29 23:12:13 -04:00
|
|
|
let HandleInfo { data, host } = self.get_handle_info();
|
|
|
|
host.assert_match_isolate(isolate);
|
|
|
|
unsafe { &*data.as_ptr() }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Reads the inner value contained in this handle, _without_ verifying that
|
|
|
|
/// the this handle is hosted by the currently active `Isolate`.
|
|
|
|
///
|
|
|
|
/// # Safety
|
|
|
|
///
|
|
|
|
/// Using a V8 heap object with another `Isolate` than the `Isolate` that
|
|
|
|
/// hosts it is not permitted under any circumstance. Doing so leads to
|
|
|
|
/// undefined behavior, likely a crash.
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
///
|
|
|
|
/// This function panics if the `Isolate` that hosts the handle has been
|
|
|
|
/// disposed.
|
|
|
|
unsafe fn get_unchecked(&self) -> &Self::Data {
|
|
|
|
let HandleInfo { data, host } = self.get_handle_info();
|
|
|
|
if let HandleHost::DisposedIsolate = host {
|
|
|
|
panic!("attempt to access Handle hosted by disposed Isolate");
|
|
|
|
}
|
|
|
|
&*data.as_ptr()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'s, T> Handle for Local<'s, T> {
|
|
|
|
type Data = T;
|
|
|
|
fn get_handle_info(&self) -> HandleInfo<T> {
|
|
|
|
HandleInfo::new(self.as_non_null(), HandleHost::Scope)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a, 's: 'a, T> Handle for &'a Local<'s, T> {
|
|
|
|
type Data = T;
|
|
|
|
fn get_handle_info(&self) -> HandleInfo<T> {
|
|
|
|
HandleInfo::new(self.as_non_null(), HandleHost::Scope)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Handle for Global<T> {
|
|
|
|
type Data = T;
|
|
|
|
fn get_handle_info(&self) -> HandleInfo<T> {
|
|
|
|
HandleInfo::new(self.data, (&self.isolate_handle).into())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a, T> Handle for &'a Global<T> {
|
|
|
|
type Data = T;
|
|
|
|
fn get_handle_info(&self) -> HandleInfo<T> {
|
|
|
|
HandleInfo::new(self.data, (&self.isolate_handle).into())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-05 11:28:13 -04:00
|
|
|
impl<'s, T> Borrow<T> for Local<'s, T> {
|
|
|
|
fn borrow(&self) -> &T {
|
|
|
|
&**self
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Borrow<T> for Global<T> {
|
|
|
|
fn borrow(&self) -> &T {
|
|
|
|
let HandleInfo { data, host } = self.get_handle_info();
|
|
|
|
if let HandleHost::DisposedIsolate = host {
|
|
|
|
panic!("attempt to access Handle hosted by disposed Isolate");
|
|
|
|
}
|
|
|
|
unsafe { &*data.as_ptr() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-04 01:05:50 -04:00
|
|
|
impl<'s, T> Eq for Local<'s, T> where T: Eq {}
|
|
|
|
impl<T> Eq for Global<T> where T: Eq {}
|
|
|
|
|
2020-07-05 11:28:13 -04:00
|
|
|
impl<'s, T: Hash> Hash for Local<'s, T> {
|
|
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
|
|
(&**self).hash(state)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Hash> Hash for Global<T> {
|
|
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
|
|
unsafe {
|
|
|
|
if self.isolate_handle.get_isolate_ptr().is_null() {
|
|
|
|
panic!("can't hash Global after its host Isolate has been disposed");
|
|
|
|
}
|
|
|
|
self.data.as_ref().hash(state);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-06-29 23:12:13 -04:00
|
|
|
impl<'s, T, Rhs: Handle> PartialEq<Rhs> for Local<'s, T>
|
|
|
|
where
|
|
|
|
T: PartialEq<Rhs::Data>,
|
|
|
|
{
|
|
|
|
fn eq(&self, other: &Rhs) -> bool {
|
|
|
|
let i1 = self.get_handle_info();
|
|
|
|
let i2 = other.get_handle_info();
|
|
|
|
i1.host.match_host(i2.host, None)
|
|
|
|
&& unsafe { i1.data.as_ref() == i2.data.as_ref() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'s, T, Rhs: Handle> PartialEq<Rhs> for Global<T>
|
|
|
|
where
|
|
|
|
T: PartialEq<Rhs::Data>,
|
|
|
|
{
|
|
|
|
fn eq(&self, other: &Rhs) -> bool {
|
|
|
|
let i1 = self.get_handle_info();
|
|
|
|
let i2 = other.get_handle_info();
|
|
|
|
i1.host.match_host(i2.host, None)
|
|
|
|
&& unsafe { i1.data.as_ref() == i2.data.as_ref() }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-18 09:17:25 -05:00
|
|
|
#[derive(Copy, Debug, Clone)]
|
2020-06-29 23:12:13 -04:00
|
|
|
pub struct HandleInfo<T> {
|
|
|
|
data: NonNull<T>,
|
|
|
|
host: HandleHost,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> HandleInfo<T> {
|
|
|
|
fn new(data: NonNull<T>, host: HandleHost) -> Self {
|
|
|
|
Self { data, host }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-18 09:17:25 -05:00
|
|
|
#[derive(Copy, Debug, Clone)]
|
2020-06-29 23:12:13 -04:00
|
|
|
enum HandleHost {
|
|
|
|
// Note: the `HandleHost::Scope` variant does not indicate that the handle
|
|
|
|
// it applies to is not associated with an `Isolate`. It only means that
|
|
|
|
// the handle is a `Local` handle that was unable to provide a pointer to
|
|
|
|
// the `Isolate` that hosts it (the handle) and the currently entered
|
|
|
|
// scope.
|
|
|
|
Scope,
|
|
|
|
Isolate(NonNull<Isolate>),
|
|
|
|
DisposedIsolate,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl From<&'_ mut Isolate> for HandleHost {
|
|
|
|
fn from(isolate: &'_ mut Isolate) -> Self {
|
|
|
|
Self::Isolate(NonNull::from(isolate))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl From<&'_ IsolateHandle> for HandleHost {
|
|
|
|
fn from(isolate_handle: &IsolateHandle) -> Self {
|
|
|
|
NonNull::new(unsafe { isolate_handle.get_isolate_ptr() })
|
|
|
|
.map(Self::Isolate)
|
|
|
|
.unwrap_or(Self::DisposedIsolate)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl HandleHost {
|
|
|
|
/// Compares two `HandleHost` values, returning `true` if they refer to the
|
|
|
|
/// same `Isolate`, or `false` if they refer to different isolates.
|
|
|
|
///
|
|
|
|
/// If the caller knows which `Isolate` the currently entered scope (if any)
|
|
|
|
/// belongs to, it should pass on this information via the second argument
|
|
|
|
/// (`scope_isolate_opt`).
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
///
|
|
|
|
/// This function panics if one of the `HandleHost` values refers to an
|
|
|
|
/// `Isolate` that has been disposed.
|
|
|
|
///
|
|
|
|
/// # Safety / Bugs
|
|
|
|
///
|
|
|
|
/// The current implementation is a bit too forgiving. If it cannot decide
|
|
|
|
/// whether two hosts refer to the same `Isolate`, it just returns `true`.
|
|
|
|
/// Note that this can only happen when the caller does _not_ provide a value
|
|
|
|
/// for the `scope_isolate_opt` argument.
|
|
|
|
fn match_host(
|
|
|
|
self,
|
|
|
|
other: Self,
|
|
|
|
scope_isolate_opt: Option<&mut Isolate>,
|
|
|
|
) -> bool {
|
|
|
|
let scope_isolate_opt_nn = scope_isolate_opt.map(NonNull::from);
|
|
|
|
match (self, other, scope_isolate_opt_nn) {
|
|
|
|
(Self::Scope, Self::Scope, _) => true,
|
|
|
|
(Self::Isolate(ile1), Self::Isolate(ile2), _) => ile1 == ile2,
|
|
|
|
(Self::Scope, Self::Isolate(ile1), Some(ile2)) => ile1 == ile2,
|
|
|
|
(Self::Isolate(ile1), Self::Scope, Some(ile2)) => ile1 == ile2,
|
|
|
|
// TODO(pisciaureus): If the caller didn't provide a `scope_isolate_opt`
|
|
|
|
// value that works, we can't do a meaningful check. So all we do for now
|
|
|
|
// is pretend the Isolates match and hope for the best. This eventually
|
|
|
|
// needs to be tightened up.
|
|
|
|
(Self::Scope, Self::Isolate(_), _) => true,
|
|
|
|
(Self::Isolate(_), Self::Scope, _) => true,
|
|
|
|
// Handles hosted in an Isolate that has been disposed aren't good for
|
|
|
|
// anything, even if a pair of handles used to to be hosted in the same
|
|
|
|
// now-disposed solate.
|
|
|
|
(Self::DisposedIsolate, ..) | (_, Self::DisposedIsolate, _) => {
|
|
|
|
panic!("attempt to access Handle hosted by disposed Isolate")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn assert_match_host(self, other: Self, scope_opt: Option<&mut Isolate>) {
|
|
|
|
assert!(
|
|
|
|
self.match_host(other, scope_opt),
|
|
|
|
"attempt to use Handle in an Isolate that is not its host"
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn match_isolate(self, isolate: &mut Isolate) -> bool {
|
|
|
|
self.match_host(isolate.into(), Some(isolate))
|
|
|
|
}
|
|
|
|
|
|
|
|
fn assert_match_isolate(self, isolate: &mut Isolate) {
|
|
|
|
self.assert_match_host(isolate.into(), Some(isolate))
|
|
|
|
}
|
|
|
|
|
|
|
|
fn get_isolate(self) -> NonNull<Isolate> {
|
|
|
|
match self {
|
|
|
|
Self::Scope => panic!("host Isolate for Handle not available"),
|
|
|
|
Self::Isolate(ile) => ile,
|
|
|
|
Self::DisposedIsolate => panic!("attempt to access disposed Isolate"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn get_isolate_handle(self) -> IsolateHandle {
|
2020-12-31 02:30:30 -05:00
|
|
|
unsafe { self.get_isolate().as_ref() }.thread_safe_handle()
|
2020-06-29 23:12:13 -04:00
|
|
|
}
|
|
|
|
}
|