0
0
Fork 0
mirror of https://github.com/denoland/rusty_v8.git synced 2024-11-24 15:19:31 -05:00

perf: speed up v8::String::to_rust_*_lossy()

This commit speeds up this common conversion
method between by 2x for many common cases. Short
one byte ASCII strings are now 20% faster. Longer
one byte ASCII strings are 2.5x faster. Short UTF8
strings are marginally slower (5%) but longer UTF8
strings are upwards of 2x faster.

A follow up will make the short UTF8 strings about
2x faster than the current implementation as well.
This commit is contained in:
Luca Casonato 2024-10-18 16:25:19 +02:00
parent e67f11bf79
commit 6fcb6a9a0c
No known key found for this signature in database
GPG key ID: 01A83EB62563811F
3 changed files with 317 additions and 156 deletions

11
Cargo.lock generated
View file

@ -1260,6 +1260,16 @@ version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64" checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"
[[package]]
name = "simdutf"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c1945a45633804474a6f1aef87f072d7564c6421025a865f6777709a571fdfae"
dependencies = [
"bitflags 2.5.0",
"cc",
]
[[package]] [[package]]
name = "slotmap" name = "slotmap"
version = "1.0.7" version = "1.0.7"
@ -1456,6 +1466,7 @@ dependencies = [
"once_cell", "once_cell",
"paste", "paste",
"rustversion", "rustversion",
"simdutf",
"trybuild", "trybuild",
"which", "which",
] ]

View file

@ -91,6 +91,7 @@ use_custom_libcxx = []
bitflags = "2.5" bitflags = "2.5"
once_cell = "1.19" once_cell = "1.19"
paste = "1.0" paste = "1.0"
simdutf = "0.5.1"
[build-dependencies] [build-dependencies]
miniz_oxide = "0.7.2" miniz_oxide = "0.7.2"

View file

@ -11,6 +11,7 @@ use std::borrow::Cow;
use std::convert::TryInto; use std::convert::TryInto;
use std::default::Default; use std::default::Default;
use std::ffi::c_void; use std::ffi::c_void;
use std::hint::unreachable_unchecked;
use std::marker::PhantomData; use std::marker::PhantomData;
use std::mem::MaybeUninit; use std::mem::MaybeUninit;
use std::ptr::NonNull; use std::ptr::NonNull;
@ -768,62 +769,12 @@ impl String {
&self, &self,
scope: &mut Isolate, scope: &mut Isolate,
) -> std::string::String { ) -> std::string::String {
let len_utf16 = self.length(); // SAFETY: @devsnek said it is fine.
let string = unsafe { Local::from_raw(self).unwrap_unchecked() };
// No need to allocate or do any work for zero-length strings let view = ValueView::new(scope, string);
if len_utf16 == 0 { match view.data() {
return std::string::String::new(); ValueViewData::OneByte(bytes) => latin1_to_string(bytes),
} ValueViewData::TwoByte(code_points) => wtf16_to_string(code_points),
let len_utf8 = self.utf8_length(scope);
// If len_utf8 == len_utf16 and the string is one-byte, we can take the fast memcpy path. This is true iff the
// string is 100% 7-bit ASCII.
if self.is_onebyte() && len_utf8 == len_utf16 {
unsafe {
// Create an uninitialized buffer of `capacity` bytes. We need to be careful here to avoid
// accidentally creating a slice of u8 which would be invalid.
let layout = std::alloc::Layout::from_size_align(len_utf16, 1).unwrap();
let data = std::alloc::alloc(layout) as *mut MaybeUninit<u8>;
let buffer = std::ptr::slice_from_raw_parts_mut(data, len_utf16);
// Write to this MaybeUninit buffer, assuming we're going to fill this entire buffer
let length = self.write_one_byte_uninit(
scope,
&mut *buffer,
0,
WriteOptions::NO_NULL_TERMINATION
| WriteOptions::REPLACE_INVALID_UTF8,
);
debug_assert!(length == len_utf16);
// Return an owned string from this guaranteed now-initialized data
let buffer = data as *mut u8;
return std::string::String::from_raw_parts(buffer, length, len_utf16);
}
}
// SAFETY: This allocates a buffer manually using the default allocator using the string's capacity.
// We have a large number of invariants to uphold, so please check changes to this code carefully
unsafe {
// Create an uninitialized buffer of `capacity` bytes. We need to be careful here to avoid
// accidentally creating a slice of u8 which would be invalid.
let layout = std::alloc::Layout::from_size_align(len_utf8, 1).unwrap();
let data = std::alloc::alloc(layout) as *mut MaybeUninit<u8>;
let buffer = std::ptr::slice_from_raw_parts_mut(data, len_utf8);
// Write to this MaybeUninit buffer, assuming we're going to fill this entire buffer
let length = self.write_utf8_uninit(
scope,
&mut *buffer,
None,
WriteOptions::NO_NULL_TERMINATION | WriteOptions::REPLACE_INVALID_UTF8,
);
debug_assert!(length == len_utf8);
// Return an owned string from this guaranteed now-initialized data
let buffer = data as *mut u8;
std::string::String::from_raw_parts(buffer, length, len_utf8)
} }
} }
@ -834,110 +785,308 @@ impl String {
scope: &mut Isolate, scope: &mut Isolate,
buffer: &'a mut [MaybeUninit<u8>; N], buffer: &'a mut [MaybeUninit<u8>; N],
) -> Cow<'a, str> { ) -> Cow<'a, str> {
let len_utf16 = self.length(); // SAFETY: @devsnek said it is fine.
let string = unsafe { Local::from_raw(self).unwrap_unchecked() };
// No need to allocate or do any work for zero-length strings let view = ValueView::new(scope, string);
if len_utf16 == 0 { match view.data() {
return "".into(); ValueViewData::OneByte(bytes) => latin1_to_cow_str(bytes, buffer),
} ValueViewData::TwoByte(code_points) => {
wtf16_to_cow_str(code_points, buffer)
// TODO(mmastrac): Ideally we should be able to access the string's internal representation
let len_utf8 = self.utf8_length(scope);
// If len_utf8 == len_utf16 and the string is one-byte, we can take the fast memcpy path. This is true iff the
// string is 100% 7-bit ASCII.
if self.is_onebyte() && len_utf8 == len_utf16 {
if len_utf16 <= N {
let length = self.write_one_byte_uninit(
scope,
buffer,
0,
WriteOptions::NO_NULL_TERMINATION,
);
debug_assert!(length == len_utf16);
unsafe {
// Get a slice of &[u8] of what we know is initialized now
let buffer = &mut buffer[..length];
let buffer = &mut *(buffer as *mut [_] as *mut [u8]);
// We know it's valid UTF-8, so make a string
return Cow::Borrowed(std::str::from_utf8_unchecked(buffer));
}
} }
unsafe {
// Create an uninitialized buffer of `capacity` bytes. We need to be careful here to avoid
// accidentally creating a slice of u8 which would be invalid.
let layout = std::alloc::Layout::from_size_align(len_utf16, 1).unwrap();
let data = std::alloc::alloc(layout) as *mut MaybeUninit<u8>;
let buffer = std::ptr::slice_from_raw_parts_mut(data, len_utf16);
// Write to this MaybeUninit buffer, assuming we're going to fill this entire buffer
let length = self.write_one_byte_uninit(
scope,
&mut *buffer,
0,
WriteOptions::NO_NULL_TERMINATION
| WriteOptions::REPLACE_INVALID_UTF8,
);
debug_assert!(length == len_utf16);
// Return an owned string from this guaranteed now-initialized data
let buffer = data as *mut u8;
return Cow::Owned(std::string::String::from_raw_parts(
buffer, length, len_utf16,
));
}
}
if len_utf8 <= N {
// No malloc path
let length = self.write_utf8_uninit(
scope,
buffer,
None,
WriteOptions::NO_NULL_TERMINATION | WriteOptions::REPLACE_INVALID_UTF8,
);
debug_assert!(length == len_utf8);
// SAFETY: We know that we wrote `length` UTF-8 bytes. See `slice_assume_init_mut` for additional guarantee information.
unsafe {
// Get a slice of &[u8] of what we know is initialized now
let buffer = &mut buffer[..length];
let buffer = &mut *(buffer as *mut [_] as *mut [u8]);
// We know it's valid UTF-8, so make a string
return Cow::Borrowed(std::str::from_utf8_unchecked(buffer));
}
}
// SAFETY: This allocates a buffer manually using the default allocator using the string's capacity.
// We have a large number of invariants to uphold, so please check changes to this code carefully
unsafe {
// Create an uninitialized buffer of `capacity` bytes. We need to be careful here to avoid
// accidentally creating a slice of u8 which would be invalid.
let layout = std::alloc::Layout::from_size_align(len_utf8, 1).unwrap();
let data = std::alloc::alloc(layout) as *mut MaybeUninit<u8>;
let buffer = std::ptr::slice_from_raw_parts_mut(data, len_utf8);
// Write to this MaybeUninit buffer, assuming we're going to fill this entire buffer
let length = self.write_utf8_uninit(
scope,
&mut *buffer,
None,
WriteOptions::NO_NULL_TERMINATION | WriteOptions::REPLACE_INVALID_UTF8,
);
debug_assert!(length == len_utf8);
// Return an owned string from this guaranteed now-initialized data
let buffer = data as *mut u8;
Cow::Owned(std::string::String::from_raw_parts(
buffer, length, len_utf8,
))
} }
} }
} }
#[inline(always)]
fn latin1_to_string(bytes: &[u8]) -> std::string::String {
// Perf: it seems to be faster to check if the string is ASCII first and
// then do a memcpy if it is, rather than checking and copying each byte
// individually.
if bytes.is_ascii() {
// SAFETY: The string is ASCII, so it's valid UTF-8.
(unsafe { std::str::from_utf8_unchecked(bytes) }).to_owned()
} else {
// TODO: this could likely be optimized for large strings by using SIMD to
// calculate the length of the resulting string and then allocating once,
// and then converting the string using SIMD.
std::string::String::from_utf8_lossy(bytes).into_owned()
}
}
/// The cutoff for when to use SIMD for converting WTF-16 to UTF-8. Any slice of
/// code points longer than this will use SIMD, and any shorter will use the
/// scalar implementation.
const WTF16_CODE_POINT_LENGTH_CUTOFF_FOR_SIMD: usize = 96;
#[inline(always)]
fn wtf16_to_string(code_points: &[u16]) -> std::string::String {
// If the code points are longer than the cutoff and are valid UTF-16, use
// SIMD to convert them to UTF-8. Otherwise we use the scalar implementation.
if code_points.len() > WTF16_CODE_POINT_LENGTH_CUTOFF_FOR_SIMD
&& simdutf::validate_utf16(code_points)
{
let len_utf8 = simdutf::utf8_length_from_utf16(code_points);
let buffer = allocate_byte_buffer(len_utf8);
// SAFETY: The buffer is large enough to hold the UTF-8 data.
let written = unsafe {
simdutf::convert_utf16_to_utf8(
code_points.as_ptr(),
code_points.len(),
buffer as *mut u8,
)
};
debug_assert_eq!(written, len_utf8);
// SAFETY: The buffer is filled with valid UTF-8 data.
unsafe {
std::string::String::from_raw_parts(buffer as *mut u8, written, len_utf8)
}
} else {
let len_utf8 = utf8_length_from_utf16_vectorized(code_points);
let buffer = allocate_byte_buffer(len_utf8);
// SAFETY: The buffer is large enough to hold the UTF-8 data.
let written =
unsafe { wtf16_to_utf8_lossy(code_points, buffer as *mut u8) };
// SAFETY: The buffer is filled with valid UTF-8 data.
unsafe {
std::string::String::from_raw_parts(buffer as *mut u8, written, len_utf8)
}
}
}
#[inline(always)]
fn latin1_to_cow_str<'a, const N: usize>(
bytes: &[u8],
buffer: &'a mut [MaybeUninit<u8>; N],
) -> Cow<'a, str> {
let is_ascii = bytes.is_ascii();
if is_ascii && bytes.len() <= N {
// SAFETY: The string is ASCII, so it's valid UTF-8. We know that the
// buffer can not be overlapping, as we never expose a &mut to the
// v8::ValueViewData buffer.
let str = unsafe {
std::ptr::copy_nonoverlapping(
bytes.as_ptr(),
buffer.as_mut_ptr() as *mut u8,
bytes.len(),
);
std::str::from_utf8_unchecked(std::slice::from_raw_parts(
buffer.as_ptr() as *const u8,
bytes.len(),
))
};
Cow::Borrowed(str)
} else if bytes.len() * 2 < N {
// SAFETY: The string is Latin1 - we need to convert to UTF-8. But it
// is short enough to fit into the buffer, because the buffer is at
// least twice as large as the string and any non-ASCII one-byte
// character will be encoded as exactly two bytes in UTF-8.
let written = unsafe {
latin1_to_utf8(
bytes.len(),
bytes.as_ptr(),
buffer.as_mut_ptr() as *mut u8,
)
};
debug_assert!(written <= buffer.len());
// SAFETY: The buffer is filled with valid UTF-8 data.
let str = unsafe {
std::str::from_utf8_unchecked(std::slice::from_raw_parts(
buffer.as_ptr() as *const u8,
written,
))
};
Cow::Borrowed(str)
} else if is_ascii {
// Perf: it seems to be faster to check if the string is ASCII first and
// then do a memcpy if it is, rather than checking and copying each byte
// individually.
// SAFETY: The string is ASCII, so it's valid UTF-8.
Cow::Owned((unsafe { std::str::from_utf8_unchecked(bytes) }).to_owned())
} else {
// TODO: this could likely be optimized for large strings by using SIMD to
// calculate the length of the resulting string and then allocating once,
// and then converting the string using SIMD.
Cow::Owned(std::string::String::from_utf8_lossy(bytes).into_owned())
}
}
#[inline(always)]
fn wtf16_to_cow_str<'a, const N: usize>(
code_points: &[u16],
buffer: &'a mut [MaybeUninit<u8>; N],
) -> Cow<'a, str> {
if code_points.len() >= WTF16_CODE_POINT_LENGTH_CUTOFF_FOR_SIMD
&& simdutf::validate_utf16(code_points)
{
let len_utf8 = simdutf::utf8_length_from_utf16(code_points);
let (buffer, owned) = if buffer.len() >= len_utf8 {
(buffer.as_mut_ptr(), false)
} else {
let buffer = allocate_byte_buffer(len_utf8);
(buffer, true)
};
// SAFETY: The buffer is large enough to hold the UTF-8 data.
let written = unsafe {
simdutf::convert_utf16_to_utf8(
code_points.as_ptr(),
code_points.len(),
buffer as *mut u8,
)
};
if owned {
// SAFETY: The buffer is filled with valid UTF-8 data.
let str = unsafe {
std::string::String::from_raw_parts(
buffer as *mut u8,
written,
len_utf8,
)
};
Cow::Owned(str)
} else {
// SAFETY: The buffer is filled with valid UTF-8 data.
let str = unsafe {
std::str::from_utf8_unchecked(std::slice::from_raw_parts(
buffer as *const u8,
written,
))
};
Cow::Borrowed(str)
}
} else {
let len_utf8 = utf8_length_from_utf16_vectorized(code_points);
let (buffer, owned) = if buffer.len() >= len_utf8 {
(buffer.as_mut_ptr(), false)
} else {
let buffer = allocate_byte_buffer(len_utf8);
(buffer, true)
};
// SAFETY: The buffer is large enough to hold the UTF-8 data.
let written =
unsafe { wtf16_to_utf8_lossy(code_points, buffer as *mut u8) };
if owned {
// SAFETY: The buffer is filled with valid UTF-8 data.
let str = unsafe {
std::string::String::from_raw_parts(
buffer as *mut u8,
written,
len_utf8,
)
};
Cow::Owned(str)
} else {
// SAFETY: The buffer is filled with valid UTF-8 data.
let str = unsafe {
std::str::from_utf8_unchecked(std::slice::from_raw_parts(
buffer as *const u8,
written,
))
};
Cow::Borrowed(str)
}
}
}
#[inline(always)]
fn allocate_byte_buffer(len: usize) -> *mut MaybeUninit<u8> {
debug_assert!(len > 0);
let layout = std::alloc::Layout::from_size_align(len, 1).unwrap();
// SAFETY: The layout is valid.
(unsafe { std::alloc::alloc(layout) }) as *mut MaybeUninit<u8>
}
#[inline(always)]
fn utf8_length_from_utf16_vectorized(code_points: &[u16]) -> usize {
std::char::decode_utf16(code_points.into_iter().copied())
.map(|c| c.unwrap_or(std::char::REPLACEMENT_CHARACTER))
.map(|c| c.len_utf8())
.sum()
}
/// Expands `inbuf` to `outbuf`, assuming that `outbuf` has at least 2x `input_length`.
#[inline(always)]
unsafe fn latin1_to_utf8(
input_length: usize,
inbuf: *const u8,
outbuf: *mut u8,
) -> usize {
let mut output = 0;
let mut input = 0;
while input < input_length {
let char = *(inbuf.add(input));
if char < 0x80 {
*(outbuf.add(output)) = char;
output += 1;
} else {
// Top two bits
*(outbuf.add(output)) = (char >> 6) | 0b1100_0000;
// Bottom six bits
*(outbuf.add(output + 1)) = (char & 0b0011_1111) | 0b1000_0000;
output += 2;
}
input += 1;
}
output
}
#[inline(always)]
unsafe fn wtf16_to_utf8_lossy(input: &[u16], outbuf: *mut u8) -> usize {
let utf8 = std::char::decode_utf16(input.into_iter().copied());
let mut output = 0;
for c in utf8 {
let c = c.unwrap_or(std::char::REPLACEMENT_CHARACTER);
let len = c.len_utf8();
let code = c as u32;
const TAG_TWO_BYTE: u8 = 0xC0;
const TAG_THREE_BYTE: u8 = 0xE0;
const TAG_FOUR_BYTE: u8 = 0xF0;
const TAG_CONT: u8 = 0x80;
match len {
1 => {
*(outbuf.add(output)) = c as u8;
output += 1;
}
2 => {
*(outbuf.add(output)) = TAG_TWO_BYTE | ((code >> 6) as u8);
*(outbuf.add(output + 1)) = TAG_CONT | ((code & 0x3F) as u8);
output += 2;
}
3 => {
*(outbuf.add(output)) = TAG_THREE_BYTE | ((code >> 12) as u8);
*(outbuf.add(output + 1)) = TAG_CONT | (((code >> 6) & 0x3F) as u8);
*(outbuf.add(output + 2)) = TAG_CONT | ((code & 0x3F) as u8);
output += 3;
}
4 => {
*(outbuf.add(output)) = TAG_FOUR_BYTE | ((code >> 18) as u8);
*(outbuf.add(output + 1)) = TAG_CONT | (((code >> 12) & 0x3F) as u8);
*(outbuf.add(output + 2)) = TAG_CONT | (((code >> 6) & 0x3F) as u8);
*(outbuf.add(output + 3)) = TAG_CONT | ((code & 0x3F) as u8);
output += 4;
}
_ => {
// SAFETY: We know that the length is 1, 2, 3, or 4.
unsafe { unreachable_unchecked() }
}
}
}
output
}
pub extern "C" fn free_rust_external_onebyte(s: *mut char, len: usize) { pub extern "C" fn free_rust_external_onebyte(s: *mut char, len: usize) {
unsafe { unsafe {
let slice = std::slice::from_raw_parts_mut(s, len); let slice = std::slice::from_raw_parts_mut(s, len);
@ -970,7 +1119,7 @@ pub struct ValueView<'s>(
impl<'s> ValueView<'s> { impl<'s> ValueView<'s> {
#[inline(always)] #[inline(always)]
pub fn new(isolate: &mut Isolate, string: Local<'s, String>) -> Self { pub fn new(isolate: &mut Isolate, string: Local<'s, String>) -> Self {
let mut v = std::mem::MaybeUninit::uninit(); let mut v: MaybeUninit<ValueView<'_>> = std::mem::MaybeUninit::uninit();
unsafe { unsafe {
v8__String__ValueView__CONSTRUCT(v.as_mut_ptr(), isolate, &*string); v8__String__ValueView__CONSTRUCT(v.as_mut_ptr(), isolate, &*string);
v.assume_init() v.assume_init()