mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2024-12-14 11:48:09 -05:00
869 lines
22 KiB
Go
869 lines
22 KiB
Go
|
// Go support for Protocol Buffers - Google's data interchange format
|
||
|
//
|
||
|
// Copyright 2010 The Go Authors. All rights reserved.
|
||
|
// https://github.com/golang/protobuf
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
package proto
|
||
|
|
||
|
/*
|
||
|
* Routines for decoding protocol buffer data to construct in-memory representations.
|
||
|
*/
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"os"
|
||
|
"reflect"
|
||
|
)
|
||
|
|
||
|
// errOverflow is returned when an integer is too large to be represented.
|
||
|
var errOverflow = errors.New("proto: integer overflow")
|
||
|
|
||
|
// ErrInternalBadWireType is returned by generated code when an incorrect
|
||
|
// wire type is encountered. It does not get returned to user code.
|
||
|
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
|
||
|
|
||
|
// The fundamental decoders that interpret bytes on the wire.
|
||
|
// Those that take integer types all return uint64 and are
|
||
|
// therefore of type valueDecoder.
|
||
|
|
||
|
// DecodeVarint reads a varint-encoded integer from the slice.
|
||
|
// It returns the integer and the number of bytes consumed, or
|
||
|
// zero if there is not enough.
|
||
|
// This is the format for the
|
||
|
// int32, int64, uint32, uint64, bool, and enum
|
||
|
// protocol buffer types.
|
||
|
func DecodeVarint(buf []byte) (x uint64, n int) {
|
||
|
// x, n already 0
|
||
|
for shift := uint(0); shift < 64; shift += 7 {
|
||
|
if n >= len(buf) {
|
||
|
return 0, 0
|
||
|
}
|
||
|
b := uint64(buf[n])
|
||
|
n++
|
||
|
x |= (b & 0x7F) << shift
|
||
|
if (b & 0x80) == 0 {
|
||
|
return x, n
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The number is too large to represent in a 64-bit value.
|
||
|
return 0, 0
|
||
|
}
|
||
|
|
||
|
// DecodeVarint reads a varint-encoded integer from the Buffer.
|
||
|
// This is the format for the
|
||
|
// int32, int64, uint32, uint64, bool, and enum
|
||
|
// protocol buffer types.
|
||
|
func (p *Buffer) DecodeVarint() (x uint64, err error) {
|
||
|
// x, err already 0
|
||
|
|
||
|
i := p.index
|
||
|
l := len(p.buf)
|
||
|
|
||
|
for shift := uint(0); shift < 64; shift += 7 {
|
||
|
if i >= l {
|
||
|
err = io.ErrUnexpectedEOF
|
||
|
return
|
||
|
}
|
||
|
b := p.buf[i]
|
||
|
i++
|
||
|
x |= (uint64(b) & 0x7F) << shift
|
||
|
if b < 0x80 {
|
||
|
p.index = i
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The number is too large to represent in a 64-bit value.
|
||
|
err = errOverflow
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecodeFixed64 reads a 64-bit integer from the Buffer.
|
||
|
// This is the format for the
|
||
|
// fixed64, sfixed64, and double protocol buffer types.
|
||
|
func (p *Buffer) DecodeFixed64() (x uint64, err error) {
|
||
|
// x, err already 0
|
||
|
i := p.index + 8
|
||
|
if i < 0 || i > len(p.buf) {
|
||
|
err = io.ErrUnexpectedEOF
|
||
|
return
|
||
|
}
|
||
|
p.index = i
|
||
|
|
||
|
x = uint64(p.buf[i-8])
|
||
|
x |= uint64(p.buf[i-7]) << 8
|
||
|
x |= uint64(p.buf[i-6]) << 16
|
||
|
x |= uint64(p.buf[i-5]) << 24
|
||
|
x |= uint64(p.buf[i-4]) << 32
|
||
|
x |= uint64(p.buf[i-3]) << 40
|
||
|
x |= uint64(p.buf[i-2]) << 48
|
||
|
x |= uint64(p.buf[i-1]) << 56
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecodeFixed32 reads a 32-bit integer from the Buffer.
|
||
|
// This is the format for the
|
||
|
// fixed32, sfixed32, and float protocol buffer types.
|
||
|
func (p *Buffer) DecodeFixed32() (x uint64, err error) {
|
||
|
// x, err already 0
|
||
|
i := p.index + 4
|
||
|
if i < 0 || i > len(p.buf) {
|
||
|
err = io.ErrUnexpectedEOF
|
||
|
return
|
||
|
}
|
||
|
p.index = i
|
||
|
|
||
|
x = uint64(p.buf[i-4])
|
||
|
x |= uint64(p.buf[i-3]) << 8
|
||
|
x |= uint64(p.buf[i-2]) << 16
|
||
|
x |= uint64(p.buf[i-1]) << 24
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecodeZigzag64 reads a zigzag-encoded 64-bit integer
|
||
|
// from the Buffer.
|
||
|
// This is the format used for the sint64 protocol buffer type.
|
||
|
func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
|
||
|
x, err = p.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecodeZigzag32 reads a zigzag-encoded 32-bit integer
|
||
|
// from the Buffer.
|
||
|
// This is the format used for the sint32 protocol buffer type.
|
||
|
func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
|
||
|
x, err = p.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// These are not ValueDecoders: they produce an array of bytes or a string.
|
||
|
// bytes, embedded messages
|
||
|
|
||
|
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
|
||
|
// This is the format used for the bytes protocol buffer
|
||
|
// type and for embedded messages.
|
||
|
func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
|
||
|
n, err := p.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
nb := int(n)
|
||
|
if nb < 0 {
|
||
|
return nil, fmt.Errorf("proto: bad byte length %d", nb)
|
||
|
}
|
||
|
end := p.index + nb
|
||
|
if end < p.index || end > len(p.buf) {
|
||
|
return nil, io.ErrUnexpectedEOF
|
||
|
}
|
||
|
|
||
|
if !alloc {
|
||
|
// todo: check if can get more uses of alloc=false
|
||
|
buf = p.buf[p.index:end]
|
||
|
p.index += nb
|
||
|
return
|
||
|
}
|
||
|
|
||
|
buf = make([]byte, nb)
|
||
|
copy(buf, p.buf[p.index:])
|
||
|
p.index += nb
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// DecodeStringBytes reads an encoded string from the Buffer.
|
||
|
// This is the format used for the proto2 string type.
|
||
|
func (p *Buffer) DecodeStringBytes() (s string, err error) {
|
||
|
buf, err := p.DecodeRawBytes(false)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
return string(buf), nil
|
||
|
}
|
||
|
|
||
|
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
|
||
|
// If the protocol buffer has extensions, and the field matches, add it as an extension.
|
||
|
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
|
||
|
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
|
||
|
oi := o.index
|
||
|
|
||
|
err := o.skip(t, tag, wire)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
if !unrecField.IsValid() {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
ptr := structPointer_Bytes(base, unrecField)
|
||
|
|
||
|
// Add the skipped field to struct field
|
||
|
obuf := o.buf
|
||
|
|
||
|
o.buf = *ptr
|
||
|
o.EncodeVarint(uint64(tag<<3 | wire))
|
||
|
*ptr = append(o.buf, obuf[oi:o.index]...)
|
||
|
|
||
|
o.buf = obuf
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
|
||
|
func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
|
||
|
|
||
|
var u uint64
|
||
|
var err error
|
||
|
|
||
|
switch wire {
|
||
|
case WireVarint:
|
||
|
_, err = o.DecodeVarint()
|
||
|
case WireFixed64:
|
||
|
_, err = o.DecodeFixed64()
|
||
|
case WireBytes:
|
||
|
_, err = o.DecodeRawBytes(false)
|
||
|
case WireFixed32:
|
||
|
_, err = o.DecodeFixed32()
|
||
|
case WireStartGroup:
|
||
|
for {
|
||
|
u, err = o.DecodeVarint()
|
||
|
if err != nil {
|
||
|
break
|
||
|
}
|
||
|
fwire := int(u & 0x7)
|
||
|
if fwire == WireEndGroup {
|
||
|
break
|
||
|
}
|
||
|
ftag := int(u >> 3)
|
||
|
err = o.skip(t, ftag, fwire)
|
||
|
if err != nil {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
default:
|
||
|
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Unmarshaler is the interface representing objects that can
|
||
|
// unmarshal themselves. The method should reset the receiver before
|
||
|
// decoding starts. The argument points to data that may be
|
||
|
// overwritten, so implementations should not keep references to the
|
||
|
// buffer.
|
||
|
type Unmarshaler interface {
|
||
|
Unmarshal([]byte) error
|
||
|
}
|
||
|
|
||
|
// Unmarshal parses the protocol buffer representation in buf and places the
|
||
|
// decoded result in pb. If the struct underlying pb does not match
|
||
|
// the data in buf, the results can be unpredictable.
|
||
|
//
|
||
|
// Unmarshal resets pb before starting to unmarshal, so any
|
||
|
// existing data in pb is always removed. Use UnmarshalMerge
|
||
|
// to preserve and append to existing data.
|
||
|
func Unmarshal(buf []byte, pb Message) error {
|
||
|
pb.Reset()
|
||
|
return UnmarshalMerge(buf, pb)
|
||
|
}
|
||
|
|
||
|
// UnmarshalMerge parses the protocol buffer representation in buf and
|
||
|
// writes the decoded result to pb. If the struct underlying pb does not match
|
||
|
// the data in buf, the results can be unpredictable.
|
||
|
//
|
||
|
// UnmarshalMerge merges into existing data in pb.
|
||
|
// Most code should use Unmarshal instead.
|
||
|
func UnmarshalMerge(buf []byte, pb Message) error {
|
||
|
// If the object can unmarshal itself, let it.
|
||
|
if u, ok := pb.(Unmarshaler); ok {
|
||
|
return u.Unmarshal(buf)
|
||
|
}
|
||
|
return NewBuffer(buf).Unmarshal(pb)
|
||
|
}
|
||
|
|
||
|
// DecodeMessage reads a count-delimited message from the Buffer.
|
||
|
func (p *Buffer) DecodeMessage(pb Message) error {
|
||
|
enc, err := p.DecodeRawBytes(false)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
return NewBuffer(enc).Unmarshal(pb)
|
||
|
}
|
||
|
|
||
|
// DecodeGroup reads a tag-delimited group from the Buffer.
|
||
|
func (p *Buffer) DecodeGroup(pb Message) error {
|
||
|
typ, base, err := getbase(pb)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base)
|
||
|
}
|
||
|
|
||
|
// Unmarshal parses the protocol buffer representation in the
|
||
|
// Buffer and places the decoded result in pb. If the struct
|
||
|
// underlying pb does not match the data in the buffer, the results can be
|
||
|
// unpredictable.
|
||
|
func (p *Buffer) Unmarshal(pb Message) error {
|
||
|
// If the object can unmarshal itself, let it.
|
||
|
if u, ok := pb.(Unmarshaler); ok {
|
||
|
err := u.Unmarshal(p.buf[p.index:])
|
||
|
p.index = len(p.buf)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
typ, base, err := getbase(pb)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
|
||
|
|
||
|
if collectStats {
|
||
|
stats.Decode++
|
||
|
}
|
||
|
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// unmarshalType does the work of unmarshaling a structure.
|
||
|
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
|
||
|
var state errorState
|
||
|
required, reqFields := prop.reqCount, uint64(0)
|
||
|
|
||
|
var err error
|
||
|
for err == nil && o.index < len(o.buf) {
|
||
|
oi := o.index
|
||
|
var u uint64
|
||
|
u, err = o.DecodeVarint()
|
||
|
if err != nil {
|
||
|
break
|
||
|
}
|
||
|
wire := int(u & 0x7)
|
||
|
if wire == WireEndGroup {
|
||
|
if is_group {
|
||
|
return nil // input is satisfied
|
||
|
}
|
||
|
return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
|
||
|
}
|
||
|
tag := int(u >> 3)
|
||
|
if tag <= 0 {
|
||
|
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
|
||
|
}
|
||
|
fieldnum, ok := prop.decoderTags.get(tag)
|
||
|
if !ok {
|
||
|
// Maybe it's an extension?
|
||
|
if prop.extendable {
|
||
|
if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) {
|
||
|
if err = o.skip(st, tag, wire); err == nil {
|
||
|
ext := e.ExtensionMap()[int32(tag)] // may be missing
|
||
|
ext.enc = append(ext.enc, o.buf[oi:o.index]...)
|
||
|
e.ExtensionMap()[int32(tag)] = ext
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
// Maybe it's a oneof?
|
||
|
if prop.oneofUnmarshaler != nil {
|
||
|
m := structPointer_Interface(base, st).(Message)
|
||
|
// First return value indicates whether tag is a oneof field.
|
||
|
ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
|
||
|
if err == ErrInternalBadWireType {
|
||
|
// Map the error to something more descriptive.
|
||
|
// Do the formatting here to save generated code space.
|
||
|
err = fmt.Errorf("bad wiretype for oneof field in %T", m)
|
||
|
}
|
||
|
if ok {
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
|
||
|
continue
|
||
|
}
|
||
|
p := prop.Prop[fieldnum]
|
||
|
|
||
|
if p.dec == nil {
|
||
|
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
|
||
|
continue
|
||
|
}
|
||
|
dec := p.dec
|
||
|
if wire != WireStartGroup && wire != p.WireType {
|
||
|
if wire == WireBytes && p.packedDec != nil {
|
||
|
// a packable field
|
||
|
dec = p.packedDec
|
||
|
} else {
|
||
|
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
decErr := dec(o, p, base)
|
||
|
if decErr != nil && !state.shouldContinue(decErr, p) {
|
||
|
err = decErr
|
||
|
}
|
||
|
if err == nil && p.Required {
|
||
|
// Successfully decoded a required field.
|
||
|
if tag <= 64 {
|
||
|
// use bitmap for fields 1-64 to catch field reuse.
|
||
|
var mask uint64 = 1 << uint64(tag-1)
|
||
|
if reqFields&mask == 0 {
|
||
|
// new required field
|
||
|
reqFields |= mask
|
||
|
required--
|
||
|
}
|
||
|
} else {
|
||
|
// This is imprecise. It can be fooled by a required field
|
||
|
// with a tag > 64 that is encoded twice; that's very rare.
|
||
|
// A fully correct implementation would require allocating
|
||
|
// a data structure, which we would like to avoid.
|
||
|
required--
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if err == nil {
|
||
|
if is_group {
|
||
|
return io.ErrUnexpectedEOF
|
||
|
}
|
||
|
if state.err != nil {
|
||
|
return state.err
|
||
|
}
|
||
|
if required > 0 {
|
||
|
// Not enough information to determine the exact field. If we use extra
|
||
|
// CPU, we could determine the field only if the missing required field
|
||
|
// has a tag <= 64 and we check reqFields.
|
||
|
return &RequiredNotSetError{"{Unknown}"}
|
||
|
}
|
||
|
}
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Individual type decoders
|
||
|
// For each,
|
||
|
// u is the decoded value,
|
||
|
// v is a pointer to the field (pointer) in the struct
|
||
|
|
||
|
// Sizes of the pools to allocate inside the Buffer.
|
||
|
// The goal is modest amortization and allocation
|
||
|
// on at least 16-byte boundaries.
|
||
|
const (
|
||
|
boolPoolSize = 16
|
||
|
uint32PoolSize = 8
|
||
|
uint64PoolSize = 4
|
||
|
)
|
||
|
|
||
|
// Decode a bool.
|
||
|
func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
if len(o.bools) == 0 {
|
||
|
o.bools = make([]bool, boolPoolSize)
|
||
|
}
|
||
|
o.bools[0] = u != 0
|
||
|
*structPointer_Bool(base, p.field) = &o.bools[0]
|
||
|
o.bools = o.bools[1:]
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
*structPointer_BoolVal(base, p.field) = u != 0
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode an int32.
|
||
|
func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode an int64.
|
||
|
func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
word64_Set(structPointer_Word64(base, p.field), o, u)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a string.
|
||
|
func (o *Buffer) dec_string(p *Properties, base structPointer) error {
|
||
|
s, err := o.DecodeStringBytes()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
*structPointer_String(base, p.field) = &s
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
|
||
|
s, err := o.DecodeStringBytes()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
*structPointer_StringVal(base, p.field) = s
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of bytes ([]byte).
|
||
|
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
|
||
|
b, err := o.DecodeRawBytes(true)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
*structPointer_Bytes(base, p.field) = b
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of bools ([]bool).
|
||
|
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
v := structPointer_BoolSlice(base, p.field)
|
||
|
*v = append(*v, u != 0)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of bools ([]bool) in packed format.
|
||
|
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
|
||
|
v := structPointer_BoolSlice(base, p.field)
|
||
|
|
||
|
nn, err := o.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
nb := int(nn) // number of bytes of encoded bools
|
||
|
fin := o.index + nb
|
||
|
if fin < o.index {
|
||
|
return errOverflow
|
||
|
}
|
||
|
|
||
|
y := *v
|
||
|
for o.index < fin {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
y = append(y, u != 0)
|
||
|
}
|
||
|
|
||
|
*v = y
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of int32s ([]int32).
|
||
|
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
structPointer_Word32Slice(base, p.field).Append(uint32(u))
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of int32s ([]int32) in packed format.
|
||
|
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
|
||
|
v := structPointer_Word32Slice(base, p.field)
|
||
|
|
||
|
nn, err := o.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
nb := int(nn) // number of bytes of encoded int32s
|
||
|
|
||
|
fin := o.index + nb
|
||
|
if fin < o.index {
|
||
|
return errOverflow
|
||
|
}
|
||
|
for o.index < fin {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
v.Append(uint32(u))
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of int64s ([]int64).
|
||
|
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
structPointer_Word64Slice(base, p.field).Append(u)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of int64s ([]int64) in packed format.
|
||
|
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
|
||
|
v := structPointer_Word64Slice(base, p.field)
|
||
|
|
||
|
nn, err := o.DecodeVarint()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
nb := int(nn) // number of bytes of encoded int64s
|
||
|
|
||
|
fin := o.index + nb
|
||
|
if fin < o.index {
|
||
|
return errOverflow
|
||
|
}
|
||
|
for o.index < fin {
|
||
|
u, err := p.valDec(o)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
v.Append(u)
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of strings ([]string).
|
||
|
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
|
||
|
s, err := o.DecodeStringBytes()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
v := structPointer_StringSlice(base, p.field)
|
||
|
*v = append(*v, s)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a slice of slice of bytes ([][]byte).
|
||
|
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
|
||
|
b, err := o.DecodeRawBytes(true)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
v := structPointer_BytesSlice(base, p.field)
|
||
|
*v = append(*v, b)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a map field.
|
||
|
func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
|
||
|
raw, err := o.DecodeRawBytes(false)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
oi := o.index // index at the end of this map entry
|
||
|
o.index -= len(raw) // move buffer back to start of map entry
|
||
|
|
||
|
mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
|
||
|
if mptr.Elem().IsNil() {
|
||
|
mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
|
||
|
}
|
||
|
v := mptr.Elem() // map[K]V
|
||
|
|
||
|
// Prepare addressable doubly-indirect placeholders for the key and value types.
|
||
|
// See enc_new_map for why.
|
||
|
keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
|
||
|
keybase := toStructPointer(keyptr.Addr()) // **K
|
||
|
|
||
|
var valbase structPointer
|
||
|
var valptr reflect.Value
|
||
|
switch p.mtype.Elem().Kind() {
|
||
|
case reflect.Slice:
|
||
|
// []byte
|
||
|
var dummy []byte
|
||
|
valptr = reflect.ValueOf(&dummy) // *[]byte
|
||
|
valbase = toStructPointer(valptr) // *[]byte
|
||
|
case reflect.Ptr:
|
||
|
// message; valptr is **Msg; need to allocate the intermediate pointer
|
||
|
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
|
||
|
valptr.Set(reflect.New(valptr.Type().Elem()))
|
||
|
valbase = toStructPointer(valptr)
|
||
|
default:
|
||
|
// everything else
|
||
|
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
|
||
|
valbase = toStructPointer(valptr.Addr()) // **V
|
||
|
}
|
||
|
|
||
|
// Decode.
|
||
|
// This parses a restricted wire format, namely the encoding of a message
|
||
|
// with two fields. See enc_new_map for the format.
|
||
|
for o.index < oi {
|
||
|
// tagcode for key and value properties are always a single byte
|
||
|
// because they have tags 1 and 2.
|
||
|
tagcode := o.buf[o.index]
|
||
|
o.index++
|
||
|
switch tagcode {
|
||
|
case p.mkeyprop.tagcode[0]:
|
||
|
if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
case p.mvalprop.tagcode[0]:
|
||
|
if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
default:
|
||
|
// TODO: Should we silently skip this instead?
|
||
|
return fmt.Errorf("proto: bad map data tag %d", raw[0])
|
||
|
}
|
||
|
}
|
||
|
keyelem, valelem := keyptr.Elem(), valptr.Elem()
|
||
|
if !keyelem.IsValid() {
|
||
|
keyelem = reflect.Zero(p.mtype.Key())
|
||
|
}
|
||
|
if !valelem.IsValid() {
|
||
|
valelem = reflect.Zero(p.mtype.Elem())
|
||
|
}
|
||
|
|
||
|
v.SetMapIndex(keyelem, valelem)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Decode a group.
|
||
|
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
|
||
|
bas := structPointer_GetStructPointer(base, p.field)
|
||
|
if structPointer_IsNil(bas) {
|
||
|
// allocate new nested message
|
||
|
bas = toStructPointer(reflect.New(p.stype))
|
||
|
structPointer_SetStructPointer(base, p.field, bas)
|
||
|
}
|
||
|
return o.unmarshalType(p.stype, p.sprop, true, bas)
|
||
|
}
|
||
|
|
||
|
// Decode an embedded message.
|
||
|
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
|
||
|
raw, e := o.DecodeRawBytes(false)
|
||
|
if e != nil {
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
bas := structPointer_GetStructPointer(base, p.field)
|
||
|
if structPointer_IsNil(bas) {
|
||
|
// allocate new nested message
|
||
|
bas = toStructPointer(reflect.New(p.stype))
|
||
|
structPointer_SetStructPointer(base, p.field, bas)
|
||
|
}
|
||
|
|
||
|
// If the object can unmarshal itself, let it.
|
||
|
if p.isUnmarshaler {
|
||
|
iv := structPointer_Interface(bas, p.stype)
|
||
|
return iv.(Unmarshaler).Unmarshal(raw)
|
||
|
}
|
||
|
|
||
|
obuf := o.buf
|
||
|
oi := o.index
|
||
|
o.buf = raw
|
||
|
o.index = 0
|
||
|
|
||
|
err = o.unmarshalType(p.stype, p.sprop, false, bas)
|
||
|
o.buf = obuf
|
||
|
o.index = oi
|
||
|
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Decode a slice of embedded messages.
|
||
|
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
|
||
|
return o.dec_slice_struct(p, false, base)
|
||
|
}
|
||
|
|
||
|
// Decode a slice of embedded groups.
|
||
|
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
|
||
|
return o.dec_slice_struct(p, true, base)
|
||
|
}
|
||
|
|
||
|
// Decode a slice of structs ([]*struct).
|
||
|
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
|
||
|
v := reflect.New(p.stype)
|
||
|
bas := toStructPointer(v)
|
||
|
structPointer_StructPointerSlice(base, p.field).Append(bas)
|
||
|
|
||
|
if is_group {
|
||
|
err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
raw, err := o.DecodeRawBytes(false)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// If the object can unmarshal itself, let it.
|
||
|
if p.isUnmarshaler {
|
||
|
iv := v.Interface()
|
||
|
return iv.(Unmarshaler).Unmarshal(raw)
|
||
|
}
|
||
|
|
||
|
obuf := o.buf
|
||
|
oi := o.index
|
||
|
o.buf = raw
|
||
|
o.index = 0
|
||
|
|
||
|
err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
|
||
|
|
||
|
o.buf = obuf
|
||
|
o.index = oi
|
||
|
|
||
|
return err
|
||
|
}
|