1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2024-11-24 08:57:03 -05:00
forgejo/vendor/github.com/klauspost/compress/zstd/enc_dfast.go

1122 lines
29 KiB
Go
Raw Normal View History

// Copyright 2019+ Klaus Post. All rights reserved.
// License information can be found in the LICENSE file.
// Based on work by Yann Collet, released under BSD License.
package zstd
import "fmt"
const (
dFastLongTableBits = 17 // Bits used in the long match table
dFastLongTableSize = 1 << dFastLongTableBits // Size of the table
dFastLongTableMask = dFastLongTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
dLongTableShardCnt = 1 << (dFastLongTableBits - dictShardBits) // Number of shards in the table
dLongTableShardSize = dFastLongTableSize / tableShardCnt // Size of an individual shard
dFastShortTableBits = tableBits // Bits used in the short match table
dFastShortTableSize = 1 << dFastShortTableBits // Size of the table
dFastShortTableMask = dFastShortTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
)
type doubleFastEncoder struct {
fastEncoder
longTable [dFastLongTableSize]tableEntry
}
type doubleFastEncoderDict struct {
fastEncoderDict
longTable [dFastLongTableSize]tableEntry
dictLongTable []tableEntry
longTableShardDirty [dLongTableShardCnt]bool
}
// Encode mimmics functionality in zstd_dfast.c
func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) {
const (
// Input margin is the number of bytes we read (8)
// and the maximum we will read ahead (2)
inputMargin = 8 + 2
minNonLiteralBlockSize = 16
)
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.longTable[:] {
e.longTable[i] = tableEntry{}
}
e.cur = e.maxMatchOff
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
for i := range e.table[:] {
v := e.table[i].offset
if v < minOff {
v = 0
} else {
v = v - e.cur + e.maxMatchOff
}
e.table[i].offset = v
}
for i := range e.longTable[:] {
v := e.longTable[i].offset
if v < minOff {
v = 0
} else {
v = v - e.cur + e.maxMatchOff
}
e.longTable[i].offset = v
}
e.cur = e.maxMatchOff
break
}
s := e.addBlock(src)
blk.size = len(src)
if len(src) < minNonLiteralBlockSize {
blk.extraLits = len(src)
blk.literals = blk.literals[:len(src)]
copy(blk.literals, src)
return
}
// Override src
src = e.hist
sLimit := int32(len(src)) - inputMargin
// stepSize is the number of bytes to skip on every main loop iteration.
// It should be >= 1.
const stepSize = 1
const kSearchStrength = 8
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := s
cv := load6432(src, s)
// Relative offsets
offset1 := int32(blk.recentOffsets[0])
offset2 := int32(blk.recentOffsets[1])
addLiterals := func(s *seq, until int32) {
if until == nextEmit {
return
}
blk.literals = append(blk.literals, src[nextEmit:until]...)
s.litLen = uint32(until - nextEmit)
}
if debugEncoder {
println("recent offsets:", blk.recentOffsets)
}
encodeLoop:
for {
var t int32
// We allow the encoder to optionally turn off repeat offsets across blocks
canRepeat := len(blk.sequences) > 2
for {
if debugAsserts && canRepeat && offset1 == 0 {
panic("offset0 was 0")
}
nextHashS := hash5(cv, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
candidateL := e.longTable[nextHashL]
candidateS := e.table[nextHashS]
const repOff = 1
repIndex := s - offset1 + repOff
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.table[nextHashS] = entry
if canRepeat {
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
// Consider history as well.
var seq seq
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
seq.matchLen = uint32(lenght - zstdMinMatch)
// We might be able to match backwards.
// Extend as long as we can.
start := s + repOff
// We end the search early, so we don't risk 0 literals
// and have to do special offset treatment.
startLimit := nextEmit + 1
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
repIndex--
start--
seq.matchLen++
}
addLiterals(&seq, start)
// rep 0
seq.offset = 1
if debugSequences {
println("repeat sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
s += lenght + repOff
nextEmit = s
if s >= sLimit {
if debugEncoder {
println("repeat ended", s, lenght)
}
break encodeLoop
}
cv = load6432(src, s)
continue
}
}
// Find the offsets of our two matches.
coffsetL := s - (candidateL.offset - e.cur)
coffsetS := s - (candidateS.offset - e.cur)
// Check if we have a long match.
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugMatches {
println("long match")
}
break
}
// Check if we have a short match.
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
// found a regular match
// See if we can find a long match at s+1
const checkAt = 1
cv := load6432(src, s+checkAt)
nextHashL = hash8(cv, dFastLongTableBits)
candidateL = e.longTable[nextHashL]
coffsetL = s - (candidateL.offset - e.cur) + checkAt
// We can store it, since we have at least a 4 byte match.
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
s += checkAt
if debugMatches {
println("long match (after short)")
}
break
}
t = candidateS.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugAsserts && t < 0 {
panic("t<0")
}
if debugMatches {
println("short match")
}
break
}
// No match found, move forward in input.
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
if s >= sLimit {
break encodeLoop
}
cv = load6432(src, s)
}
// A 4-byte match has been found. Update recent offsets.
// We'll later see if more than 4 bytes.
offset2 = offset1
offset1 = s - t
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && canRepeat && int(offset1) > len(src) {
panic("invalid offset")
}
// Extend the 4-byte match as long as possible.
l := e.matchlen(s+4, t+4, src) + 4
// Extend backwards
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
s--
t--
l++
}
// Write our sequence
var seq seq
seq.litLen = uint32(s - nextEmit)
seq.matchLen = uint32(l - zstdMinMatch)
if seq.litLen > 0 {
blk.literals = append(blk.literals, src[nextEmit:s]...)
}
seq.offset = uint32(s-t) + 3
s += l
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
nextEmit = s
if s >= sLimit {
break encodeLoop
}
// Index match start+1 (long) and start+2 (short)
index0 := s - l + 1
// Index match end-2 (long) and end-1 (short)
index1 := s - 2
cv0 := load6432(src, index0)
cv1 := load6432(src, index1)
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
e.longTable[hash8(cv0, dFastLongTableBits)] = te0
e.longTable[hash8(cv1, dFastLongTableBits)] = te1
cv0 >>= 8
cv1 >>= 8
te0.offset++
te1.offset++
te0.val = uint32(cv0)
te1.val = uint32(cv1)
e.table[hash5(cv0, dFastShortTableBits)] = te0
e.table[hash5(cv1, dFastShortTableBits)] = te1
cv = load6432(src, s)
if !canRepeat {
continue
}
// Check offset 2
for {
o2 := s - offset2
if load3232(src, o2) != uint32(cv) {
// Do regular search
break
}
// Store this, since we have it.
nextHashS := hash5(cv, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
// We have at least 4 byte match.
// No need to check backwards. We come straight from a match
l := 4 + e.matchlen(s+4, o2+4, src)
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.table[nextHashS] = entry
seq.matchLen = uint32(l) - zstdMinMatch
seq.litLen = 0
// Since litlen is always 0, this is offset 1.
seq.offset = 1
s += l
nextEmit = s
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
// Swap offset 1 and 2.
offset1, offset2 = offset2, offset1
if s >= sLimit {
// Finished
break encodeLoop
}
cv = load6432(src, s)
}
}
if int(nextEmit) < len(src) {
blk.literals = append(blk.literals, src[nextEmit:]...)
blk.extraLits = len(src) - int(nextEmit)
}
blk.recentOffsets[0] = uint32(offset1)
blk.recentOffsets[1] = uint32(offset2)
if debugEncoder {
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
}
}
// EncodeNoHist will encode a block with no history and no following blocks.
// Most notable difference is that src will not be copied for history and
// we do not need to check for max match length.
func (e *doubleFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
const (
// Input margin is the number of bytes we read (8)
// and the maximum we will read ahead (2)
inputMargin = 8 + 2
minNonLiteralBlockSize = 16
)
// Protect against e.cur wraparound.
if e.cur >= bufferReset {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.longTable[:] {
e.longTable[i] = tableEntry{}
}
e.cur = e.maxMatchOff
}
s := int32(0)
blk.size = len(src)
if len(src) < minNonLiteralBlockSize {
blk.extraLits = len(src)
blk.literals = blk.literals[:len(src)]
copy(blk.literals, src)
return
}
// Override src
sLimit := int32(len(src)) - inputMargin
// stepSize is the number of bytes to skip on every main loop iteration.
// It should be >= 1.
const stepSize = 1
const kSearchStrength = 8
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := s
cv := load6432(src, s)
// Relative offsets
offset1 := int32(blk.recentOffsets[0])
offset2 := int32(blk.recentOffsets[1])
addLiterals := func(s *seq, until int32) {
if until == nextEmit {
return
}
blk.literals = append(blk.literals, src[nextEmit:until]...)
s.litLen = uint32(until - nextEmit)
}
if debugEncoder {
println("recent offsets:", blk.recentOffsets)
}
encodeLoop:
for {
var t int32
for {
nextHashS := hash5(cv, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
candidateL := e.longTable[nextHashL]
candidateS := e.table[nextHashS]
const repOff = 1
repIndex := s - offset1 + repOff
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.table[nextHashS] = entry
if len(blk.sequences) > 2 {
if load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
// Consider history as well.
var seq seq
//length := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
length := 4 + int32(matchLen(src[s+4+repOff:], src[repIndex+4:]))
seq.matchLen = uint32(length - zstdMinMatch)
// We might be able to match backwards.
// Extend as long as we can.
start := s + repOff
// We end the search early, so we don't risk 0 literals
// and have to do special offset treatment.
startLimit := nextEmit + 1
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] {
repIndex--
start--
seq.matchLen++
}
addLiterals(&seq, start)
// rep 0
seq.offset = 1
if debugSequences {
println("repeat sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
s += length + repOff
nextEmit = s
if s >= sLimit {
if debugEncoder {
println("repeat ended", s, length)
}
break encodeLoop
}
cv = load6432(src, s)
continue
}
}
// Find the offsets of our two matches.
coffsetL := s - (candidateL.offset - e.cur)
coffsetS := s - (candidateS.offset - e.cur)
// Check if we have a long match.
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d). cur: %d", s, t, e.cur))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugMatches {
println("long match")
}
break
}
// Check if we have a short match.
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
// found a regular match
// See if we can find a long match at s+1
const checkAt = 1
cv := load6432(src, s+checkAt)
nextHashL = hash8(cv, dFastLongTableBits)
candidateL = e.longTable[nextHashL]
coffsetL = s - (candidateL.offset - e.cur) + checkAt
// We can store it, since we have at least a 4 byte match.
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
s += checkAt
if debugMatches {
println("long match (after short)")
}
break
}
t = candidateS.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugAsserts && t < 0 {
panic("t<0")
}
if debugMatches {
println("short match")
}
break
}
// No match found, move forward in input.
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
if s >= sLimit {
break encodeLoop
}
cv = load6432(src, s)
}
// A 4-byte match has been found. Update recent offsets.
// We'll later see if more than 4 bytes.
offset2 = offset1
offset1 = s - t
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
// Extend the 4-byte match as long as possible.
//l := e.matchlen(s+4, t+4, src) + 4
l := int32(matchLen(src[s+4:], src[t+4:])) + 4
// Extend backwards
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for t > tMin && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
// Write our sequence
var seq seq
seq.litLen = uint32(s - nextEmit)
seq.matchLen = uint32(l - zstdMinMatch)
if seq.litLen > 0 {
blk.literals = append(blk.literals, src[nextEmit:s]...)
}
seq.offset = uint32(s-t) + 3
s += l
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
nextEmit = s
if s >= sLimit {
break encodeLoop
}
// Index match start+1 (long) and start+2 (short)
index0 := s - l + 1
// Index match end-2 (long) and end-1 (short)
index1 := s - 2
cv0 := load6432(src, index0)
cv1 := load6432(src, index1)
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
e.longTable[hash8(cv0, dFastLongTableBits)] = te0
e.longTable[hash8(cv1, dFastLongTableBits)] = te1
cv0 >>= 8
cv1 >>= 8
te0.offset++
te1.offset++
te0.val = uint32(cv0)
te1.val = uint32(cv1)
e.table[hash5(cv0, dFastShortTableBits)] = te0
e.table[hash5(cv1, dFastShortTableBits)] = te1
cv = load6432(src, s)
if len(blk.sequences) <= 2 {
continue
}
// Check offset 2
for {
o2 := s - offset2
if load3232(src, o2) != uint32(cv) {
// Do regular search
break
}
// Store this, since we have it.
nextHashS := hash5(cv1>>8, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
// We have at least 4 byte match.
// No need to check backwards. We come straight from a match
//l := 4 + e.matchlen(s+4, o2+4, src)
l := 4 + int32(matchLen(src[s+4:], src[o2+4:]))
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.table[nextHashS] = entry
seq.matchLen = uint32(l) - zstdMinMatch
seq.litLen = 0
// Since litlen is always 0, this is offset 1.
seq.offset = 1
s += l
nextEmit = s
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
// Swap offset 1 and 2.
offset1, offset2 = offset2, offset1
if s >= sLimit {
// Finished
break encodeLoop
}
cv = load6432(src, s)
}
}
if int(nextEmit) < len(src) {
blk.literals = append(blk.literals, src[nextEmit:]...)
blk.extraLits = len(src) - int(nextEmit)
}
if debugEncoder {
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
}
// We do not store history, so we must offset e.cur to avoid false matches for next user.
if e.cur < bufferReset {
e.cur += int32(len(src))
}
}
// Encode will encode the content, with a dictionary if initialized for it.
func (e *doubleFastEncoderDict) Encode(blk *blockEnc, src []byte) {
const (
// Input margin is the number of bytes we read (8)
// and the maximum we will read ahead (2)
inputMargin = 8 + 2
minNonLiteralBlockSize = 16
)
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.longTable[:] {
e.longTable[i] = tableEntry{}
}
e.markAllShardsDirty()
e.cur = e.maxMatchOff
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
for i := range e.table[:] {
v := e.table[i].offset
if v < minOff {
v = 0
} else {
v = v - e.cur + e.maxMatchOff
}
e.table[i].offset = v
}
for i := range e.longTable[:] {
v := e.longTable[i].offset
if v < minOff {
v = 0
} else {
v = v - e.cur + e.maxMatchOff
}
e.longTable[i].offset = v
}
e.markAllShardsDirty()
e.cur = e.maxMatchOff
break
}
s := e.addBlock(src)
blk.size = len(src)
if len(src) < minNonLiteralBlockSize {
blk.extraLits = len(src)
blk.literals = blk.literals[:len(src)]
copy(blk.literals, src)
return
}
// Override src
src = e.hist
sLimit := int32(len(src)) - inputMargin
// stepSize is the number of bytes to skip on every main loop iteration.
// It should be >= 1.
const stepSize = 1
const kSearchStrength = 8
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := s
cv := load6432(src, s)
// Relative offsets
offset1 := int32(blk.recentOffsets[0])
offset2 := int32(blk.recentOffsets[1])
addLiterals := func(s *seq, until int32) {
if until == nextEmit {
return
}
blk.literals = append(blk.literals, src[nextEmit:until]...)
s.litLen = uint32(until - nextEmit)
}
if debugEncoder {
println("recent offsets:", blk.recentOffsets)
}
encodeLoop:
for {
var t int32
// We allow the encoder to optionally turn off repeat offsets across blocks
canRepeat := len(blk.sequences) > 2
for {
if debugAsserts && canRepeat && offset1 == 0 {
panic("offset0 was 0")
}
nextHashS := hash5(cv, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
candidateL := e.longTable[nextHashL]
candidateS := e.table[nextHashS]
const repOff = 1
repIndex := s - offset1 + repOff
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.markLongShardDirty(nextHashL)
e.table[nextHashS] = entry
e.markShardDirty(nextHashS)
if canRepeat {
if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) {
// Consider history as well.
var seq seq
lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src)
seq.matchLen = uint32(lenght - zstdMinMatch)
// We might be able to match backwards.
// Extend as long as we can.
start := s + repOff
// We end the search early, so we don't risk 0 literals
// and have to do special offset treatment.
startLimit := nextEmit + 1
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
repIndex--
start--
seq.matchLen++
}
addLiterals(&seq, start)
// rep 0
seq.offset = 1
if debugSequences {
println("repeat sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
s += lenght + repOff
nextEmit = s
if s >= sLimit {
if debugEncoder {
println("repeat ended", s, lenght)
}
break encodeLoop
}
cv = load6432(src, s)
continue
}
}
// Find the offsets of our two matches.
coffsetL := s - (candidateL.offset - e.cur)
coffsetS := s - (candidateS.offset - e.cur)
// Check if we have a long match.
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugMatches {
println("long match")
}
break
}
// Check if we have a short match.
if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val {
// found a regular match
// See if we can find a long match at s+1
const checkAt = 1
cv := load6432(src, s+checkAt)
nextHashL = hash8(cv, dFastLongTableBits)
candidateL = e.longTable[nextHashL]
coffsetL = s - (candidateL.offset - e.cur) + checkAt
// We can store it, since we have at least a 4 byte match.
e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)}
e.markLongShardDirty(nextHashL)
if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val {
// Found a long match, likely at least 8 bytes.
// Reference encoder checks all 8 bytes, we only check 4,
// but the likelihood of both the first 4 bytes and the hash matching should be enough.
t = candidateL.offset - e.cur
s += checkAt
if debugMatches {
println("long match (after short)")
}
break
}
t = candidateS.offset - e.cur
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && s-t > e.maxMatchOff {
panic("s - t >e.maxMatchOff")
}
if debugAsserts && t < 0 {
panic("t<0")
}
if debugMatches {
println("short match")
}
break
}
// No match found, move forward in input.
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
if s >= sLimit {
break encodeLoop
}
cv = load6432(src, s)
}
// A 4-byte match has been found. Update recent offsets.
// We'll later see if more than 4 bytes.
offset2 = offset1
offset1 = s - t
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && canRepeat && int(offset1) > len(src) {
panic("invalid offset")
}
// Extend the 4-byte match as long as possible.
l := e.matchlen(s+4, t+4, src) + 4
// Extend backwards
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
s--
t--
l++
}
// Write our sequence
var seq seq
seq.litLen = uint32(s - nextEmit)
seq.matchLen = uint32(l - zstdMinMatch)
if seq.litLen > 0 {
blk.literals = append(blk.literals, src[nextEmit:s]...)
}
seq.offset = uint32(s-t) + 3
s += l
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
nextEmit = s
if s >= sLimit {
break encodeLoop
}
// Index match start+1 (long) and start+2 (short)
index0 := s - l + 1
// Index match end-2 (long) and end-1 (short)
index1 := s - 2
cv0 := load6432(src, index0)
cv1 := load6432(src, index1)
te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)}
te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)}
longHash1 := hash8(cv0, dFastLongTableBits)
longHash2 := hash8(cv0, dFastLongTableBits)
e.longTable[longHash1] = te0
e.longTable[longHash2] = te1
e.markLongShardDirty(longHash1)
e.markLongShardDirty(longHash2)
cv0 >>= 8
cv1 >>= 8
te0.offset++
te1.offset++
te0.val = uint32(cv0)
te1.val = uint32(cv1)
hashVal1 := hash5(cv0, dFastShortTableBits)
hashVal2 := hash5(cv1, dFastShortTableBits)
e.table[hashVal1] = te0
e.markShardDirty(hashVal1)
e.table[hashVal2] = te1
e.markShardDirty(hashVal2)
cv = load6432(src, s)
if !canRepeat {
continue
}
// Check offset 2
for {
o2 := s - offset2
if load3232(src, o2) != uint32(cv) {
// Do regular search
break
}
// Store this, since we have it.
nextHashS := hash5(cv, dFastShortTableBits)
nextHashL := hash8(cv, dFastLongTableBits)
// We have at least 4 byte match.
// No need to check backwards. We come straight from a match
l := 4 + e.matchlen(s+4, o2+4, src)
entry := tableEntry{offset: s + e.cur, val: uint32(cv)}
e.longTable[nextHashL] = entry
e.markLongShardDirty(nextHashL)
e.table[nextHashS] = entry
e.markShardDirty(nextHashS)
seq.matchLen = uint32(l) - zstdMinMatch
seq.litLen = 0
// Since litlen is always 0, this is offset 1.
seq.offset = 1
s += l
nextEmit = s
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
// Swap offset 1 and 2.
offset1, offset2 = offset2, offset1
if s >= sLimit {
// Finished
break encodeLoop
}
cv = load6432(src, s)
}
}
if int(nextEmit) < len(src) {
blk.literals = append(blk.literals, src[nextEmit:]...)
blk.extraLits = len(src) - int(nextEmit)
}
blk.recentOffsets[0] = uint32(offset1)
blk.recentOffsets[1] = uint32(offset2)
if debugEncoder {
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
}
// If we encoded more than 64K mark all dirty.
if len(src) > 64<<10 {
e.markAllShardsDirty()
}
}
// ResetDict will reset and set a dictionary if not nil
func (e *doubleFastEncoder) Reset(d *dict, singleBlock bool) {
e.fastEncoder.Reset(d, singleBlock)
if d != nil {
panic("doubleFastEncoder: Reset with dict not supported")
}
}
// ResetDict will reset and set a dictionary if not nil
func (e *doubleFastEncoderDict) Reset(d *dict, singleBlock bool) {
allDirty := e.allDirty
e.fastEncoderDict.Reset(d, singleBlock)
if d == nil {
return
}
// Init or copy dict table
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID {
if len(e.dictLongTable) != len(e.longTable) {
e.dictLongTable = make([]tableEntry, len(e.longTable))
}
if len(d.content) >= 8 {
cv := load6432(d.content, 0)
e.dictLongTable[hash8(cv, dFastLongTableBits)] = tableEntry{
val: uint32(cv),
offset: e.maxMatchOff,
}
end := int32(len(d.content)) - 8 + e.maxMatchOff
for i := e.maxMatchOff + 1; i < end; i++ {
cv = cv>>8 | (uint64(d.content[i-e.maxMatchOff+7]) << 56)
e.dictLongTable[hash8(cv, dFastLongTableBits)] = tableEntry{
val: uint32(cv),
offset: i,
}
}
}
e.lastDictID = d.id
e.allDirty = true
}
// Reset table to initial state
e.cur = e.maxMatchOff
dirtyShardCnt := 0
if !allDirty {
for i := range e.longTableShardDirty {
if e.longTableShardDirty[i] {
dirtyShardCnt++
}
}
}
if allDirty || dirtyShardCnt > dLongTableShardCnt/2 {
copy(e.longTable[:], e.dictLongTable)
for i := range e.longTableShardDirty {
e.longTableShardDirty[i] = false
}
return
}
for i := range e.longTableShardDirty {
if !e.longTableShardDirty[i] {
continue
}
copy(e.longTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize], e.dictLongTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize])
e.longTableShardDirty[i] = false
}
}
func (e *doubleFastEncoderDict) markLongShardDirty(entryNum uint32) {
e.longTableShardDirty[entryNum/dLongTableShardSize] = true
}