1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2024-12-15 11:58:11 -05:00
forgejo/vendor/github.com/klauspost/compress/flate/deflate.go

1352 lines
37 KiB
Go
Raw Normal View History

2016-11-03 18:16:01 -04:00
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright (c) 2015 Klaus Post
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"fmt"
"io"
"math"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
ConstantCompression = HuffmanOnly // compatibility alias.
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
logMaxOffsetSize = 15 // Standard DEFLATE
minMatchLength = 4 // The smallest match that the compressor looks for
maxMatchLength = 258 // The longest match for the compressor
minOffsetSize = 1 // The shortest offset that makes any sense
// The maximum number of tokens we put into a single flat block, just too
// stop things from getting too large.
maxFlateBlockTokens = 1 << 14
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
hashShift = (hashBits + minMatchLength - 1) / minMatchLength
maxHashOffset = 1 << 24
skipNever = math.MaxInt32
)
var useSSE42 bool
type compressionLevel struct {
good, lazy, nice, chain, fastSkipHashing, level int
}
// Compression levels have been rebalanced from zlib deflate defaults
// to give a bigger spread in speed and compression.
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
var levels = []compressionLevel{
{}, // 0
// Level 1-4 uses specialized algorithm - values not used
{0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 2},
{0, 0, 0, 0, 0, 3},
{0, 0, 0, 0, 0, 4},
// For levels 5-6 we don't bother trying with lazy matches.
// Lazy matching is at least 30% slower, with 1.5% increase.
{6, 0, 12, 8, 12, 5},
{8, 0, 24, 16, 16, 6},
// Levels 7-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{8, 8, 24, 16, skipNever, 7},
{10, 16, 24, 64, skipNever, 8},
{32, 258, 258, 4096, skipNever, 9},
}
type compressor struct {
compressionLevel
w *huffmanBitWriter
bulkHasher func([]byte, []uint32)
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
sync bool // requesting flush
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
chainHead int
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
hashOffset int
// input window: unprocessed data is window[index:windowEnd]
index int
window []byte
windowEnd int
blockStart int // window index where current tokens start
byteAvailable bool // if true, still need to process window[index-1].
// queued output tokens
tokens tokens
// deflate state
length int
offset int
hash uint32
maxInsertIndex int
err error
ii uint16 // position of last match, intended to overflow to reset.
snap snappyEnc
hashMatch [maxMatchLength + minMatchLength]uint32
}
func (d *compressor) fillDeflate(b []byte) int {
if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window[:], d.window[windowSize:2*windowSize])
d.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
d.hashOffset += windowSize
if d.hashOffset > maxHashOffset {
delta := d.hashOffset - 1
d.hashOffset -= delta
d.chainHead -= delta
for i, v := range d.hashPrev {
if int(v) > delta {
d.hashPrev[i] = uint32(int(v) - delta)
} else {
d.hashPrev[i] = 0
}
}
for i, v := range d.hashHead {
if int(v) > delta {
d.hashHead[i] = uint32(int(v) - delta)
} else {
d.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tok tokens, index int, eof bool) error {
if index > 0 || eof {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
d.w.writeBlock(tok.tokens[:tok.n], eof, window)
return d.w.err
}
return nil
}
// writeBlockSkip writes the current block and uses the number of tokens
// to determine if the block should be stored on no matches, or
// only huffman encoded.
func (d *compressor) writeBlockSkip(tok tokens, index int, eof bool) error {
if index > 0 || eof {
if d.blockStart <= index {
window := d.window[d.blockStart:index]
// If we removed less than a 64th of all literals
// we huffman compress the block.
if int(tok.n) > len(window)-int(tok.n>>6) {
d.w.writeBlockHuff(eof, window)
} else {
// Write a dynamic huffman block.
d.w.writeBlockDynamic(tok.tokens[:tok.n], eof, window)
}
} else {
d.w.writeBlock(tok.tokens[:tok.n], eof, nil)
}
d.blockStart = index
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a start/reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only mode,
// use constant or Snappy compression.
switch d.compressionLevel.level {
case 0, 1, 2:
return
}
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window[d.windowEnd:], b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
startindex := j * 256
end := startindex + 256 + minMatchLength - 1
if end > n {
end = n
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := d.hashMatch[:dstSize]
d.bulkHasher(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = d.hashHead[newH]
// Set the head of the hash chain to us.
d.hashHead[newH] = uint32(di + d.hashOffset)
}
d.hash = newH
}
// Update window information.
d.windowEnd += n
d.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = prevLength
if length >= d.good {
tries >>= 2
}
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:], wPos, minMatchLook)
if n > length && (n > minMatchLength || pos-i <= 4096) {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i == minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.hashPrev[i&windowMask]) - d.hashOffset
if i < minIndex || i < 0 {
break
}
}
return
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
// pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
func (d *compressor) findMatchSSE(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = prevLength
if length >= d.good {
tries >>= 2
}
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLenSSE4(win[i:], wPos, minMatchLook)
if n > length && (n > minMatchLength || pos-i <= 4096) {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i == minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.hashPrev[i&windowMask]) - d.hashOffset
if i < minIndex || i < 0 {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
const hashmul = 0x1e35a7bd
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4
func bulkHash4(b []byte, dst []uint32) {
if len(b) < minMatchLength {
return
}
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
dst[0] = (hb * hashmul) >> (32 - hashBits)
end := len(b) - minMatchLength + 1
for i := 1; i < end; i++ {
hb = (hb << 8) | uint32(b[i+3])
dst[i] = (hb * hashmul) >> (32 - hashBits)
}
}
// matchLen returns the number of matching bytes in a and b
// up to length 'max'. Both slices must be at least 'max'
// bytes in size.
func matchLen(a, b []byte, max int) int {
a = a[:max]
b = b[:len(a)]
for i, av := range a {
if b[i] != av {
return i
}
}
return max
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.hashOffset = 1
d.length = minMatchLength - 1
d.offset = 0
d.byteAvailable = false
d.index = 0
d.hash = 0
d.chainHead = -1
d.bulkHasher = bulkHash4
if useSSE42 {
d.bulkHasher = crc32sseAll
}
}
// Assumes that d.fastSkipHashing != skipNever,
// otherwise use deflateLazy
func (d *compressor) deflate() {
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = false
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
return
}
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if d.index < d.maxInsertIndex {
d.hash = hash4(d.window[d.index : d.index+minMatchLength])
}
for {
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - d.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
if d.tokens.n > 0 {
if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
return
}
}
if d.index < d.maxInsertIndex {
// Update the hash
d.hash = hash4(d.window[d.index : d.index+minMatchLength])
ch := d.hashHead[d.hash&hashMask]
d.chainHead = int(ch)
d.hashPrev[d.index&windowMask] = ch
d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
}
d.length = minMatchLength - 1
d.offset = 0
minIndex := d.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
d.length = newLength
d.offset = newOffset
}
}
if d.length >= minMatchLength {
d.ii = 0
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
// "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
d.tokens.n++
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
if d.length <= d.fastSkipHashing {
var newIndex int
newIndex = d.index + d.length
// Calculate missing hashes
end := newIndex
if end > d.maxInsertIndex {
end = d.maxInsertIndex
}
end += minMatchLength - 1
startindex := d.index + 1
if startindex > d.maxInsertIndex {
startindex = d.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := d.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = d.hashHead[newH]
// Set the head of the hash chain to us.
d.hashHead[newH] = uint32(di + d.hashOffset)
}
d.hash = newH
}
d.index = newIndex
} else {
// For matches this long, we don't bother inserting each individual
// item into the table.
d.index += d.length
if d.index < d.maxInsertIndex {
d.hash = hash4(d.window[d.index : d.index+minMatchLength])
}
}
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
} else {
d.ii++
end := d.index + int(d.ii>>uint(d.fastSkipHashing)) + 1
if end > d.windowEnd {
end = d.windowEnd
}
for i := d.index; i < end; i++ {
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
return
}
d.tokens.n = 0
}
}
d.index = end
}
}
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazy() {
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = false
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
return
}
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if d.index < d.maxInsertIndex {
d.hash = hash4(d.window[d.index : d.index+minMatchLength])
}
for {
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - d.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
return
}
}
if d.index < d.maxInsertIndex {
// Update the hash
d.hash = hash4(d.window[d.index : d.index+minMatchLength])
ch := d.hashHead[d.hash&hashMask]
d.chainHead = int(ch)
d.hashPrev[d.index&windowMask] = ch
d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
}
prevLength := d.length
prevOffset := d.offset
d.length = minMatchLength - 1
d.offset = 0
minIndex := d.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
d.length = newLength
d.offset = newOffset
}
}
if prevLength >= minMatchLength && d.length <= prevLength {
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
d.tokens.n++
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
var newIndex int
newIndex = d.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > d.maxInsertIndex {
end = d.maxInsertIndex
}
end += minMatchLength - 1
startindex := d.index + 1
if startindex > d.maxInsertIndex {
startindex = d.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := d.hashMatch[:dstSize]
bulkHash4(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = d.hashHead[newH]
// Set the head of the hash chain to us.
d.hashHead[newH] = uint32(di + d.hashOffset)
}
d.hash = newH
}
d.index = newIndex
d.byteAvailable = false
d.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
} else {
// Reset, if we got a match this run.
if d.length >= minMatchLength {
d.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
d.ii++
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
d.index++
// If we have a long run of no matches, skip additional bytes
// Resets when d.ii overflows after 64KB.
if d.ii > 31 {
n := int(d.ii >> 5)
for j := 0; j < n; j++ {
if d.index >= d.windowEnd-1 {
break
}
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
d.index++
}
// Flush last byte
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
d.byteAvailable = false
// d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
}
} else {
d.index++
d.byteAvailable = true
}
}
}
}
// Assumes that d.fastSkipHashing != skipNever,
// otherwise use deflateLazySSE
func (d *compressor) deflateSSE() {
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = false
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
return
}
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if d.index < d.maxInsertIndex {
d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
}
for {
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - d.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
if d.tokens.n > 0 {
if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
return
}
}
if d.index < d.maxInsertIndex {
// Update the hash
d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
ch := d.hashHead[d.hash]
d.chainHead = int(ch)
d.hashPrev[d.index&windowMask] = ch
d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
}
d.length = minMatchLength - 1
d.offset = 0
minIndex := d.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
d.length = newLength
d.offset = newOffset
}
}
if d.length >= minMatchLength {
d.ii = 0
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
// "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
d.tokens.n++
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
if d.length <= d.fastSkipHashing {
var newIndex int
newIndex = d.index + d.length
// Calculate missing hashes
end := newIndex
if end > d.maxInsertIndex {
end = d.maxInsertIndex
}
end += minMatchLength - 1
startindex := d.index + 1
if startindex > d.maxInsertIndex {
startindex = d.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := d.hashMatch[:dstSize]
crc32sseAll(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = d.hashHead[newH]
// Set the head of the hash chain to us.
d.hashHead[newH] = uint32(di + d.hashOffset)
}
d.hash = newH
}
d.index = newIndex
} else {
// For matches this long, we don't bother inserting each individual
// item into the table.
d.index += d.length
if d.index < d.maxInsertIndex {
d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
}
}
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
} else {
d.ii++
end := d.index + int(d.ii>>5) + 1
if end > d.windowEnd {
end = d.windowEnd
}
for i := d.index; i < end; i++ {
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
return
}
d.tokens.n = 0
}
}
d.index = end
}
}
}
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
// meaning it always has lazy matching on.
func (d *compressor) deflateLazySSE() {
// Sanity enables additional runtime tests.
// It's intended to be used during development
// to supplement the currently ad-hoc unit tests.
const sanity = false
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
return
}
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
if d.index < d.maxInsertIndex {
d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
}
for {
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - d.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
return
}
if sanity && d.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
d.byteAvailable = false
}
if d.tokens.n > 0 {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
return
}
}
if d.index < d.maxInsertIndex {
// Update the hash
d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
ch := d.hashHead[d.hash]
d.chainHead = int(ch)
d.hashPrev[d.index&windowMask] = ch
d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
}
prevLength := d.length
prevOffset := d.offset
d.length = minMatchLength - 1
d.offset = 0
minIndex := d.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
d.length = newLength
d.offset = newOffset
}
}
if prevLength >= minMatchLength && d.length <= prevLength {
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
d.tokens.n++
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
var newIndex int
newIndex = d.index + prevLength - 1
// Calculate missing hashes
end := newIndex
if end > d.maxInsertIndex {
end = d.maxInsertIndex
}
end += minMatchLength - 1
startindex := d.index + 1
if startindex > d.maxInsertIndex {
startindex = d.maxInsertIndex
}
tocheck := d.window[startindex:end]
dstSize := len(tocheck) - minMatchLength + 1
if dstSize > 0 {
dst := d.hashMatch[:dstSize]
crc32sseAll(tocheck, dst)
var newH uint32
for i, val := range dst {
di := i + startindex
newH = val & hashMask
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = d.hashHead[newH]
// Set the head of the hash chain to us.
d.hashHead[newH] = uint32(di + d.hashOffset)
}
d.hash = newH
}
d.index = newIndex
d.byteAvailable = false
d.length = minMatchLength - 1
if d.tokens.n == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
} else {
// Reset, if we got a match this run.
if d.length >= minMatchLength {
d.ii = 0
}
// We have a byte waiting. Emit it.
if d.byteAvailable {
d.ii++
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
d.index++
// If we have a long run of no matches, skip additional bytes
// Resets when d.ii overflows after 64KB.
if d.ii > 31 {
n := int(d.ii >> 6)
for j := 0; j < n; j++ {
if d.index >= d.windowEnd-1 {
break
}
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
d.index++
}
// Flush last byte
d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
d.tokens.n++
d.byteAvailable = false
// d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
if d.tokens.n == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
return
}
d.tokens.n = 0
}
}
} else {
d.index++
d.byteAvailable = true
}
}
}
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// fillWindow will fill the buffer with data for huffman-only compression.
// The number of bytes copied is returned.
func (d *compressor) fillBlock(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
d.err = d.w.err
d.windowEnd = 0
}
// storeHuff will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeSnappy() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < maxStoreBlockSize {
if !d.sync {
return
}
// Handle extremely small sizes.
if d.windowEnd < 128 {
if d.windowEnd == 0 {
return
}
if d.windowEnd <= 32 {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.tokens.n = 0
d.windowEnd = 0
} else {
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
d.err = d.w.err
}
d.tokens.n = 0
d.windowEnd = 0
d.snap.Reset()
return
}
}
d.snap.Encode(&d.tokens, d.window[:d.windowEnd])
// If we made zero matches, store the block as is.
if int(d.tokens.n) == d.windowEnd {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
// If we removed less than 1/16th, huffman compress the block.
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
d.err = d.w.err
} else {
d.w.writeBlockDynamic(d.tokens.tokens[:d.tokens.n], false, d.window[:d.windowEnd])
d.err = d.w.err
}
d.tokens.n = 0
d.windowEnd = 0
}
// write will add input byte to the stream.
// Unless an error occurs all bytes will be consumed.
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
d.step(d)
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, d.err
}
func (d *compressor) syncFlush() error {
d.sync = true
if d.err != nil {
return d.err
}
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).store
case level == ConstantCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeHuff
case level >= 1 && level <= 4:
d.snap = newSnappy(level)
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillBlock
d.step = (*compressor).storeSnappy
case level == DefaultCompression:
level = 5
fallthrough
case 5 <= level && level <= 9:
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
if d.fastSkipHashing == skipNever {
if useSSE42 {
d.step = (*compressor).deflateLazySSE
} else {
d.step = (*compressor).deflateLazy
}
} else {
if useSSE42 {
d.step = (*compressor).deflateSSE
} else {
d.step = (*compressor).deflate
}
}
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
return nil
}
// reset the state of the compressor.
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
// We only need to reset a few things for Snappy.
if d.snap != nil {
d.snap.Reset()
d.windowEnd = 0
d.tokens.n = 0
return
}
switch d.compressionLevel.chain {
case 0:
// level was NoCompression or ConstantCompresssion.
d.windowEnd = 0
default:
d.chainHead = -1
for i := range d.hashHead {
d.hashHead[i] = 0
}
for i := range d.hashPrev {
d.hashPrev[i] = 0
}
d.hashOffset = 1
d.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens.n = 0
d.length = minMatchLength - 1
d.offset = 0
d.hash = 0
d.ii = 0
d.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
return d.w.err
}
// NewWriter returns a new Writer compressing data at the given level.
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
// higher levels typically run slower but compress more.
// Level 0 (NoCompression) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 (DefaultCompression) uses the default compression level.
// Level -2 (ConstantCompression) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like NewWriter but initializes the new
// Writer with a preset dictionary. The returned Writer behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a Reader initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
dw := &dictWriter{w}
zw, err := NewWriter(dw, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
type dictWriter struct {
w io.Writer
}
func (w *dictWriter) Write(b []byte) (n int, err error) {
return w.w.Write(b)
}
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see NewWriter).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the Writer
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// http://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if dw, ok := w.d.w.writer.(*dictWriter); ok {
// w was created with NewWriterDict
dw.w = dst
w.d.reset(dw)
w.d.fillWindow(w.dict)
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}
// ResetDict discards the writer's state and makes it equivalent to
// the result of NewWriter or NewWriterDict called with dst
// and w's level, but sets a specific dictionary.
func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
w.dict = dict
w.d.reset(dst)
w.d.fillWindow(w.dict)
}