1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2025-01-06 15:06:06 -05:00
forgejo/vendor/github.com/klauspost/compress/zstd/fse_encoder.go

727 lines
19 KiB
Go
Raw Normal View History

// Copyright 2019+ Klaus Post. All rights reserved.
// License information can be found in the LICENSE file.
// Based on work by Yann Collet, released under BSD License.
package zstd
import (
"errors"
"fmt"
"math"
)
const (
// For encoding we only support up to
maxEncTableLog = 8
maxEncTablesize = 1 << maxTableLog
maxEncTableMask = (1 << maxTableLog) - 1
minEncTablelog = 5
maxEncSymbolValue = maxMatchLengthSymbol
)
// Scratch provides temporary storage for compression and decompression.
type fseEncoder struct {
symbolLen uint16 // Length of active part of the symbol table.
actualTableLog uint8 // Selected tablelog.
ct cTable // Compression tables.
maxCount int // count of the most probable symbol
zeroBits bool // no bits has prob > 50%.
clearCount bool // clear count
useRLE bool // This encoder is for RLE
preDefined bool // This encoder is predefined.
reUsed bool // Set to know when the encoder has been reused.
rleVal uint8 // RLE Symbol
maxBits uint8 // Maximum output bits after transform.
// TODO: Technically zstd should be fine with 64 bytes.
count [256]uint32
norm [256]int16
}
// cTable contains tables used for compression.
type cTable struct {
tableSymbol []byte
stateTable []uint16
symbolTT []symbolTransform
}
// symbolTransform contains the state transform for a symbol.
type symbolTransform struct {
deltaNbBits uint32
deltaFindState int16
outBits uint8
}
// String prints values as a human readable string.
func (s symbolTransform) String() string {
return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits)
}
// Histogram allows to populate the histogram and skip that step in the compression,
// It otherwise allows to inspect the histogram when compression is done.
// To indicate that you have populated the histogram call HistogramFinished
// with the value of the highest populated symbol, as well as the number of entries
// in the most populated entry. These are accepted at face value.
// The returned slice will always be length 256.
func (s *fseEncoder) Histogram() []uint32 {
return s.count[:]
}
// HistogramFinished can be called to indicate that the histogram has been populated.
// maxSymbol is the index of the highest set symbol of the next data segment.
// maxCount is the number of entries in the most populated entry.
// These are accepted at face value.
func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) {
s.maxCount = maxCount
s.symbolLen = uint16(maxSymbol) + 1
s.clearCount = maxCount != 0
}
// prepare will prepare and allocate scratch tables used for both compression and decompression.
func (s *fseEncoder) prepare() (*fseEncoder, error) {
if s == nil {
s = &fseEncoder{}
}
s.useRLE = false
if s.clearCount && s.maxCount == 0 {
for i := range s.count {
s.count[i] = 0
}
s.clearCount = false
}
return s, nil
}
// allocCtable will allocate tables needed for compression.
// If existing tables a re big enough, they are simply re-used.
func (s *fseEncoder) allocCtable() {
tableSize := 1 << s.actualTableLog
// get tableSymbol that is big enough.
if cap(s.ct.tableSymbol) < int(tableSize) {
s.ct.tableSymbol = make([]byte, tableSize)
}
s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
ctSize := tableSize
if cap(s.ct.stateTable) < ctSize {
s.ct.stateTable = make([]uint16, ctSize)
}
s.ct.stateTable = s.ct.stateTable[:ctSize]
if cap(s.ct.symbolTT) < 256 {
s.ct.symbolTT = make([]symbolTransform, 256)
}
s.ct.symbolTT = s.ct.symbolTT[:256]
}
// buildCTable will populate the compression table so it is ready to be used.
func (s *fseEncoder) buildCTable() error {
tableSize := uint32(1 << s.actualTableLog)
highThreshold := tableSize - 1
var cumul [256]int16
s.allocCtable()
tableSymbol := s.ct.tableSymbol[:tableSize]
// symbol start positions
{
cumul[0] = 0
for ui, v := range s.norm[:s.symbolLen-1] {
u := byte(ui) // one less than reference
if v == -1 {
// Low proba symbol
cumul[u+1] = cumul[u] + 1
tableSymbol[highThreshold] = u
highThreshold--
} else {
cumul[u+1] = cumul[u] + v
}
}
// Encode last symbol separately to avoid overflowing u
u := int(s.symbolLen - 1)
v := s.norm[s.symbolLen-1]
if v == -1 {
// Low proba symbol
cumul[u+1] = cumul[u] + 1
tableSymbol[highThreshold] = byte(u)
highThreshold--
} else {
cumul[u+1] = cumul[u] + v
}
if uint32(cumul[s.symbolLen]) != tableSize {
return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
}
cumul[s.symbolLen] = int16(tableSize) + 1
}
// Spread symbols
s.zeroBits = false
{
step := tableStep(tableSize)
tableMask := tableSize - 1
var position uint32
// if any symbol > largeLimit, we may have 0 bits output.
largeLimit := int16(1 << (s.actualTableLog - 1))
for ui, v := range s.norm[:s.symbolLen] {
symbol := byte(ui)
if v > largeLimit {
s.zeroBits = true
}
for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
tableSymbol[position] = symbol
position = (position + step) & tableMask
for position > highThreshold {
position = (position + step) & tableMask
} /* Low proba area */
}
}
// Check if we have gone through all positions
if position != 0 {
return errors.New("position!=0")
}
}
// Build table
table := s.ct.stateTable
{
tsi := int(tableSize)
for u, v := range tableSymbol {
// TableU16 : sorted by symbol order; gives next state value
table[cumul[v]] = uint16(tsi + u)
cumul[v]++
}
}
// Build Symbol Transformation Table
{
total := int16(0)
symbolTT := s.ct.symbolTT[:s.symbolLen]
tableLog := s.actualTableLog
tl := (uint32(tableLog) << 16) - (1 << tableLog)
for i, v := range s.norm[:s.symbolLen] {
switch v {
case 0:
case -1, 1:
symbolTT[i].deltaNbBits = tl
symbolTT[i].deltaFindState = int16(total - 1)
total++
default:
maxBitsOut := uint32(tableLog) - highBit(uint32(v-1))
minStatePlus := uint32(v) << maxBitsOut
symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
symbolTT[i].deltaFindState = int16(total - v)
total += v
}
}
if total != int16(tableSize) {
return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
}
}
return nil
}
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
func (s *fseEncoder) setRLE(val byte) {
s.allocCtable()
s.actualTableLog = 0
s.ct.stateTable = s.ct.stateTable[:1]
s.ct.symbolTT[val] = symbolTransform{
deltaFindState: 0,
deltaNbBits: 0,
}
if debug {
println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val])
}
s.rleVal = val
s.useRLE = true
}
// setBits will set output bits for the transform.
// if nil is provided, the number of bits is equal to the index.
func (s *fseEncoder) setBits(transform []byte) {
if s.reUsed || s.preDefined {
return
}
if s.useRLE {
if transform == nil {
s.ct.symbolTT[s.rleVal].outBits = s.rleVal
s.maxBits = s.rleVal
return
}
s.maxBits = transform[s.rleVal]
s.ct.symbolTT[s.rleVal].outBits = s.maxBits
return
}
if transform == nil {
for i := range s.ct.symbolTT[:s.symbolLen] {
s.ct.symbolTT[i].outBits = uint8(i)
}
s.maxBits = uint8(s.symbolLen - 1)
return
}
s.maxBits = 0
for i, v := range transform[:s.symbolLen] {
s.ct.symbolTT[i].outBits = v
if v > s.maxBits {
// We could assume bits always going up, but we play safe.
s.maxBits = v
}
}
}
// normalizeCount will normalize the count of the symbols so
// the total is equal to the table size.
// If successful, compression tables will also be made ready.
func (s *fseEncoder) normalizeCount(length int) error {
if s.reUsed {
return nil
}
s.optimalTableLog(length)
var (
tableLog = s.actualTableLog
scale = 62 - uint64(tableLog)
step = (1 << 62) / uint64(length)
vStep = uint64(1) << (scale - 20)
stillToDistribute = int16(1 << tableLog)
largest int
largestP int16
lowThreshold = (uint32)(length >> tableLog)
)
if s.maxCount == length {
s.useRLE = true
return nil
}
s.useRLE = false
for i, cnt := range s.count[:s.symbolLen] {
// already handled
// if (count[s] == s.length) return 0; /* rle special case */
if cnt == 0 {
s.norm[i] = 0
continue
}
if cnt <= lowThreshold {
s.norm[i] = -1
stillToDistribute--
} else {
proba := (int16)((uint64(cnt) * step) >> scale)
if proba < 8 {
restToBeat := vStep * uint64(rtbTable[proba])
v := uint64(cnt)*step - (uint64(proba) << scale)
if v > restToBeat {
proba++
}
}
if proba > largestP {
largestP = proba
largest = i
}
s.norm[i] = proba
stillToDistribute -= proba
}
}
if -stillToDistribute >= (s.norm[largest] >> 1) {
// corner case, need another normalization method
err := s.normalizeCount2(length)
if err != nil {
return err
}
if debugAsserts {
err = s.validateNorm()
if err != nil {
return err
}
}
return s.buildCTable()
}
s.norm[largest] += stillToDistribute
if debugAsserts {
err := s.validateNorm()
if err != nil {
return err
}
}
return s.buildCTable()
}
// Secondary normalization method.
// To be used when primary method fails.
func (s *fseEncoder) normalizeCount2(length int) error {
const notYetAssigned = -2
var (
distributed uint32
total = uint32(length)
tableLog = s.actualTableLog
lowThreshold = uint32(total >> tableLog)
lowOne = uint32((total * 3) >> (tableLog + 1))
)
for i, cnt := range s.count[:s.symbolLen] {
if cnt == 0 {
s.norm[i] = 0
continue
}
if cnt <= lowThreshold {
s.norm[i] = -1
distributed++
total -= cnt
continue
}
if cnt <= lowOne {
s.norm[i] = 1
distributed++
total -= cnt
continue
}
s.norm[i] = notYetAssigned
}
toDistribute := (1 << tableLog) - distributed
if (total / toDistribute) > lowOne {
// risk of rounding to zero
lowOne = uint32((total * 3) / (toDistribute * 2))
for i, cnt := range s.count[:s.symbolLen] {
if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
s.norm[i] = 1
distributed++
total -= cnt
continue
}
}
toDistribute = (1 << tableLog) - distributed
}
if distributed == uint32(s.symbolLen)+1 {
// all values are pretty poor;
// probably incompressible data (should have already been detected);
// find max, then give all remaining points to max
var maxV int
var maxC uint32
for i, cnt := range s.count[:s.symbolLen] {
if cnt > maxC {
maxV = i
maxC = cnt
}
}
s.norm[maxV] += int16(toDistribute)
return nil
}
if total == 0 {
// all of the symbols were low enough for the lowOne or lowThreshold
for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
if s.norm[i] > 0 {
toDistribute--
s.norm[i]++
}
}
return nil
}
var (
vStepLog = 62 - uint64(tableLog)
mid = uint64((1 << (vStepLog - 1)) - 1)
rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
tmpTotal = mid
)
for i, cnt := range s.count[:s.symbolLen] {
if s.norm[i] == notYetAssigned {
var (
end = tmpTotal + uint64(cnt)*rStep
sStart = uint32(tmpTotal >> vStepLog)
sEnd = uint32(end >> vStepLog)
weight = sEnd - sStart
)
if weight < 1 {
return errors.New("weight < 1")
}
s.norm[i] = int16(weight)
tmpTotal = end
}
}
return nil
}
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
func (s *fseEncoder) optimalTableLog(length int) {
tableLog := uint8(maxEncTableLog)
minBitsSrc := highBit(uint32(length)) + 1
minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2
minBits := uint8(minBitsSymbols)
if minBitsSrc < minBitsSymbols {
minBits = uint8(minBitsSrc)
}
maxBitsSrc := uint8(highBit(uint32(length-1))) - 2
if maxBitsSrc < tableLog {
// Accuracy can be reduced
tableLog = maxBitsSrc
}
if minBits > tableLog {
tableLog = minBits
}
// Need a minimum to safely represent all symbol values
if tableLog < minEncTablelog {
tableLog = minEncTablelog
}
if tableLog > maxEncTableLog {
tableLog = maxEncTableLog
}
s.actualTableLog = tableLog
}
// validateNorm validates the normalized histogram table.
func (s *fseEncoder) validateNorm() (err error) {
var total int
for _, v := range s.norm[:s.symbolLen] {
if v >= 0 {
total += int(v)
} else {
total -= int(v)
}
}
defer func() {
if err == nil {
return
}
fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
for i, v := range s.norm[:s.symbolLen] {
fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
}
}()
if total != (1 << s.actualTableLog) {
return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
}
for i, v := range s.count[s.symbolLen:] {
if v != 0 {
return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
}
}
return nil
}
// writeCount will write the normalized histogram count to header.
// This is read back by readNCount.
func (s *fseEncoder) writeCount(out []byte) ([]byte, error) {
if s.useRLE {
return append(out, s.rleVal), nil
}
if s.preDefined || s.reUsed {
// Never write predefined.
return out, nil
}
var (
tableLog = s.actualTableLog
tableSize = 1 << tableLog
previous0 bool
charnum uint16
// maximum header size plus 2 extra bytes for final output if bitCount == 0.
maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2
// Write Table Size
bitStream = uint32(tableLog - minEncTablelog)
bitCount = uint(4)
remaining = int16(tableSize + 1) /* +1 for extra accuracy */
threshold = int16(tableSize)
nbBits = uint(tableLog + 1)
outP = len(out)
)
if cap(out) < outP+maxHeaderSize {
out = append(out, make([]byte, maxHeaderSize*3)...)
out = out[:len(out)-maxHeaderSize*3]
}
out = out[:outP+maxHeaderSize]
// stops at 1
for remaining > 1 {
if previous0 {
start := charnum
for s.norm[charnum] == 0 {
charnum++
}
for charnum >= start+24 {
start += 24
bitStream += uint32(0xFFFF) << bitCount
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
}
for charnum >= start+3 {
start += 3
bitStream += 3 << bitCount
bitCount += 2
}
bitStream += uint32(charnum-start) << bitCount
bitCount += 2
if bitCount > 16 {
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
bitCount -= 16
}
}
count := s.norm[charnum]
charnum++
max := (2*threshold - 1) - remaining
if count < 0 {
remaining += count
} else {
remaining -= count
}
count++ // +1 for extra accuracy
if count >= threshold {
count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
}
bitStream += uint32(count) << bitCount
bitCount += nbBits
if count < max {
bitCount--
}
previous0 = count == 1
if remaining < 1 {
return nil, errors.New("internal error: remaining < 1")
}
for remaining < threshold {
nbBits--
threshold >>= 1
}
if bitCount > 16 {
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += 2
bitStream >>= 16
bitCount -= 16
}
}
if outP+2 > len(out) {
return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen])
}
out[outP] = byte(bitStream)
out[outP+1] = byte(bitStream >> 8)
outP += int((bitCount + 7) / 8)
if charnum > s.symbolLen {
return nil, errors.New("internal error: charnum > s.symbolLen")
}
return out[:outP], nil
}
// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
// note 1 : assume symbolValue is valid (<= maxSymbolValue)
// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits *
func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 {
minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16
threshold := (minNbBits + 1) << 16
if debugAsserts {
if !(s.actualTableLog < 16) {
panic("!s.actualTableLog < 16")
}
// ensure enough room for renormalization double shift
if !(uint8(accuracyLog) < 31-s.actualTableLog) {
panic("!uint8(accuracyLog) < 31-s.actualTableLog")
}
}
tableSize := uint32(1) << s.actualTableLog
deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize)
// linear interpolation (very approximate)
normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog
bitMultiplier := uint32(1) << accuracyLog
if debugAsserts {
if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold {
panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold")
}
if normalizedDeltaFromThreshold > bitMultiplier {
panic("normalizedDeltaFromThreshold > bitMultiplier")
}
}
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold
}
// Returns the cost in bits of encoding the distribution in count using ctable.
// Histogram should only be up to the last non-zero symbol.
// Returns an -1 if ctable cannot represent all the symbols in count.
func (s *fseEncoder) approxSize(hist []uint32) uint32 {
if int(s.symbolLen) < len(hist) {
// More symbols than we have.
return math.MaxUint32
}
if s.useRLE {
// We will never reuse RLE encoders.
return math.MaxUint32
}
const kAccuracyLog = 8
badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog
var cost uint32
for i, v := range hist {
if v == 0 {
continue
}
if s.norm[i] == 0 {
return math.MaxUint32
}
bitCost := s.bitCost(uint8(i), kAccuracyLog)
if bitCost > badCost {
return math.MaxUint32
}
cost += v * bitCost
}
return cost >> kAccuracyLog
}
// maxHeaderSize returns the maximum header size in bits.
// This is not exact size, but we want a penalty for new tables anyway.
func (s *fseEncoder) maxHeaderSize() uint32 {
if s.preDefined {
return 0
}
if s.useRLE {
return 8
}
return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8
}
// cState contains the compression state of a stream.
type cState struct {
bw *bitWriter
stateTable []uint16
state uint16
}
// init will initialize the compression state to the first symbol of the stream.
func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) {
c.bw = bw
c.stateTable = ct.stateTable
if len(c.stateTable) == 1 {
// RLE
c.stateTable[0] = uint16(0)
c.state = 0
return
}
nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
im := int32((nbBitsOut << 16) - first.deltaNbBits)
lu := (im >> nbBitsOut) + int32(first.deltaFindState)
c.state = c.stateTable[lu]
return
}
// encode the output symbol provided and write it to the bitstream.
func (c *cState) encode(symbolTT symbolTransform) {
nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState)
c.bw.addBits16NC(c.state, uint8(nbBitsOut))
c.state = c.stateTable[dstState]
}
// flush will write the tablelog to the output and flush the remaining full bytes.
func (c *cState) flush(tableLog uint8) {
c.bw.flush32()
c.bw.addBits16NC(c.state, tableLog)
}