1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2024-12-21 12:44:49 -05:00

Prometheus endpoint (#5256)

* Add prometheus collector and route

* dep ensure -add github.com/prometheus/client_golang/prometheus

* dep ensure -update github.com/golang/protobuf

* add metrics to reserved usernames

* add comment head in metrics package

* fix style imports

* add metrics settings

* add bearer token check

* mapping metrics configs

* fix lint

* update config cheat sheet

* update conf sample, typo fix
This commit is contained in:
Stanislav 2018-11-05 06:20:00 +03:00 committed by techknowlogick
parent 92fb89f6e1
commit 078c404c3b
112 changed files with 24693 additions and 3011 deletions

68
Gopkg.lock generated
View file

@ -81,6 +81,14 @@
pruneopts = "NUT"
revision = "349dd0209470eabd9514242c688c403c0926d266"
[[projects]]
branch = "master"
digest = "1:707ebe952a8b3d00b343c01536c79c73771d100f63ec6babeaed5c79e2b8a8dd"
name = "github.com/beorn7/perks"
packages = ["quantile"]
pruneopts = "NUT"
revision = "3a771d992973f24aa725d07868b467d1ddfceafb"
[[projects]]
digest = "1:67351095005f164e748a5a21899d1403b03878cb2d40a7b0f742376e6eeda974"
name = "github.com/blevesearch/bleve"
@ -405,11 +413,12 @@
revision = "7f3990acf1833faa5ebd0e86f0a4c72a4b5eba3c"
[[projects]]
digest = "1:b64f9be717fdab5f75122dc3868e8ca9d003779b6bc55f64f39a0cddc698bf88"
digest = "1:97df918963298c287643883209a2c3f642e6593379f97ab400c2a2e219ab647d"
name = "github.com/golang/protobuf"
packages = ["proto"]
pruneopts = "NUT"
revision = "99511271042a09d1e01baea8781caa5210fec66e"
revision = "aa810b61a9c79d51363740d207bb46cf8e620ed5"
version = "v1.2.0"
[[projects]]
digest = "1:60e25fc5f5cfd7783f985ca99b4383e848981dddf0be584db7d809be20848e25"
@ -573,6 +582,14 @@
pruneopts = "NUT"
revision = "c7c4067b79cc51e6dfdcef5c702e74b1e0fa7c75"
[[projects]]
digest = "1:5985ef4caf91ece5d54817c11ea25f182697534f8ae6521eadcd628c142ac4b6"
name = "github.com/matttproud/golang_protobuf_extensions"
packages = ["pbutil"]
pruneopts = "NUT"
revision = "c12348ce28de40eed0136aa2b644d0ee0650e56c"
version = "v1.0.1"
[[projects]]
branch = "master"
digest = "1:1ed0f3c066eb9d1c2ff7a864a6fa595c70b9b49049cc46af6a6f7ff0e4655321"
@ -644,6 +661,51 @@
pruneopts = "NUT"
revision = "54653902c20e47f3417541d35435cb6d6162e28a"
[[projects]]
digest = "1:aa2da1df3327c3a338bb42f978407c07de74cd0a5bef35e9411881dffd444214"
name = "github.com/prometheus/client_golang"
packages = [
"prometheus",
"prometheus/internal",
"prometheus/promhttp",
]
pruneopts = "NUT"
revision = "1cafe34db7fdec6022e17e00e1c1ea501022f3e4"
version = "v0.9.0"
[[projects]]
branch = "master"
digest = "1:2d5cd61daa5565187e1d96bae64dbbc6080dacf741448e9629c64fd93203b0d4"
name = "github.com/prometheus/client_model"
packages = ["go"]
pruneopts = "NUT"
revision = "5c3871d89910bfb32f5fcab2aa4b9ec68e65a99f"
[[projects]]
branch = "master"
digest = "1:06375f3b602de9c99fa99b8484f0e949fd5273e6e9c6592b5a0dd4cd9085f3ea"
name = "github.com/prometheus/common"
packages = [
"expfmt",
"internal/bitbucket.org/ww/goautoneg",
"model",
]
pruneopts = "NUT"
revision = "7e9e6cabbd393fc208072eedef99188d0ce788b6"
[[projects]]
branch = "master"
digest = "1:102dea0c03a915acfc634b7c67f2662012b5483b56d9025e33f5188e112759b6"
name = "github.com/prometheus/procfs"
packages = [
".",
"internal/util",
"nfs",
"xfs",
]
pruneopts = "NUT"
revision = "185b4288413d2a0dd0806f78c90dde719829e5ae"
[[projects]]
branch = "master"
digest = "1:5be01c22bc1040e2f6ce4755d51a0ac9cef823a9f2004fb1f9896a414ef519e6"
@ -981,6 +1043,8 @@
"github.com/nfnt/resize",
"github.com/pquerna/otp",
"github.com/pquerna/otp/totp",
"github.com/prometheus/client_golang/prometheus",
"github.com/prometheus/client_golang/prometheus/promhttp",
"github.com/russross/blackfriday",
"github.com/satori/go.uuid",
"github.com/sergi/go-diff/diffmatchpatch",

View file

@ -107,3 +107,7 @@ ignored = ["google.golang.org/appengine*"]
[[override]]
revision = "c10ba270aa0bf8b8c1c986e103859c67a9103061"
name = "golang.org/x/oauth2"
[[constraint]]
name = "github.com/prometheus/client_golang"
version = "0.9.0"

View file

@ -659,3 +659,9 @@ FILE_EXTENSIONS = .adoc,.asciidoc
RENDER_COMMAND = "asciidoc --out-file=- -"
; Don't pass the file on STDIN, pass the filename as argument instead.
IS_INPUT_FILE = false
[metrics]
; Enables metrics endpoint. True or false; default is false.
ENABLED = false
; If you want to add authorization, specify a token here
TOKEN =

View file

@ -302,6 +302,11 @@ Values containing `#` or `;` must be quoted using `` ` `` or `"""`.
- `PULL`: **300**: Git pull from internal repositories timeout seconds.
- `GC`: **60**: Git repository GC timeout seconds.
## Metrics (`metrics`)
- `ENABLED`: **false**: Enables /metrics endpoint for prometheus.
- `TOKEN`: **\<empty\>**: You need to specify the token, if you want to include in the authorization the metrics . The same token need to be used in prometheus parameters `bearer_token` or `bearer_token_file`.
## API (`api`)
- `ENABLE_SWAGGER_ENDPOINT`: **true**: Enables /api/swagger, /api/v1/swagger etc. endpoints. True or false; default is true.

View file

@ -698,6 +698,7 @@ var (
"issues",
"js",
"less",
"metrics",
"new",
"org",
"plugins",

View file

@ -0,0 +1,299 @@
// Copyright 2018 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package metrics
import (
"code.gitea.io/gitea/models"
"github.com/prometheus/client_golang/prometheus"
)
const namespace = "gitea_"
// Collector implements the prometheus.Collector interface and
// exposes gitea metrics for prometheus
type Collector struct {
Accesses *prometheus.Desc
Actions *prometheus.Desc
Attachments *prometheus.Desc
Comments *prometheus.Desc
Follows *prometheus.Desc
HookTasks *prometheus.Desc
Issues *prometheus.Desc
Labels *prometheus.Desc
LoginSources *prometheus.Desc
Milestones *prometheus.Desc
Mirrors *prometheus.Desc
Oauths *prometheus.Desc
Organizations *prometheus.Desc
PublicKeys *prometheus.Desc
Releases *prometheus.Desc
Repositories *prometheus.Desc
Stars *prometheus.Desc
Teams *prometheus.Desc
UpdateTasks *prometheus.Desc
Users *prometheus.Desc
Watches *prometheus.Desc
Webhooks *prometheus.Desc
}
// NewCollector returns a new Collector with all prometheus.Desc initialized
func NewCollector() Collector {
return Collector{
Accesses: prometheus.NewDesc(
namespace+"accesses",
"Number of Accesses",
nil, nil,
),
Actions: prometheus.NewDesc(
namespace+"actions",
"Number of Actions",
nil, nil,
),
Attachments: prometheus.NewDesc(
namespace+"attachments",
"Number of Attachments",
nil, nil,
),
Comments: prometheus.NewDesc(
namespace+"comments",
"Number of Comments",
nil, nil,
),
Follows: prometheus.NewDesc(
namespace+"follows",
"Number of Follows",
nil, nil,
),
HookTasks: prometheus.NewDesc(
namespace+"hooktasks",
"Number of HookTasks",
nil, nil,
),
Issues: prometheus.NewDesc(
namespace+"issues",
"Number of Issues",
nil, nil,
),
Labels: prometheus.NewDesc(
namespace+"labels",
"Number of Labels",
nil, nil,
),
LoginSources: prometheus.NewDesc(
namespace+"loginsources",
"Number of LoginSources",
nil, nil,
),
Milestones: prometheus.NewDesc(
namespace+"milestones",
"Number of Milestones",
nil, nil,
),
Mirrors: prometheus.NewDesc(
namespace+"mirrors",
"Number of Mirrors",
nil, nil,
),
Oauths: prometheus.NewDesc(
namespace+"oauths",
"Number of Oauths",
nil, nil,
),
Organizations: prometheus.NewDesc(
namespace+"organizations",
"Number of Organizations",
nil, nil,
),
PublicKeys: prometheus.NewDesc(
namespace+"publickeys",
"Number of PublicKeys",
nil, nil,
),
Releases: prometheus.NewDesc(
namespace+"releases",
"Number of Releases",
nil, nil,
),
Repositories: prometheus.NewDesc(
namespace+"repositories",
"Number of Repositories",
nil, nil,
),
Stars: prometheus.NewDesc(
namespace+"stars",
"Number of Stars",
nil, nil,
),
Teams: prometheus.NewDesc(
namespace+"teams",
"Number of Teams",
nil, nil,
),
UpdateTasks: prometheus.NewDesc(
namespace+"updatetasks",
"Number of UpdateTasks",
nil, nil,
),
Users: prometheus.NewDesc(
namespace+"users",
"Number of Users",
nil, nil,
),
Watches: prometheus.NewDesc(
namespace+"watches",
"Number of Watches",
nil, nil,
),
Webhooks: prometheus.NewDesc(
namespace+"webhooks",
"Number of Webhooks",
nil, nil,
),
}
}
// Describe returns all possible prometheus.Desc
func (c Collector) Describe(ch chan<- *prometheus.Desc) {
ch <- c.Accesses
ch <- c.Actions
ch <- c.Attachments
ch <- c.Comments
ch <- c.Follows
ch <- c.HookTasks
ch <- c.Issues
ch <- c.Labels
ch <- c.LoginSources
ch <- c.Milestones
ch <- c.Mirrors
ch <- c.Oauths
ch <- c.Organizations
ch <- c.PublicKeys
ch <- c.Releases
ch <- c.Repositories
ch <- c.Stars
ch <- c.Teams
ch <- c.UpdateTasks
ch <- c.Users
ch <- c.Watches
ch <- c.Webhooks
}
// Collect returns the metrics with values
func (c Collector) Collect(ch chan<- prometheus.Metric) {
stats := models.GetStatistic()
ch <- prometheus.MustNewConstMetric(
c.Accesses,
prometheus.GaugeValue,
float64(stats.Counter.Access),
)
ch <- prometheus.MustNewConstMetric(
c.Actions,
prometheus.GaugeValue,
float64(stats.Counter.Action),
)
ch <- prometheus.MustNewConstMetric(
c.Attachments,
prometheus.GaugeValue,
float64(stats.Counter.Attachment),
)
ch <- prometheus.MustNewConstMetric(
c.Comments,
prometheus.GaugeValue,
float64(stats.Counter.Comment),
)
ch <- prometheus.MustNewConstMetric(
c.Follows,
prometheus.GaugeValue,
float64(stats.Counter.Follow),
)
ch <- prometheus.MustNewConstMetric(
c.HookTasks,
prometheus.GaugeValue,
float64(stats.Counter.HookTask),
)
ch <- prometheus.MustNewConstMetric(
c.Issues,
prometheus.GaugeValue,
float64(stats.Counter.Issue),
)
ch <- prometheus.MustNewConstMetric(
c.Labels,
prometheus.GaugeValue,
float64(stats.Counter.Label),
)
ch <- prometheus.MustNewConstMetric(
c.LoginSources,
prometheus.GaugeValue,
float64(stats.Counter.LoginSource),
)
ch <- prometheus.MustNewConstMetric(
c.Milestones,
prometheus.GaugeValue,
float64(stats.Counter.Milestone),
)
ch <- prometheus.MustNewConstMetric(
c.Mirrors,
prometheus.GaugeValue,
float64(stats.Counter.Mirror),
)
ch <- prometheus.MustNewConstMetric(
c.Oauths,
prometheus.GaugeValue,
float64(stats.Counter.Oauth),
)
ch <- prometheus.MustNewConstMetric(
c.Organizations,
prometheus.GaugeValue,
float64(stats.Counter.Org),
)
ch <- prometheus.MustNewConstMetric(
c.PublicKeys,
prometheus.GaugeValue,
float64(stats.Counter.PublicKey),
)
ch <- prometheus.MustNewConstMetric(
c.Releases,
prometheus.GaugeValue,
float64(stats.Counter.Release),
)
ch <- prometheus.MustNewConstMetric(
c.Repositories,
prometheus.GaugeValue,
float64(stats.Counter.Repo),
)
ch <- prometheus.MustNewConstMetric(
c.Stars,
prometheus.GaugeValue,
float64(stats.Counter.Star),
)
ch <- prometheus.MustNewConstMetric(
c.Teams,
prometheus.GaugeValue,
float64(stats.Counter.Team),
)
ch <- prometheus.MustNewConstMetric(
c.UpdateTasks,
prometheus.GaugeValue,
float64(stats.Counter.UpdateTask),
)
ch <- prometheus.MustNewConstMetric(
c.Users,
prometheus.GaugeValue,
float64(stats.Counter.User),
)
ch <- prometheus.MustNewConstMetric(
c.Watches,
prometheus.GaugeValue,
float64(stats.Counter.Watch),
)
ch <- prometheus.MustNewConstMetric(
c.Webhooks,
prometheus.GaugeValue,
float64(stats.Counter.Webhook),
)
}

View file

@ -561,6 +561,15 @@ var (
TrustedFacets []string
}{}
// Metrics settings
Metrics = struct {
Enabled bool
Token string
}{
Enabled: false,
Token: "",
}
// I18n settings
Langs []string
Names []string
@ -1125,6 +1134,8 @@ func NewContext() {
log.Fatal(4, "Failed to map Git settings: %v", err)
} else if err = Cfg.Section("api").MapTo(&API); err != nil {
log.Fatal(4, "Failed to map API settings: %v", err)
} else if err = Cfg.Section("metrics").MapTo(&Metrics); err != nil {
log.Fatal(4, "Failed to map Metrics settings: %v", err)
}
sec = Cfg.Section("mirror")

30
routers/metrics.go Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2018 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package routers
import (
"github.com/prometheus/client_golang/prometheus/promhttp"
"code.gitea.io/gitea/modules/context"
"code.gitea.io/gitea/modules/setting"
)
// Metrics validate auth token and render prometheus metrics
func Metrics(ctx *context.Context) {
if setting.Metrics.Token == "" {
promhttp.Handler().ServeHTTP(ctx.Resp, ctx.Req.Request)
return
}
header := ctx.Header().Get("Authorization")
if header == "" {
ctx.Error(401)
return
}
if header != "Bearer "+setting.Metrics.Token {
ctx.Error(401)
return
}
promhttp.Handler().ServeHTTP(ctx.Resp, ctx.Req.Request)
}

View file

@ -16,6 +16,7 @@ import (
"code.gitea.io/gitea/modules/context"
"code.gitea.io/gitea/modules/lfs"
"code.gitea.io/gitea/modules/log"
"code.gitea.io/gitea/modules/metrics"
"code.gitea.io/gitea/modules/options"
"code.gitea.io/gitea/modules/public"
"code.gitea.io/gitea/modules/setting"
@ -39,6 +40,7 @@ import (
"github.com/go-macaron/i18n"
"github.com/go-macaron/session"
"github.com/go-macaron/toolbox"
"github.com/prometheus/client_golang/prometheus"
"github.com/tstranex/u2f"
"gopkg.in/macaron.v1"
)
@ -788,6 +790,14 @@ func RegisterRoutes(m *macaron.Macaron) {
}
})
// prometheus metrics endpoint
if setting.Metrics.Enabled {
c := metrics.NewCollector()
prometheus.MustRegister(c)
m.Get("/metrics", routers.Metrics)
}
// Not found handler.
m.NotFound(routers.NotFound)
}

20
vendor/github.com/beorn7/perks/LICENSE generated vendored Normal file
View file

@ -0,0 +1,20 @@
Copyright (C) 2013 Blake Mizerany
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

316
vendor/github.com/beorn7/perks/quantile/stream.go generated vendored Normal file
View file

@ -0,0 +1,316 @@
// Package quantile computes approximate quantiles over an unbounded data
// stream within low memory and CPU bounds.
//
// A small amount of accuracy is traded to achieve the above properties.
//
// Multiple streams can be merged before calling Query to generate a single set
// of results. This is meaningful when the streams represent the same type of
// data. See Merge and Samples.
//
// For more detailed information about the algorithm used, see:
//
// Effective Computation of Biased Quantiles over Data Streams
//
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile
import (
"math"
"sort"
)
// Sample holds an observed value and meta information for compression. JSON
// tags have been added for convenience.
type Sample struct {
Value float64 `json:",string"`
Width float64 `json:",string"`
Delta float64 `json:",string"`
}
// Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample
func (a Samples) Len() int { return len(a) }
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type invariant func(s *stream, r float64) float64
// NewLowBiased returns an initialized Stream for low-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the lower ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewLowBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * r
}
return newStream(ƒ)
}
// NewHighBiased returns an initialized Stream for high-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the higher ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewHighBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * (s.n - r)
}
return newStream(ƒ)
}
// NewTargeted returns an initialized Stream concerned with a particular set of
// quantile values that are supplied a priori. Knowing these a priori reduces
// space and computation time. The targets map maps the desired quantiles to
// their absolute errors, i.e. the true quantile of a value returned by a query
// is guaranteed to be within (Quantile±Epsilon).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func NewTargeted(targetMap map[float64]float64) *Stream {
// Convert map to slice to avoid slow iterations on a map.
// ƒ is called on the hot path, so converting the map to a slice
// beforehand results in significant CPU savings.
targets := targetMapToSlice(targetMap)
ƒ := func(s *stream, r float64) float64 {
var m = math.MaxFloat64
var f float64
for _, t := range targets {
if t.quantile*s.n <= r {
f = (2 * t.epsilon * r) / t.quantile
} else {
f = (2 * t.epsilon * (s.n - r)) / (1 - t.quantile)
}
if f < m {
m = f
}
}
return m
}
return newStream(ƒ)
}
type target struct {
quantile float64
epsilon float64
}
func targetMapToSlice(targetMap map[float64]float64) []target {
targets := make([]target, 0, len(targetMap))
for quantile, epsilon := range targetMap {
t := target{
quantile: quantile,
epsilon: epsilon,
}
targets = append(targets, t)
}
return targets
}
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
// design. Take care when using across multiple goroutines.
type Stream struct {
*stream
b Samples
sorted bool
}
func newStream(ƒ invariant) *Stream {
x := &stream{ƒ: ƒ}
return &Stream{x, make(Samples, 0, 500), true}
}
// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
s.insert(Sample{Value: v, Width: 1})
}
func (s *Stream) insert(sample Sample) {
s.b = append(s.b, sample)
s.sorted = false
if len(s.b) == cap(s.b) {
s.flush()
}
}
// Query returns the computed qth percentiles value. If s was created with
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
// will return an unspecified result.
func (s *Stream) Query(q float64) float64 {
if !s.flushed() {
// Fast path when there hasn't been enough data for a flush;
// this also yields better accuracy for small sets of data.
l := len(s.b)
if l == 0 {
return 0
}
i := int(math.Ceil(float64(l) * q))
if i > 0 {
i -= 1
}
s.maybeSort()
return s.b[i].Value
}
s.flush()
return s.stream.query(q)
}
// Merge merges samples into the underlying streams samples. This is handy when
// merging multiple streams from separate threads, database shards, etc.
//
// ATTENTION: This method is broken and does not yield correct results. The
// underlying algorithm is not capable of merging streams correctly.
func (s *Stream) Merge(samples Samples) {
sort.Sort(samples)
s.stream.merge(samples)
}
// Reset reinitializes and clears the list reusing the samples buffer memory.
func (s *Stream) Reset() {
s.stream.reset()
s.b = s.b[:0]
}
// Samples returns stream samples held by s.
func (s *Stream) Samples() Samples {
if !s.flushed() {
return s.b
}
s.flush()
return s.stream.samples()
}
// Count returns the total number of samples observed in the stream
// since initialization.
func (s *Stream) Count() int {
return len(s.b) + s.stream.count()
}
func (s *Stream) flush() {
s.maybeSort()
s.stream.merge(s.b)
s.b = s.b[:0]
}
func (s *Stream) maybeSort() {
if !s.sorted {
s.sorted = true
sort.Sort(s.b)
}
}
func (s *Stream) flushed() bool {
return len(s.stream.l) > 0
}
type stream struct {
n float64
l []Sample
ƒ invariant
}
func (s *stream) reset() {
s.l = s.l[:0]
s.n = 0
}
func (s *stream) insert(v float64) {
s.merge(Samples{{v, 1, 0}})
}
func (s *stream) merge(samples Samples) {
// TODO(beorn7): This tries to merge not only individual samples, but
// whole summaries. The paper doesn't mention merging summaries at
// all. Unittests show that the merging is inaccurate. Find out how to
// do merges properly.
var r float64
i := 0
for _, sample := range samples {
for ; i < len(s.l); i++ {
c := s.l[i]
if c.Value > sample.Value {
// Insert at position i.
s.l = append(s.l, Sample{})
copy(s.l[i+1:], s.l[i:])
s.l[i] = Sample{
sample.Value,
sample.Width,
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
// TODO(beorn7): How to calculate delta correctly?
}
i++
goto inserted
}
r += c.Width
}
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
i++
inserted:
s.n += sample.Width
r += sample.Width
}
s.compress()
}
func (s *stream) count() int {
return int(s.n)
}
func (s *stream) query(q float64) float64 {
t := math.Ceil(q * s.n)
t += math.Ceil(s.ƒ(s, t) / 2)
p := s.l[0]
var r float64
for _, c := range s.l[1:] {
r += p.Width
if r+c.Width+c.Delta > t {
return p.Value
}
p = c
}
return p.Value
}
func (s *stream) compress() {
if len(s.l) < 2 {
return
}
x := s.l[len(s.l)-1]
xi := len(s.l) - 1
r := s.n - 1 - x.Width
for i := len(s.l) - 2; i >= 0; i-- {
c := s.l[i]
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
x.Width += c.Width
s.l[xi] = x
// Remove element at i.
copy(s.l[i:], s.l[i+1:])
s.l = s.l[:len(s.l)-1]
xi -= 1
} else {
x = c
xi = i
}
r -= c.Width
}
}
func (s *stream) samples() Samples {
samples := make(Samples, len(s.l))
copy(samples, s.l)
return samples
}

View file

@ -1,7 +1,4 @@
Go support for Protocol Buffers - Google's data interchange format
Copyright 2010 The Go Authors. All rights reserved.
https://github.com/golang/protobuf
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

View file

@ -35,22 +35,39 @@
package proto
import (
"fmt"
"log"
"reflect"
"strings"
)
// Clone returns a deep copy of a protocol buffer.
func Clone(pb Message) Message {
in := reflect.ValueOf(pb)
func Clone(src Message) Message {
in := reflect.ValueOf(src)
if in.IsNil() {
return pb
return src
}
out := reflect.New(in.Type().Elem())
// out is empty so a merge is a deep copy.
mergeStruct(out.Elem(), in.Elem())
return out.Interface().(Message)
dst := out.Interface().(Message)
Merge(dst, src)
return dst
}
// Merger is the interface representing objects that can merge messages of the same type.
type Merger interface {
// Merge merges src into this message.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
//
// Merge may panic if called with a different argument type than the receiver.
Merge(src Message)
}
// generatedMerger is the custom merge method that generated protos will have.
// We must add this method since a generate Merge method will conflict with
// many existing protos that have a Merge data field already defined.
type generatedMerger interface {
XXX_Merge(src Message)
}
// Merge merges src into dst.
@ -58,17 +75,24 @@ func Clone(pb Message) Message {
// Elements of repeated fields will be appended.
// Merge panics if src and dst are not the same type, or if dst is nil.
func Merge(dst, src Message) {
if m, ok := dst.(Merger); ok {
m.Merge(src)
return
}
in := reflect.ValueOf(src)
out := reflect.ValueOf(dst)
if out.IsNil() {
panic("proto: nil destination")
}
if in.Type() != out.Type() {
// Explicit test prior to mergeStruct so that mistyped nils will fail
panic("proto: type mismatch")
panic(fmt.Sprintf("proto.Merge(%T, %T) type mismatch", dst, src))
}
if in.IsNil() {
// Merging nil into non-nil is a quiet no-op
return // Merge from nil src is a noop
}
if m, ok := dst.(generatedMerger); ok {
m.XXX_Merge(src)
return
}
mergeStruct(out.Elem(), in.Elem())
@ -84,9 +108,15 @@ func mergeStruct(out, in reflect.Value) {
mergeAny(out.Field(i), in.Field(i), false, sprop.Prop[i])
}
if emIn, ok := in.Addr().Interface().(extendableProto); ok {
emOut := out.Addr().Interface().(extendableProto)
mergeExtension(emOut.ExtensionMap(), emIn.ExtensionMap())
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
uf := in.FieldByName("XXX_unrecognized")

View file

@ -39,8 +39,6 @@ import (
"errors"
"fmt"
"io"
"os"
"reflect"
)
// errOverflow is returned when an integer is too large to be represented.
@ -50,10 +48,6 @@ var errOverflow = errors.New("proto: integer overflow")
// wire type is encountered. It does not get returned to user code.
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
// The fundamental decoders that interpret bytes on the wire.
// Those that take integer types all return uint64 and are
// therefore of type valueDecoder.
// DecodeVarint reads a varint-encoded integer from the slice.
// It returns the integer and the number of bytes consumed, or
// zero if there is not enough.
@ -61,7 +55,6 @@ var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func DecodeVarint(buf []byte) (x uint64, n int) {
// x, n already 0
for shift := uint(0); shift < 64; shift += 7 {
if n >= len(buf) {
return 0, 0
@ -78,13 +71,7 @@ func DecodeVarint(buf []byte) (x uint64, n int) {
return 0, 0
}
// DecodeVarint reads a varint-encoded integer from the Buffer.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func (p *Buffer) DecodeVarint() (x uint64, err error) {
// x, err already 0
func (p *Buffer) decodeVarintSlow() (x uint64, err error) {
i := p.index
l := len(p.buf)
@ -107,6 +94,107 @@ func (p *Buffer) DecodeVarint() (x uint64, err error) {
return
}
// DecodeVarint reads a varint-encoded integer from the Buffer.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func (p *Buffer) DecodeVarint() (x uint64, err error) {
i := p.index
buf := p.buf
if i >= len(buf) {
return 0, io.ErrUnexpectedEOF
} else if buf[i] < 0x80 {
p.index++
return uint64(buf[i]), nil
} else if len(buf)-i < 10 {
return p.decodeVarintSlow()
}
var b uint64
// we already checked the first byte
x = uint64(buf[i]) - 0x80
i++
b = uint64(buf[i])
i++
x += b << 7
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 7
b = uint64(buf[i])
i++
x += b << 14
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 14
b = uint64(buf[i])
i++
x += b << 21
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 21
b = uint64(buf[i])
i++
x += b << 28
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 28
b = uint64(buf[i])
i++
x += b << 35
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 35
b = uint64(buf[i])
i++
x += b << 42
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 42
b = uint64(buf[i])
i++
x += b << 49
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 49
b = uint64(buf[i])
i++
x += b << 56
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 56
b = uint64(buf[i])
i++
x += b << 63
if b&0x80 == 0 {
goto done
}
// x -= 0x80 << 63 // Always zero.
return 0, errOverflow
done:
p.index = i
return x, nil
}
// DecodeFixed64 reads a 64-bit integer from the Buffer.
// This is the format for the
// fixed64, sfixed64, and double protocol buffer types.
@ -173,9 +261,6 @@ func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
return
}
// These are not ValueDecoders: they produce an array of bytes or a string.
// bytes, embedded messages
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
// This is the format used for the bytes protocol buffer
// type and for embedded messages.
@ -217,81 +302,29 @@ func (p *Buffer) DecodeStringBytes() (s string, err error) {
return string(buf), nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
// If the protocol buffer has extensions, and the field matches, add it as an extension.
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
oi := o.index
err := o.skip(t, tag, wire)
if err != nil {
return err
}
if !unrecField.IsValid() {
return nil
}
ptr := structPointer_Bytes(base, unrecField)
// Add the skipped field to struct field
obuf := o.buf
o.buf = *ptr
o.EncodeVarint(uint64(tag<<3 | wire))
*ptr = append(o.buf, obuf[oi:o.index]...)
o.buf = obuf
return nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
var u uint64
var err error
switch wire {
case WireVarint:
_, err = o.DecodeVarint()
case WireFixed64:
_, err = o.DecodeFixed64()
case WireBytes:
_, err = o.DecodeRawBytes(false)
case WireFixed32:
_, err = o.DecodeFixed32()
case WireStartGroup:
for {
u, err = o.DecodeVarint()
if err != nil {
break
}
fwire := int(u & 0x7)
if fwire == WireEndGroup {
break
}
ftag := int(u >> 3)
err = o.skip(t, ftag, fwire)
if err != nil {
break
}
}
default:
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
}
return err
}
// Unmarshaler is the interface representing objects that can
// unmarshal themselves. The method should reset the receiver before
// decoding starts. The argument points to data that may be
// unmarshal themselves. The argument points to data that may be
// overwritten, so implementations should not keep references to the
// buffer.
// Unmarshal implementations should not clear the receiver.
// Any unmarshaled data should be merged into the receiver.
// Callers of Unmarshal that do not want to retain existing data
// should Reset the receiver before calling Unmarshal.
type Unmarshaler interface {
Unmarshal([]byte) error
}
// newUnmarshaler is the interface representing objects that can
// unmarshal themselves. The semantics are identical to Unmarshaler.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newUnmarshaler interface {
XXX_Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
@ -301,7 +334,13 @@ type Unmarshaler interface {
// to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error {
pb.Reset()
return UnmarshalMerge(buf, pb)
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
}
// UnmarshalMerge parses the protocol buffer representation in buf and
@ -311,8 +350,16 @@ func Unmarshal(buf []byte, pb Message) error {
// UnmarshalMerge merges into existing data in pb.
// Most code should use Unmarshal instead.
func UnmarshalMerge(buf []byte, pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
@ -328,541 +375,54 @@ func (p *Buffer) DecodeMessage(pb Message) error {
}
// DecodeGroup reads a tag-delimited group from the Buffer.
// StartGroup tag is already consumed. This function consumes
// EndGroup tag.
func (p *Buffer) DecodeGroup(pb Message) error {
typ, base, err := getbase(pb)
if err != nil {
return err
b := p.buf[p.index:]
x, y := findEndGroup(b)
if x < 0 {
return io.ErrUnexpectedEOF
}
return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base)
err := Unmarshal(b[:x], pb)
p.index += y
return err
}
// Unmarshal parses the protocol buffer representation in the
// Buffer and places the decoded result in pb. If the struct
// underlying pb does not match the data in the buffer, the results can be
// unpredictable.
//
// Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
func (p *Buffer) Unmarshal(pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
err := u.XXX_Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
err := u.Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
typ, base, err := getbase(pb)
if err != nil {
return err
}
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
if collectStats {
stats.Decode++
}
return err
}
// unmarshalType does the work of unmarshaling a structure.
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
var state errorState
required, reqFields := prop.reqCount, uint64(0)
var err error
for err == nil && o.index < len(o.buf) {
oi := o.index
var u uint64
u, err = o.DecodeVarint()
if err != nil {
break
}
wire := int(u & 0x7)
if wire == WireEndGroup {
if is_group {
return nil // input is satisfied
}
return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
}
tag := int(u >> 3)
if tag <= 0 {
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
}
fieldnum, ok := prop.decoderTags.get(tag)
if !ok {
// Maybe it's an extension?
if prop.extendable {
if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) {
if err = o.skip(st, tag, wire); err == nil {
ext := e.ExtensionMap()[int32(tag)] // may be missing
ext.enc = append(ext.enc, o.buf[oi:o.index]...)
e.ExtensionMap()[int32(tag)] = ext
}
continue
}
}
// Maybe it's a oneof?
if prop.oneofUnmarshaler != nil {
m := structPointer_Interface(base, st).(Message)
// First return value indicates whether tag is a oneof field.
ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
if err == ErrInternalBadWireType {
// Map the error to something more descriptive.
// Do the formatting here to save generated code space.
err = fmt.Errorf("bad wiretype for oneof field in %T", m)
}
if ok {
continue
}
}
err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
continue
}
p := prop.Prop[fieldnum]
if p.dec == nil {
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
continue
}
dec := p.dec
if wire != WireStartGroup && wire != p.WireType {
if wire == WireBytes && p.packedDec != nil {
// a packable field
dec = p.packedDec
} else {
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
continue
}
}
decErr := dec(o, p, base)
if decErr != nil && !state.shouldContinue(decErr, p) {
err = decErr
}
if err == nil && p.Required {
// Successfully decoded a required field.
if tag <= 64 {
// use bitmap for fields 1-64 to catch field reuse.
var mask uint64 = 1 << uint64(tag-1)
if reqFields&mask == 0 {
// new required field
reqFields |= mask
required--
}
} else {
// This is imprecise. It can be fooled by a required field
// with a tag > 64 that is encoded twice; that's very rare.
// A fully correct implementation would require allocating
// a data structure, which we would like to avoid.
required--
}
}
}
if err == nil {
if is_group {
return io.ErrUnexpectedEOF
}
if state.err != nil {
return state.err
}
if required > 0 {
// Not enough information to determine the exact field. If we use extra
// CPU, we could determine the field only if the missing required field
// has a tag <= 64 and we check reqFields.
return &RequiredNotSetError{"{Unknown}"}
}
}
return err
}
// Individual type decoders
// For each,
// u is the decoded value,
// v is a pointer to the field (pointer) in the struct
// Sizes of the pools to allocate inside the Buffer.
// The goal is modest amortization and allocation
// on at least 16-byte boundaries.
const (
boolPoolSize = 16
uint32PoolSize = 8
uint64PoolSize = 4
)
// Decode a bool.
func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
if len(o.bools) == 0 {
o.bools = make([]bool, boolPoolSize)
}
o.bools[0] = u != 0
*structPointer_Bool(base, p.field) = &o.bools[0]
o.bools = o.bools[1:]
return nil
}
func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
*structPointer_BoolVal(base, p.field) = u != 0
return nil
}
// Decode an int32.
func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
return nil
}
func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
return nil
}
// Decode an int64.
func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64_Set(structPointer_Word64(base, p.field), o, u)
return nil
}
func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
return nil
}
// Decode a string.
func (o *Buffer) dec_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_String(base, p.field) = &s
return nil
}
func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_StringVal(base, p.field) = s
return nil
}
// Decode a slice of bytes ([]byte).
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
*structPointer_Bytes(base, p.field) = b
return nil
}
// Decode a slice of bools ([]bool).
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
v := structPointer_BoolSlice(base, p.field)
*v = append(*v, u != 0)
return nil
}
// Decode a slice of bools ([]bool) in packed format.
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
v := structPointer_BoolSlice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded bools
fin := o.index + nb
if fin < o.index {
return errOverflow
}
y := *v
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
y = append(y, u != 0)
}
*v = y
return nil
}
// Decode a slice of int32s ([]int32).
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word32Slice(base, p.field).Append(uint32(u))
return nil
}
// Decode a slice of int32s ([]int32) in packed format.
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
v := structPointer_Word32Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int32s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(uint32(u))
}
return nil
}
// Decode a slice of int64s ([]int64).
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word64Slice(base, p.field).Append(u)
return nil
}
// Decode a slice of int64s ([]int64) in packed format.
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
v := structPointer_Word64Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int64s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(u)
}
return nil
}
// Decode a slice of strings ([]string).
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
v := structPointer_StringSlice(base, p.field)
*v = append(*v, s)
return nil
}
// Decode a slice of slice of bytes ([][]byte).
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
v := structPointer_BytesSlice(base, p.field)
*v = append(*v, b)
return nil
}
// Decode a map field.
func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
oi := o.index // index at the end of this map entry
o.index -= len(raw) // move buffer back to start of map entry
mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
if mptr.Elem().IsNil() {
mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
}
v := mptr.Elem() // map[K]V
// Prepare addressable doubly-indirect placeholders for the key and value types.
// See enc_new_map for why.
keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
keybase := toStructPointer(keyptr.Addr()) // **K
var valbase structPointer
var valptr reflect.Value
switch p.mtype.Elem().Kind() {
case reflect.Slice:
// []byte
var dummy []byte
valptr = reflect.ValueOf(&dummy) // *[]byte
valbase = toStructPointer(valptr) // *[]byte
case reflect.Ptr:
// message; valptr is **Msg; need to allocate the intermediate pointer
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valptr.Set(reflect.New(valptr.Type().Elem()))
valbase = toStructPointer(valptr)
default:
// everything else
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valbase = toStructPointer(valptr.Addr()) // **V
}
// Decode.
// This parses a restricted wire format, namely the encoding of a message
// with two fields. See enc_new_map for the format.
for o.index < oi {
// tagcode for key and value properties are always a single byte
// because they have tags 1 and 2.
tagcode := o.buf[o.index]
o.index++
switch tagcode {
case p.mkeyprop.tagcode[0]:
if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
return err
}
case p.mvalprop.tagcode[0]:
if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
return err
}
default:
// TODO: Should we silently skip this instead?
return fmt.Errorf("proto: bad map data tag %d", raw[0])
}
}
keyelem, valelem := keyptr.Elem(), valptr.Elem()
if !keyelem.IsValid() {
keyelem = reflect.Zero(p.mtype.Key())
}
if !valelem.IsValid() {
valelem = reflect.Zero(p.mtype.Elem())
}
v.SetMapIndex(keyelem, valelem)
return nil
}
// Decode a group.
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
return o.unmarshalType(p.stype, p.sprop, true, bas)
}
// Decode an embedded message.
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
raw, e := o.DecodeRawBytes(false)
if e != nil {
return e
}
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := structPointer_Interface(bas, p.stype)
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, false, bas)
o.buf = obuf
o.index = oi
return err
}
// Decode a slice of embedded messages.
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, false, base)
}
// Decode a slice of embedded groups.
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, true, base)
}
// Decode a slice of structs ([]*struct).
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
v := reflect.New(p.stype)
bas := toStructPointer(v)
structPointer_StructPointerSlice(base, p.field).Append(bas)
if is_group {
err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
return err
}
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := v.Interface()
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
o.buf = obuf
o.index = oi
// Slow workaround for messages that aren't Unmarshalers.
// This includes some hand-coded .pb.go files and
// bootstrap protos.
// TODO: fix all of those and then add Unmarshal to
// the Message interface. Then:
// The cast above and code below can be deleted.
// The old unmarshaler can be deleted.
// Clients can call Unmarshal directly (can already do that, actually).
var info InternalMessageInfo
err := info.Unmarshal(pb, p.buf[p.index:])
p.index = len(p.buf)
return err
}

350
vendor/github.com/golang/protobuf/proto/discard.go generated vendored Normal file
View file

@ -0,0 +1,350 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2017 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
type generatedDiscarder interface {
XXX_DiscardUnknown()
}
// DiscardUnknown recursively discards all unknown fields from this message
// and all embedded messages.
//
// When unmarshaling a message with unrecognized fields, the tags and values
// of such fields are preserved in the Message. This allows a later call to
// marshal to be able to produce a message that continues to have those
// unrecognized fields. To avoid this, DiscardUnknown is used to
// explicitly clear the unknown fields after unmarshaling.
//
// For proto2 messages, the unknown fields of message extensions are only
// discarded from messages that have been accessed via GetExtension.
func DiscardUnknown(m Message) {
if m, ok := m.(generatedDiscarder); ok {
m.XXX_DiscardUnknown()
return
}
// TODO: Dynamically populate a InternalMessageInfo for legacy messages,
// but the master branch has no implementation for InternalMessageInfo,
// so it would be more work to replicate that approach.
discardLegacy(m)
}
// DiscardUnknown recursively discards all unknown fields.
func (a *InternalMessageInfo) DiscardUnknown(m Message) {
di := atomicLoadDiscardInfo(&a.discard)
if di == nil {
di = getDiscardInfo(reflect.TypeOf(m).Elem())
atomicStoreDiscardInfo(&a.discard, di)
}
di.discard(toPointer(&m))
}
type discardInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []discardFieldInfo
unrecognized field
}
type discardFieldInfo struct {
field field // Offset of field, guaranteed to be valid
discard func(src pointer)
}
var (
discardInfoMap = map[reflect.Type]*discardInfo{}
discardInfoLock sync.Mutex
)
func getDiscardInfo(t reflect.Type) *discardInfo {
discardInfoLock.Lock()
defer discardInfoLock.Unlock()
di := discardInfoMap[t]
if di == nil {
di = &discardInfo{typ: t}
discardInfoMap[t] = di
}
return di
}
func (di *discardInfo) discard(src pointer) {
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&di.initialized) == 0 {
di.computeDiscardInfo()
}
for _, fi := range di.fields {
sfp := src.offset(fi.field)
fi.discard(sfp)
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(src.asPointerTo(di.typ).Interface()); err == nil {
// Ignore lock since DiscardUnknown is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
DiscardUnknown(m)
}
}
}
if di.unrecognized.IsValid() {
*src.offset(di.unrecognized).toBytes() = nil
}
}
func (di *discardInfo) computeDiscardInfo() {
di.lock.Lock()
defer di.lock.Unlock()
if di.initialized != 0 {
return
}
t := di.typ
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
dfi := discardFieldInfo{field: toField(&f)}
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%v.%s cannot be a slice of pointers to primitive types", t, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%v.%s cannot be a direct struct value", t, f.Name))
case isSlice: // E.g., []*pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sps := src.getPointerSlice()
for _, sp := range sps {
if !sp.isNil() {
di.discard(sp)
}
}
}
default: // E.g., *pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sp := src.getPointer()
if !sp.isNil() {
di.discard(sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a map or a slice of map values", t, f.Name))
default: // E.g., map[K]V
if tf.Elem().Kind() == reflect.Ptr { // Proto struct (e.g., *T)
dfi.discard = func(src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
DiscardUnknown(val.Interface().(Message))
}
}
} else {
dfi.discard = func(pointer) {} // Noop
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a interface or a slice of interface values", t, f.Name))
default: // E.g., interface{}
// TODO: Make this faster?
dfi.discard = func(src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
DiscardUnknown(sv.Interface().(Message))
}
}
}
}
default:
continue
}
di.fields = append(di.fields, dfi)
}
di.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
di.unrecognized = toField(&f)
}
atomic.StoreInt32(&di.initialized, 1)
}
func discardLegacy(m Message) {
v := reflect.ValueOf(m)
if v.Kind() != reflect.Ptr || v.IsNil() {
return
}
v = v.Elem()
if v.Kind() != reflect.Struct {
return
}
t := v.Type()
for i := 0; i < v.NumField(); i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
vf := v.Field(i)
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T.%s cannot be a slice of pointers to primitive types", m, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%T.%s cannot be a direct struct value", m, f.Name))
case isSlice: // E.g., []*pb.T
for j := 0; j < vf.Len(); j++ {
discardLegacy(vf.Index(j).Interface().(Message))
}
default: // E.g., *pb.T
discardLegacy(vf.Interface().(Message))
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a map or a slice of map values", m, f.Name))
default: // E.g., map[K]V
tv := vf.Type().Elem()
if tv.Kind() == reflect.Ptr && tv.Implements(protoMessageType) { // Proto struct (e.g., *T)
for _, key := range vf.MapKeys() {
val := vf.MapIndex(key)
discardLegacy(val.Interface().(Message))
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a interface or a slice of interface values", m, f.Name))
default: // E.g., test_proto.isCommunique_Union interface
if !vf.IsNil() && f.Tag.Get("protobuf_oneof") != "" {
vf = vf.Elem() // E.g., *test_proto.Communique_Msg
if !vf.IsNil() {
vf = vf.Elem() // E.g., test_proto.Communique_Msg
vf = vf.Field(0) // E.g., Proto struct (e.g., *T) or primitive value
if vf.Kind() == reflect.Ptr {
discardLegacy(vf.Interface().(Message))
}
}
}
}
}
}
if vf := v.FieldByName("XXX_unrecognized"); vf.IsValid() {
if vf.Type() != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
vf.Set(reflect.ValueOf([]byte(nil)))
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(m); err == nil {
// Ignore lock since discardLegacy is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
discardLegacy(m)
}
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -54,13 +54,17 @@ Equality is defined in this way:
in a proto3 .proto file, fields are not "set"; specifically,
zero length proto3 "bytes" fields are equal (nil == {}).
- Two repeated fields are equal iff their lengths are the same,
and their corresponding elements are equal (a "bytes" field,
although represented by []byte, is not a repeated field)
and their corresponding elements are equal. Note a "bytes" field,
although represented by []byte, is not a repeated field and the
rule for the scalar fields described above applies.
- Two unset fields are equal.
- Two unknown field sets are equal if their current
encoded state is equal.
- Two extension sets are equal iff they have corresponding
elements that are pairwise equal.
- Two map fields are equal iff their lengths are the same,
and they contain the same set of elements. Zero-length map
fields are equal.
- Every other combination of things are not equal.
The return value is undefined if a and b are not protocol buffers.
@ -105,15 +109,6 @@ func equalStruct(v1, v2 reflect.Value) bool {
// set/unset mismatch
return false
}
b1, ok := f1.Interface().(raw)
if ok {
b2 := f2.Interface().(raw)
// RawMessage
if !bytes.Equal(b1.Bytes(), b2.Bytes()) {
return false
}
continue
}
f1, f2 = f1.Elem(), f2.Elem()
}
if !equalAny(f1, f2, sprop.Prop[i]) {
@ -121,9 +116,16 @@ func equalStruct(v1, v2 reflect.Value) bool {
}
}
if em1 := v1.FieldByName("XXX_InternalExtensions"); em1.IsValid() {
em2 := v2.FieldByName("XXX_InternalExtensions")
if !equalExtensions(v1.Type(), em1.Interface().(XXX_InternalExtensions), em2.Interface().(XXX_InternalExtensions)) {
return false
}
}
if em1 := v1.FieldByName("XXX_extensions"); em1.IsValid() {
em2 := v2.FieldByName("XXX_extensions")
if !equalExtensions(v1.Type(), em1.Interface().(map[int32]Extension), em2.Interface().(map[int32]Extension)) {
if !equalExtMap(v1.Type(), em1.Interface().(map[int32]Extension), em2.Interface().(map[int32]Extension)) {
return false
}
}
@ -135,11 +137,7 @@ func equalStruct(v1, v2 reflect.Value) bool {
u1 := uf.Bytes()
u2 := v2.FieldByName("XXX_unrecognized").Bytes()
if !bytes.Equal(u1, u2) {
return false
}
return true
return bytes.Equal(u1, u2)
}
// v1 and v2 are known to have the same type.
@ -184,6 +182,13 @@ func equalAny(v1, v2 reflect.Value, prop *Properties) bool {
}
return true
case reflect.Ptr:
// Maps may have nil values in them, so check for nil.
if v1.IsNil() && v2.IsNil() {
return true
}
if v1.IsNil() != v2.IsNil() {
return false
}
return equalAny(v1.Elem(), v2.Elem(), prop)
case reflect.Slice:
if v1.Type().Elem().Kind() == reflect.Uint8 {
@ -223,8 +228,14 @@ func equalAny(v1, v2 reflect.Value, prop *Properties) bool {
}
// base is the struct type that the extensions are based on.
// em1 and em2 are extension maps.
func equalExtensions(base reflect.Type, em1, em2 map[int32]Extension) bool {
// x1 and x2 are InternalExtensions.
func equalExtensions(base reflect.Type, x1, x2 XXX_InternalExtensions) bool {
em1, _ := x1.extensionsRead()
em2, _ := x2.extensionsRead()
return equalExtMap(base, em1, em2)
}
func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
if len(em1) != len(em2) {
return false
}
@ -237,6 +248,15 @@ func equalExtensions(base reflect.Type, em1, em2 map[int32]Extension) bool {
m1, m2 := e1.value, e2.value
if m1 == nil && m2 == nil {
// Both have only encoded form.
if bytes.Equal(e1.enc, e2.enc) {
continue
}
// The bytes are different, but the extensions might still be
// equal. We need to decode them to compare.
}
if m1 != nil && m2 != nil {
// Both are unencoded.
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2), nil) {
@ -252,8 +272,12 @@ func equalExtensions(base reflect.Type, em1, em2 map[int32]Extension) bool {
desc = m[extNum]
}
if desc == nil {
// If both have only encoded form and the bytes are the same,
// it is handled above. We get here when the bytes are different.
// We don't know how to decode it, so just compare them as byte
// slices.
log.Printf("proto: don't know how to compare extension %d of %v", extNum, base)
continue
return false
}
var err error
if m1 == nil {

View file

@ -38,6 +38,7 @@ package proto
import (
"errors"
"fmt"
"io"
"reflect"
"strconv"
"sync"
@ -52,14 +53,111 @@ type ExtensionRange struct {
Start, End int32 // both inclusive
}
// extendableProto is an interface implemented by any protocol buffer that may be extended.
// extendableProto is an interface implemented by any protocol buffer generated by the current
// proto compiler that may be extended.
type extendableProto interface {
Message
ExtensionRangeArray() []ExtensionRange
extensionsWrite() map[int32]Extension
extensionsRead() (map[int32]Extension, sync.Locker)
}
// extendableProtoV1 is an interface implemented by a protocol buffer generated by the previous
// version of the proto compiler that may be extended.
type extendableProtoV1 interface {
Message
ExtensionRangeArray() []ExtensionRange
ExtensionMap() map[int32]Extension
}
var extendableProtoType = reflect.TypeOf((*extendableProto)(nil)).Elem()
// extensionAdapter is a wrapper around extendableProtoV1 that implements extendableProto.
type extensionAdapter struct {
extendableProtoV1
}
func (e extensionAdapter) extensionsWrite() map[int32]Extension {
return e.ExtensionMap()
}
func (e extensionAdapter) extensionsRead() (map[int32]Extension, sync.Locker) {
return e.ExtensionMap(), notLocker{}
}
// notLocker is a sync.Locker whose Lock and Unlock methods are nops.
type notLocker struct{}
func (n notLocker) Lock() {}
func (n notLocker) Unlock() {}
// extendable returns the extendableProto interface for the given generated proto message.
// If the proto message has the old extension format, it returns a wrapper that implements
// the extendableProto interface.
func extendable(p interface{}) (extendableProto, error) {
switch p := p.(type) {
case extendableProto:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return p, nil
case extendableProtoV1:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return extensionAdapter{p}, nil
}
// Don't allocate a specific error containing %T:
// this is the hot path for Clone and MarshalText.
return nil, errNotExtendable
}
var errNotExtendable = errors.New("proto: not an extendable proto.Message")
func isNilPtr(x interface{}) bool {
v := reflect.ValueOf(x)
return v.Kind() == reflect.Ptr && v.IsNil()
}
// XXX_InternalExtensions is an internal representation of proto extensions.
//
// Each generated message struct type embeds an anonymous XXX_InternalExtensions field,
// thus gaining the unexported 'extensions' method, which can be called only from the proto package.
//
// The methods of XXX_InternalExtensions are not concurrency safe in general,
// but calls to logically read-only methods such as has and get may be executed concurrently.
type XXX_InternalExtensions struct {
// The struct must be indirect so that if a user inadvertently copies a
// generated message and its embedded XXX_InternalExtensions, they
// avoid the mayhem of a copied mutex.
//
// The mutex serializes all logically read-only operations to p.extensionMap.
// It is up to the client to ensure that write operations to p.extensionMap are
// mutually exclusive with other accesses.
p *struct {
mu sync.Mutex
extensionMap map[int32]Extension
}
}
// extensionsWrite returns the extension map, creating it on first use.
func (e *XXX_InternalExtensions) extensionsWrite() map[int32]Extension {
if e.p == nil {
e.p = new(struct {
mu sync.Mutex
extensionMap map[int32]Extension
})
e.p.extensionMap = make(map[int32]Extension)
}
return e.p.extensionMap
}
// extensionsRead returns the extensions map for read-only use. It may be nil.
// The caller must hold the returned mutex's lock when accessing Elements within the map.
func (e *XXX_InternalExtensions) extensionsRead() (map[int32]Extension, sync.Locker) {
if e.p == nil {
return nil, nil
}
return e.p.extensionMap, &e.p.mu
}
// ExtensionDesc represents an extension specification.
// Used in generated code from the protocol compiler.
@ -69,6 +167,7 @@ type ExtensionDesc struct {
Field int32 // field number
Name string // fully-qualified name of extension, for text formatting
Tag string // protobuf tag style
Filename string // name of the file in which the extension is defined
}
func (ed *ExtensionDesc) repeated() bool {
@ -92,8 +191,13 @@ type Extension struct {
}
// SetRawExtension is for testing only.
func SetRawExtension(base extendableProto, id int32, b []byte) {
base.ExtensionMap()[id] = Extension{enc: b}
func SetRawExtension(base Message, id int32, b []byte) {
epb, err := extendable(base)
if err != nil {
return
}
extmap := epb.extensionsWrite()
extmap[id] = Extension{enc: b}
}
// isExtensionField returns true iff the given field number is in an extension range.
@ -108,9 +212,13 @@ func isExtensionField(pb extendableProto, field int32) bool {
// checkExtensionTypes checks that the given extension is valid for pb.
func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {
var pbi interface{} = pb
// Check the extended type.
if a, b := reflect.TypeOf(pb), reflect.TypeOf(extension.ExtendedType); a != b {
return errors.New("proto: bad extended type; " + b.String() + " does not extend " + a.String())
if ea, ok := pbi.(extensionAdapter); ok {
pbi = ea.extendableProtoV1
}
if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b {
return fmt.Errorf("proto: bad extended type; %v does not extend %v", b, a)
}
// Check the range.
if !isExtensionField(pb, extension.Field) {
@ -155,80 +263,62 @@ func extensionProperties(ed *ExtensionDesc) *Properties {
return prop
}
// encodeExtensionMap encodes any unmarshaled (unencoded) extensions in m.
func encodeExtensionMap(m map[int32]Extension) error {
for k, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
p := NewBuffer(nil)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
if err := props.enc(p, props, toStructPointer(x)); err != nil {
return err
}
e.enc = p.buf
m[k] = e
}
return nil
}
func sizeExtensionMap(m map[int32]Extension) (n int) {
for _, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
n += len(e.enc)
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
n += props.size(props, toStructPointer(x))
}
return
}
// HasExtension returns whether the given extension is present in pb.
func HasExtension(pb extendableProto, extension *ExtensionDesc) bool {
func HasExtension(pb Message, extension *ExtensionDesc) bool {
// TODO: Check types, field numbers, etc.?
_, ok := pb.ExtensionMap()[extension.Field]
epb, err := extendable(pb)
if err != nil {
return false
}
extmap, mu := epb.extensionsRead()
if extmap == nil {
return false
}
mu.Lock()
_, ok := extmap[extension.Field]
mu.Unlock()
return ok
}
// ClearExtension removes the given extension from pb.
func ClearExtension(pb extendableProto, extension *ExtensionDesc) {
func ClearExtension(pb Message, extension *ExtensionDesc) {
epb, err := extendable(pb)
if err != nil {
return
}
// TODO: Check types, field numbers, etc.?
delete(pb.ExtensionMap(), extension.Field)
extmap := epb.extensionsWrite()
delete(extmap, extension.Field)
}
// GetExtension parses and returns the given extension of pb.
// If the extension is not present and has no default value it returns ErrMissingExtension.
func GetExtension(pb extendableProto, extension *ExtensionDesc) (interface{}, error) {
if err := checkExtensionTypes(pb, extension); err != nil {
// GetExtension retrieves a proto2 extended field from pb.
//
// If the descriptor is type complete (i.e., ExtensionDesc.ExtensionType is non-nil),
// then GetExtension parses the encoded field and returns a Go value of the specified type.
// If the field is not present, then the default value is returned (if one is specified),
// otherwise ErrMissingExtension is reported.
//
// If the descriptor is not type complete (i.e., ExtensionDesc.ExtensionType is nil),
// then GetExtension returns the raw encoded bytes of the field extension.
func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
epb, err := extendable(pb)
if err != nil {
return nil, err
}
emap := pb.ExtensionMap()
if extension.ExtendedType != nil {
// can only check type if this is a complete descriptor
if err := checkExtensionTypes(epb, extension); err != nil {
return nil, err
}
}
emap, mu := epb.extensionsRead()
if emap == nil {
return defaultExtensionValue(extension)
}
mu.Lock()
defer mu.Unlock()
e, ok := emap[extension.Field]
if !ok {
// defaultExtensionValue returns the default value or
@ -247,6 +337,11 @@ func GetExtension(pb extendableProto, extension *ExtensionDesc) (interface{}, er
return e.value, nil
}
if extension.ExtensionType == nil {
// incomplete descriptor
return e.enc, nil
}
v, err := decodeExtension(e.enc, extension)
if err != nil {
return nil, err
@ -264,6 +359,11 @@ func GetExtension(pb extendableProto, extension *ExtensionDesc) (interface{}, er
// defaultExtensionValue returns the default value for extension.
// If no default for an extension is defined ErrMissingExtension is returned.
func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
if extension.ExtensionType == nil {
// incomplete descriptor, so no default
return nil, ErrMissingExtension
}
t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension)
@ -298,31 +398,28 @@ func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
// decodeExtension decodes an extension encoded in b.
func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
o := NewBuffer(b)
t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension)
unmarshal := typeUnmarshaler(t, extension.Tag)
// t is a pointer to a struct, pointer to basic type or a slice.
// Allocate a "field" to store the pointer/slice itself; the
// pointer/slice will be stored here. We pass
// the address of this field to props.dec.
// This passes a zero field and a *t and lets props.dec
// interpret it as a *struct{ x t }.
// Allocate space to store the pointer/slice.
value := reflect.New(t).Elem()
var err error
for {
// Discard wire type and field number varint. It isn't needed.
if _, err := o.DecodeVarint(); err != nil {
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
wire := int(x) & 7
b, err = unmarshal(b, valToPointer(value.Addr()), wire)
if err != nil {
return nil, err
}
if err := props.dec(o, props, toStructPointer(value.Addr())); err != nil {
return nil, err
}
if o.index >= len(o.buf) {
if len(b) == 0 {
break
}
}
@ -332,10 +429,9 @@ func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
// GetExtensions returns a slice of the extensions present in pb that are also listed in es.
// The returned slice has the same length as es; missing extensions will appear as nil elements.
func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {
epb, ok := pb.(extendableProto)
if !ok {
err = errors.New("proto: not an extendable proto")
return
epb, err := extendable(pb)
if err != nil {
return nil, err
}
extensions = make([]interface{}, len(es))
for i, e := range es {
@ -350,9 +446,44 @@ func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, e
return
}
// ExtensionDescs returns a new slice containing pb's extension descriptors, in undefined order.
// For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing
// just the Field field, which defines the extension's field number.
func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
epb, err := extendable(pb)
if err != nil {
return nil, err
}
registeredExtensions := RegisteredExtensions(pb)
emap, mu := epb.extensionsRead()
if emap == nil {
return nil, nil
}
mu.Lock()
defer mu.Unlock()
extensions := make([]*ExtensionDesc, 0, len(emap))
for extid, e := range emap {
desc := e.desc
if desc == nil {
desc = registeredExtensions[extid]
if desc == nil {
desc = &ExtensionDesc{Field: extid}
}
}
extensions = append(extensions, desc)
}
return extensions, nil
}
// SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb extendableProto, extension *ExtensionDesc, value interface{}) error {
if err := checkExtensionTypes(pb, extension); err != nil {
func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {
epb, err := extendable(pb)
if err != nil {
return err
}
if err := checkExtensionTypes(epb, extension); err != nil {
return err
}
typ := reflect.TypeOf(extension.ExtensionType)
@ -368,10 +499,23 @@ func SetExtension(pb extendableProto, extension *ExtensionDesc, value interface{
return fmt.Errorf("proto: SetExtension called with nil value of type %T", value)
}
pb.ExtensionMap()[extension.Field] = Extension{desc: extension, value: value}
extmap := epb.extensionsWrite()
extmap[extension.Field] = Extension{desc: extension, value: value}
return nil
}
// ClearAllExtensions clears all extensions from pb.
func ClearAllExtensions(pb Message) {
epb, err := extendable(pb)
if err != nil {
return
}
m := epb.extensionsWrite()
for k := range m {
delete(m, k)
}
}
// A global registry of extensions.
// The generated code will register the generated descriptors by calling RegisterExtension.

View file

@ -73,7 +73,6 @@ for a protocol buffer variable v:
When the .proto file specifies `syntax="proto3"`, there are some differences:
- Non-repeated fields of non-message type are values instead of pointers.
- Getters are only generated for message and oneof fields.
- Enum types do not get an Enum method.
The simplest way to describe this is to see an example.
@ -274,6 +273,67 @@ import (
"sync"
)
// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
// Marshal reports this when a required field is not initialized.
// Unmarshal reports this when a required field is missing from the wire data.
type RequiredNotSetError struct{ field string }
func (e *RequiredNotSetError) Error() string {
if e.field == "" {
return fmt.Sprintf("proto: required field not set")
}
return fmt.Sprintf("proto: required field %q not set", e.field)
}
func (e *RequiredNotSetError) RequiredNotSet() bool {
return true
}
type invalidUTF8Error struct{ field string }
func (e *invalidUTF8Error) Error() string {
if e.field == "" {
return "proto: invalid UTF-8 detected"
}
return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
}
func (e *invalidUTF8Error) InvalidUTF8() bool {
return true
}
// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
// This error should not be exposed to the external API as such errors should
// be recreated with the field information.
var errInvalidUTF8 = &invalidUTF8Error{}
// isNonFatal reports whether the error is either a RequiredNotSet error
// or a InvalidUTF8 error.
func isNonFatal(err error) bool {
if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
return true
}
if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
return true
}
return false
}
type nonFatal struct{ E error }
// Merge merges err into nf and reports whether it was successful.
// Otherwise it returns false for any fatal non-nil errors.
func (nf *nonFatal) Merge(err error) (ok bool) {
if err == nil {
return true // not an error
}
if !isNonFatal(err) {
return false // fatal error
}
if nf.E == nil {
nf.E = err // store first instance of non-fatal error
}
return true
}
// Message is implemented by generated protocol buffer messages.
type Message interface {
Reset()
@ -308,18 +368,9 @@ func GetStats() Stats { return stats }
// temporary Buffer and are fine for most applications.
type Buffer struct {
buf []byte // encode/decode byte stream
index int // write point
index int // read point
// pools of basic types to amortize allocation.
bools []bool
uint32s []uint32
uint64s []uint64
// extra pools, only used with pointer_reflect.go
int32s []int32
int64s []int64
float32s []float32
float64s []float64
deterministic bool
}
// NewBuffer allocates a new Buffer and initializes its internal data to
@ -344,6 +395,30 @@ func (p *Buffer) SetBuf(s []byte) {
// Bytes returns the contents of the Buffer.
func (p *Buffer) Bytes() []byte { return p.buf }
// SetDeterministic sets whether to use deterministic serialization.
//
// Deterministic serialization guarantees that for a given binary, equal
// messages will always be serialized to the same bytes. This implies:
//
// - Repeated serialization of a message will return the same bytes.
// - Different processes of the same binary (which may be executing on
// different machines) will serialize equal messages to the same bytes.
//
// Note that the deterministic serialization is NOT canonical across
// languages. It is not guaranteed to remain stable over time. It is unstable
// across different builds with schema changes due to unknown fields.
// Users who need canonical serialization (e.g., persistent storage in a
// canonical form, fingerprinting, etc.) should define their own
// canonicalization specification and implement their own serializer rather
// than relying on this API.
//
// If deterministic serialization is requested, map entries will be sorted
// by keys in lexographical order. This is an implementation detail and
// subject to change.
func (p *Buffer) SetDeterministic(deterministic bool) {
p.deterministic = deterministic
}
/*
* Helper routines for simplifying the creation of optional fields of basic type.
*/
@ -832,22 +907,12 @@ func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMes
return sf, false, nil
}
// mapKeys returns a sort.Interface to be used for sorting the map keys.
// Map fields may have key types of non-float scalars, strings and enums.
// The easiest way to sort them in some deterministic order is to use fmt.
// If this turns out to be inefficient we can always consider other options,
// such as doing a Schwartzian transform.
func mapKeys(vs []reflect.Value) sort.Interface {
s := mapKeySorter{
vs: vs,
// default Less function: textual comparison
less: func(a, b reflect.Value) bool {
return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface())
},
}
s := mapKeySorter{vs: vs}
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps;
// numeric keys are sorted numerically.
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
if len(vs) == 0 {
return s
}
@ -856,6 +921,12 @@ func mapKeys(vs []reflect.Value) sort.Interface {
s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
case reflect.Uint32, reflect.Uint64:
s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
case reflect.Bool:
s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
case reflect.String:
s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
default:
panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
}
return s
@ -889,6 +960,20 @@ func isProto3Zero(v reflect.Value) bool {
return false
}
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion1 = true
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.
// This type is not subject to any compatibility guarantee.
type InternalMessageInfo struct {
marshal *marshalInfo
unmarshal *unmarshalInfo
merge *mergeInfo
discard *discardInfo
}

View file

@ -42,6 +42,7 @@ import (
"fmt"
"reflect"
"sort"
"sync"
)
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
@ -94,10 +95,7 @@ func (ms *messageSet) find(pb Message) *_MessageSet_Item {
}
func (ms *messageSet) Has(pb Message) bool {
if ms.find(pb) != nil {
return true
}
return false
return ms.find(pb) != nil
}
func (ms *messageSet) Unmarshal(pb Message) error {
@ -149,36 +147,54 @@ func skipVarint(buf []byte) []byte {
// MarshalMessageSet encodes the extension map represented by m in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(m map[int32]Extension) ([]byte, error) {
if err := encodeExtensionMap(m); err != nil {
return nil, err
func MarshalMessageSet(exts interface{}) ([]byte, error) {
return marshalMessageSet(exts, false)
}
// marshaMessageSet implements above function, with the opt to turn on / off deterministic during Marshal.
func marshalMessageSet(exts interface{}, deterministic bool) ([]byte, error) {
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var u marshalInfo
siz := u.sizeMessageSet(exts)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, exts, deterministic)
case map[int32]Extension:
// This is an old-style extension map.
// Wrap it in a new-style XXX_InternalExtensions.
ie := XXX_InternalExtensions{
p: &struct {
mu sync.Mutex
extensionMap map[int32]Extension
}{
extensionMap: exts,
},
}
// Sort extension IDs to provide a deterministic encoding.
// See also enc_map in encode.go.
ids := make([]int, 0, len(m))
for id := range m {
ids = append(ids, int(id))
}
sort.Ints(ids)
var u marshalInfo
siz := u.sizeMessageSet(&ie)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, &ie, deterministic)
ms := &messageSet{Item: make([]*_MessageSet_Item, 0, len(m))}
for _, id := range ids {
e := m[int32(id)]
// Remove the wire type and field number varint, as well as the length varint.
msg := skipVarint(skipVarint(e.enc))
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: Int32(int32(id)),
Message: msg,
})
default:
return nil, errors.New("proto: not an extension map")
}
return Marshal(ms)
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by generated Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, m map[int32]Extension) error {
// It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
m = exts.extensionsWrite()
case map[int32]Extension:
m = exts
default:
return errors.New("proto: not an extension map")
}
ms := new(messageSet)
if err := Unmarshal(buf, ms); err != nil {
return err
@ -209,7 +225,24 @@ func UnmarshalMessageSet(buf []byte, m map[int32]Extension) error {
// MarshalMessageSetJSON encodes the extension map represented by m in JSON format.
// It is called by generated MarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSetJSON(m map[int32]Extension) ([]byte, error) {
func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
var mu sync.Locker
m, mu = exts.extensionsRead()
if m != nil {
// Keep the extensions map locked until we're done marshaling to prevent
// races between marshaling and unmarshaling the lazily-{en,de}coded
// values.
mu.Lock()
defer mu.Unlock()
}
case map[int32]Extension:
m = exts
default:
return nil, errors.New("proto: not an extension map")
}
var b bytes.Buffer
b.WriteByte('{')
@ -222,15 +255,16 @@ func MarshalMessageSetJSON(m map[int32]Extension) ([]byte, error) {
for i, id := range ids {
ext := m[id]
if i > 0 {
b.WriteByte(',')
}
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
if i > 0 && b.Len() > 1 {
b.WriteByte(',')
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value
@ -252,7 +286,7 @@ func MarshalMessageSetJSON(m map[int32]Extension) ([]byte, error) {
// UnmarshalMessageSetJSON decodes the extension map encoded in buf in JSON format.
// It is called by generated UnmarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSetJSON(buf []byte, m map[int32]Extension) error {
func UnmarshalMessageSetJSON(buf []byte, exts interface{}) error {
// Common-case fast path.
if len(buf) == 0 || bytes.Equal(buf, []byte("{}")) {
return nil

View file

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build appengine
// +build purego appengine js
// This file contains an implementation of proto field accesses using package reflect.
// It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can
@ -38,32 +38,13 @@
package proto
import (
"math"
"reflect"
"sync"
)
// A structPointer is a pointer to a struct.
type structPointer struct {
v reflect.Value
}
const unsafeAllowed = false
// toStructPointer returns a structPointer equivalent to the given reflect value.
// The reflect value must itself be a pointer to a struct.
func toStructPointer(v reflect.Value) structPointer {
return structPointer{v}
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p.v.IsNil()
}
// Interface returns the struct pointer as an interface value.
func structPointer_Interface(p structPointer, _ reflect.Type) interface{} {
return p.v.Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by the sequence of field indices
// passed to reflect's FieldByIndex.
type field []int
@ -76,404 +57,301 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier.
var invalidField = field(nil)
// zeroField is a noop when calling pointer.offset.
var zeroField = field([]int{})
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { return f != nil }
// field returns the given field in the struct as a reflect value.
func structPointer_field(p structPointer, f field) reflect.Value {
// Special case: an extension map entry with a value of type T
// passes a *T to the struct-handling code with a zero field,
// expecting that it will be treated as equivalent to *struct{ X T },
// which has the same memory layout. We have to handle that case
// specially, because reflect will panic if we call FieldByIndex on a
// non-struct.
if f == nil {
return p.v.Elem()
}
return p.v.Elem().FieldByIndex(f)
}
// ifield returns the given field in the struct as an interface value.
func structPointer_ifield(p structPointer, f field) interface{} {
return structPointer_field(p, f).Addr().Interface()
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return structPointer_ifield(p, f).(*[]byte)
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return structPointer_ifield(p, f).(*[][]byte)
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return structPointer_ifield(p, f).(**bool)
}
// BoolVal returns the address of a bool field in the struct.
func structPointer_BoolVal(p structPointer, f field) *bool {
return structPointer_ifield(p, f).(*bool)
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return structPointer_ifield(p, f).(*[]bool)
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return structPointer_ifield(p, f).(**string)
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return structPointer_ifield(p, f).(*string)
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return structPointer_ifield(p, f).(*[]string)
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return structPointer_ifield(p, f).(*map[int32]Extension)
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return structPointer_field(p, f).Addr()
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
structPointer_field(p, f).Set(q.v)
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return structPointer{structPointer_field(p, f)}
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) structPointerSlice {
return structPointerSlice{structPointer_field(p, f)}
}
// A structPointerSlice represents the address of a slice of pointers to structs
// (themselves messages or groups). That is, v.Type() is *[]*struct{...}.
type structPointerSlice struct {
// The pointer type is for the table-driven decoder.
// The implementation here uses a reflect.Value of pointer type to
// create a generic pointer. In pointer_unsafe.go we use unsafe
// instead of reflect to implement the same (but faster) interface.
type pointer struct {
v reflect.Value
}
func (p structPointerSlice) Len() int { return p.v.Len() }
func (p structPointerSlice) Index(i int) structPointer { return structPointer{p.v.Index(i)} }
func (p structPointerSlice) Append(q structPointer) {
p.v.Set(reflect.Append(p.v, q.v))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
return pointer{v: reflect.ValueOf(*i)}
}
var (
int32Type = reflect.TypeOf(int32(0))
uint32Type = reflect.TypeOf(uint32(0))
float32Type = reflect.TypeOf(float32(0))
int64Type = reflect.TypeOf(int64(0))
uint64Type = reflect.TypeOf(uint64(0))
float64Type = reflect.TypeOf(float64(0))
)
// A word32 represents a field of type *int32, *uint32, *float32, or *enum.
// That is, v.Type() is *int32, *uint32, *float32, or *enum and v is assignable.
type word32 struct {
v reflect.Value
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
v := reflect.ValueOf(*i)
u := reflect.New(v.Type())
u.Elem().Set(v)
return pointer{v: u}
}
// IsNil reports whether p is nil.
func word32_IsNil(p word32) bool {
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{v: v}
}
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
return pointer{v: p.v.Elem().FieldByIndex(f).Addr()}
}
func (p pointer) isNil() bool {
return p.v.IsNil()
}
// Set sets p to point at a newly allocated word with bits set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
t := p.v.Type().Elem()
switch t {
case int32Type:
if len(o.int32s) == 0 {
o.int32s = make([]int32, uint32PoolSize)
}
o.int32s[0] = int32(x)
p.v.Set(reflect.ValueOf(&o.int32s[0]))
o.int32s = o.int32s[1:]
return
case uint32Type:
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
}
o.uint32s[0] = x
p.v.Set(reflect.ValueOf(&o.uint32s[0]))
o.uint32s = o.uint32s[1:]
return
case float32Type:
if len(o.float32s) == 0 {
o.float32s = make([]float32, uint32PoolSize)
}
o.float32s[0] = math.Float32frombits(x)
p.v.Set(reflect.ValueOf(&o.float32s[0]))
o.float32s = o.float32s[1:]
return
}
// must be enum
p.v.Set(reflect.New(t))
p.v.Elem().SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32_Get(p word32) uint32 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32 returns a reference to a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32{structPointer_field(p, f)}
}
// A word32Val represents a field of type int32, uint32, float32, or enum.
// That is, v.Type() is int32, uint32, float32, or enum and v is assignable.
type word32Val struct {
v reflect.Value
}
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
switch p.v.Type() {
case int32Type:
p.v.SetInt(int64(x))
return
case uint32Type:
p.v.SetUint(uint64(x))
return
case float32Type:
p.v.SetFloat(float64(math.Float32frombits(x)))
return
}
// must be enum
p.v.SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32Val_Get(p word32Val) uint32 {
elem := p.v
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32Val returns a reference to a int32, uint32, float32, or enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val{structPointer_field(p, f)}
}
// A word32Slice is a slice of 32-bit values.
// That is, v.Type() is []int32, []uint32, []float32, or []enum.
type word32Slice struct {
v reflect.Value
}
func (p word32Slice) Append(x uint32) {
n, m := p.v.Len(), p.v.Cap()
// grow updates the slice s in place to make it one element longer.
// s must be addressable.
// Returns the (addressable) new element.
func grow(s reflect.Value) reflect.Value {
n, m := s.Len(), s.Cap()
if n < m {
p.v.SetLen(n + 1)
s.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int32:
elem.SetInt(int64(int32(x)))
case reflect.Uint32:
elem.SetUint(uint64(x))
case reflect.Float32:
elem.SetFloat(float64(math.Float32frombits(x)))
s.Set(reflect.Append(s, reflect.Zero(s.Type().Elem())))
}
return s.Index(n)
}
func (p word32Slice) Len() int {
return p.v.Len()
func (p pointer) toInt64() *int64 {
return p.v.Interface().(*int64)
}
func (p pointer) toInt64Ptr() **int64 {
return p.v.Interface().(**int64)
}
func (p pointer) toInt64Slice() *[]int64 {
return p.v.Interface().(*[]int64)
}
func (p word32Slice) Index(i int) uint32 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
var int32ptr = reflect.TypeOf((*int32)(nil))
func (p pointer) toInt32() *int32 {
return p.v.Convert(int32ptr).Interface().(*int32)
}
// Word32Slice returns a reference to a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) word32Slice {
return word32Slice{structPointer_field(p, f)}
// The toInt32Ptr/Slice methods don't work because of enums.
// Instead, we must use set/get methods for the int32ptr/slice case.
/*
func (p pointer) toInt32Ptr() **int32 {
return p.v.Interface().(**int32)
}
func (p pointer) toInt32Slice() *[]int32 {
return p.v.Interface().(*[]int32)
}
*/
func (p pointer) getInt32Ptr() *int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().(*int32)
}
// an enum
return p.v.Elem().Convert(int32PtrType).Interface().(*int32)
}
func (p pointer) setInt32Ptr(v int32) {
// Allocate value in a *int32. Possibly convert that to a *enum.
// Then assign it to a **int32 or **enum.
// Note: we can convert *int32 to *enum, but we can't convert
// **int32 to **enum!
p.v.Elem().Set(reflect.ValueOf(&v).Convert(p.v.Type().Elem()))
}
// word64 is like word32 but for 64-bit values.
type word64 struct {
v reflect.Value
// getInt32Slice copies []int32 from p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getInt32Slice() []int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().([]int32)
}
// an enum
// Allocate a []int32, then assign []enum's values into it.
// Note: we can't convert []enum to []int32.
slice := p.v.Elem()
s := make([]int32, slice.Len())
for i := 0; i < slice.Len(); i++ {
s[i] = int32(slice.Index(i).Int())
}
return s
}
func word64_Set(p word64, o *Buffer, x uint64) {
t := p.v.Type().Elem()
switch t {
case int64Type:
if len(o.int64s) == 0 {
o.int64s = make([]int64, uint64PoolSize)
}
o.int64s[0] = int64(x)
p.v.Set(reflect.ValueOf(&o.int64s[0]))
o.int64s = o.int64s[1:]
return
case uint64Type:
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
}
o.uint64s[0] = x
p.v.Set(reflect.ValueOf(&o.uint64s[0]))
o.uint64s = o.uint64s[1:]
return
case float64Type:
if len(o.float64s) == 0 {
o.float64s = make([]float64, uint64PoolSize)
}
o.float64s[0] = math.Float64frombits(x)
p.v.Set(reflect.ValueOf(&o.float64s[0]))
o.float64s = o.float64s[1:]
// setInt32Slice copies []int32 into p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setInt32Slice(v []int32) {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
p.v.Elem().Set(reflect.ValueOf(v))
return
}
panic("unreachable")
}
func word64_IsNil(p word64) bool {
return p.v.IsNil()
}
func word64_Get(p word64) uint64 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
// an enum
// Allocate a []enum, then assign []int32's values into it.
// Note: we can't convert []enum to []int32.
slice := reflect.MakeSlice(p.v.Type().Elem(), len(v), cap(v))
for i, x := range v {
slice.Index(i).SetInt(int64(x))
}
panic("unreachable")
p.v.Elem().Set(slice)
}
func (p pointer) appendInt32Slice(v int32) {
grow(p.v.Elem()).SetInt(int64(v))
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64{structPointer_field(p, f)}
func (p pointer) toUint64() *uint64 {
return p.v.Interface().(*uint64)
}
func (p pointer) toUint64Ptr() **uint64 {
return p.v.Interface().(**uint64)
}
func (p pointer) toUint64Slice() *[]uint64 {
return p.v.Interface().(*[]uint64)
}
func (p pointer) toUint32() *uint32 {
return p.v.Interface().(*uint32)
}
func (p pointer) toUint32Ptr() **uint32 {
return p.v.Interface().(**uint32)
}
func (p pointer) toUint32Slice() *[]uint32 {
return p.v.Interface().(*[]uint32)
}
func (p pointer) toBool() *bool {
return p.v.Interface().(*bool)
}
func (p pointer) toBoolPtr() **bool {
return p.v.Interface().(**bool)
}
func (p pointer) toBoolSlice() *[]bool {
return p.v.Interface().(*[]bool)
}
func (p pointer) toFloat64() *float64 {
return p.v.Interface().(*float64)
}
func (p pointer) toFloat64Ptr() **float64 {
return p.v.Interface().(**float64)
}
func (p pointer) toFloat64Slice() *[]float64 {
return p.v.Interface().(*[]float64)
}
func (p pointer) toFloat32() *float32 {
return p.v.Interface().(*float32)
}
func (p pointer) toFloat32Ptr() **float32 {
return p.v.Interface().(**float32)
}
func (p pointer) toFloat32Slice() *[]float32 {
return p.v.Interface().(*[]float32)
}
func (p pointer) toString() *string {
return p.v.Interface().(*string)
}
func (p pointer) toStringPtr() **string {
return p.v.Interface().(**string)
}
func (p pointer) toStringSlice() *[]string {
return p.v.Interface().(*[]string)
}
func (p pointer) toBytes() *[]byte {
return p.v.Interface().(*[]byte)
}
func (p pointer) toBytesSlice() *[][]byte {
return p.v.Interface().(*[][]byte)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return p.v.Interface().(*XXX_InternalExtensions)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return p.v.Interface().(*map[int32]Extension)
}
func (p pointer) getPointer() pointer {
return pointer{v: p.v.Elem()}
}
func (p pointer) setPointer(q pointer) {
p.v.Elem().Set(q.v)
}
func (p pointer) appendPointer(q pointer) {
grow(p.v.Elem()).Set(q.v)
}
// word64Val is like word32Val but for 64-bit values.
type word64Val struct {
v reflect.Value
// getPointerSlice copies []*T from p as a new []pointer.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getPointerSlice() []pointer {
if p.v.IsNil() {
return nil
}
n := p.v.Elem().Len()
s := make([]pointer, n)
for i := 0; i < n; i++ {
s[i] = pointer{v: p.v.Elem().Index(i)}
}
return s
}
func word64Val_Set(p word64Val, o *Buffer, x uint64) {
switch p.v.Type() {
case int64Type:
p.v.SetInt(int64(x))
return
case uint64Type:
p.v.SetUint(x)
return
case float64Type:
p.v.SetFloat(math.Float64frombits(x))
// setPointerSlice copies []pointer into p as a new []*T.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setPointerSlice(v []pointer) {
if v == nil {
p.v.Elem().Set(reflect.New(p.v.Elem().Type()).Elem())
return
}
panic("unreachable")
}
func word64Val_Get(p word64Val) uint64 {
elem := p.v
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
s := reflect.MakeSlice(p.v.Elem().Type(), 0, len(v))
for _, p := range v {
s = reflect.Append(s, p.v)
}
panic("unreachable")
p.v.Elem().Set(s)
}
func structPointer_Word64Val(p structPointer, f field) word64Val {
return word64Val{structPointer_field(p, f)}
}
type word64Slice struct {
v reflect.Value
}
func (p word64Slice) Append(x uint64) {
n, m := p.v.Len(), p.v.Cap()
if n < m {
p.v.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int64:
elem.SetInt(int64(int64(x)))
case reflect.Uint64:
elem.SetUint(uint64(x))
case reflect.Float64:
elem.SetFloat(float64(math.Float64frombits(x)))
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
if p.v.Elem().IsNil() {
return pointer{v: p.v.Elem()}
}
return pointer{v: p.v.Elem().Elem().Elem().Field(0).Addr()} // *interface -> interface -> *struct -> struct
}
func (p word64Slice) Len() int {
return p.v.Len()
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
// TODO: check that p.v.Type().Elem() == t?
return p.v
}
func (p word64Slice) Index(i int) uint64 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return uint64(elem.Uint())
case reflect.Float64:
return math.Float64bits(float64(elem.Float()))
}
panic("unreachable")
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func structPointer_Word64Slice(p structPointer, f field) word64Slice {
return word64Slice{structPointer_field(p, f)}
}
var atomicLock sync.Mutex

View file

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !appengine
// +build !purego,!appengine,!js
// This file contains the implementation of the proto field accesses using package unsafe.
@ -37,38 +37,13 @@ package proto
import (
"reflect"
"sync/atomic"
"unsafe"
)
// NOTE: These type_Foo functions would more idiomatically be methods,
// but Go does not allow methods on pointer types, and we must preserve
// some pointer type for the garbage collector. We use these
// funcs with clunky names as our poor approximation to methods.
//
// An alternative would be
// type structPointer struct { p unsafe.Pointer }
// but that does not registerize as well.
const unsafeAllowed = true
// A structPointer is a pointer to a struct.
type structPointer unsafe.Pointer
// toStructPointer returns a structPointer equivalent to the given reflect value.
func toStructPointer(v reflect.Value) structPointer {
return structPointer(unsafe.Pointer(v.Pointer()))
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p == nil
}
// Interface returns the struct pointer, assumed to have element type t,
// as an interface value.
func structPointer_Interface(p structPointer, t reflect.Type) interface{} {
return reflect.NewAt(t, unsafe.Pointer(p)).Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by its byte offset from the start of the struct.
type field uintptr
@ -80,187 +55,254 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier.
const invalidField = ^field(0)
// zeroField is a noop when calling pointer.offset.
const zeroField = field(0)
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool {
return f != ^field(0)
return f != invalidField
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return (*[]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// The pointer type below is for the new table-driven encoder/decoder.
// The implementation here uses unsafe.Pointer to create a generic pointer.
// In pointer_reflect.go we use reflect instead of unsafe to implement
// the same (but slower) interface.
type pointer struct {
p unsafe.Pointer
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return (*[][]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// size of pointer
var ptrSize = unsafe.Sizeof(uintptr(0))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
// Super-tricky - read pointer out of data word of interface value.
// Saves ~25ns over the equivalent:
// return valToPointer(reflect.ValueOf(*i))
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return (**bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BoolVal returns the address of a bool field in the struct.
func structPointer_BoolVal(p structPointer, f field) *bool {
return (*bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return (*[]bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return (**string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return (*string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return (*[]string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return (*map[int32]Extension)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return reflect.NewAt(typ, unsafe.Pointer(uintptr(p)+uintptr(f)))
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
*(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f))) = q
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return *(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) *structPointerSlice {
return (*structPointerSlice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// A structPointerSlice represents a slice of pointers to structs (themselves submessages or groups).
type structPointerSlice []structPointer
func (v *structPointerSlice) Len() int { return len(*v) }
func (v *structPointerSlice) Index(i int) structPointer { return (*v)[i] }
func (v *structPointerSlice) Append(p structPointer) { *v = append(*v, p) }
// A word32 is the address of a "pointer to 32-bit value" field.
type word32 **uint32
// IsNil reports whether *v is nil.
func word32_IsNil(p word32) bool {
return *p == nil
}
// Set sets *v to point at a newly allocated word set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
// Super-tricky - read or get the address of data word of interface value.
if isptr {
// The interface is of pointer type, thus it is a direct interface.
// The data word is the pointer data itself. We take its address.
return pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
}
o.uint32s[0] = x
*p = &o.uint32s[0]
o.uint32s = o.uint32s[1:]
// The interface is not of pointer type. The data word is the pointer
// to the data.
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// Get gets the value pointed at by *v.
func word32_Get(p word32) uint32 {
return **p
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{p: unsafe.Pointer(v.Pointer())}
}
// Word32 returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32((**uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Val is the address of a 32-bit value field.
type word32Val *uint32
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
*p = x
}
// Get gets the value pointed at by p.
func word32Val_Get(p word32Val) uint32 {
return *p
}
// Word32Val returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val((*uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Slice is a slice of 32-bit values.
type word32Slice []uint32
func (v *word32Slice) Append(x uint32) { *v = append(*v, x) }
func (v *word32Slice) Len() int { return len(*v) }
func (v *word32Slice) Index(i int) uint32 { return (*v)[i] }
// Word32Slice returns the address of a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) *word32Slice {
return (*word32Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// word64 is like word32 but for 64-bit values.
type word64 **uint64
func word64_Set(p word64, o *Buffer, x uint64) {
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
// For safety, we should panic if !f.IsValid, however calling panic causes
// this to no longer be inlineable, which is a serious performance cost.
/*
if !f.IsValid() {
panic("invalid field")
}
o.uint64s[0] = x
*p = &o.uint64s[0]
o.uint64s = o.uint64s[1:]
*/
return pointer{p: unsafe.Pointer(uintptr(p.p) + uintptr(f))}
}
func word64_IsNil(p word64) bool {
return *p == nil
func (p pointer) isNil() bool {
return p.p == nil
}
func word64_Get(p word64) uint64 {
return **p
func (p pointer) toInt64() *int64 {
return (*int64)(p.p)
}
func (p pointer) toInt64Ptr() **int64 {
return (**int64)(p.p)
}
func (p pointer) toInt64Slice() *[]int64 {
return (*[]int64)(p.p)
}
func (p pointer) toInt32() *int32 {
return (*int32)(p.p)
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64((**uint64)(unsafe.Pointer(uintptr(p) + uintptr(f))))
// See pointer_reflect.go for why toInt32Ptr/Slice doesn't exist.
/*
func (p pointer) toInt32Ptr() **int32 {
return (**int32)(p.p)
}
func (p pointer) toInt32Slice() *[]int32 {
return (*[]int32)(p.p)
}
*/
func (p pointer) getInt32Ptr() *int32 {
return *(**int32)(p.p)
}
func (p pointer) setInt32Ptr(v int32) {
*(**int32)(p.p) = &v
}
// word64Val is like word32Val but for 64-bit values.
type word64Val *uint64
func word64Val_Set(p word64Val, o *Buffer, x uint64) {
*p = x
// getInt32Slice loads a []int32 from p.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getInt32Slice() []int32 {
return *(*[]int32)(p.p)
}
func word64Val_Get(p word64Val) uint64 {
return *p
// setInt32Slice stores a []int32 to p.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setInt32Slice(v []int32) {
*(*[]int32)(p.p) = v
}
func structPointer_Word64Val(p structPointer, f field) word64Val {
return word64Val((*uint64)(unsafe.Pointer(uintptr(p) + uintptr(f))))
// TODO: Can we get rid of appendInt32Slice and use setInt32Slice instead?
func (p pointer) appendInt32Slice(v int32) {
s := (*[]int32)(p.p)
*s = append(*s, v)
}
// word64Slice is like word32Slice but for 64-bit values.
type word64Slice []uint64
func (v *word64Slice) Append(x uint64) { *v = append(*v, x) }
func (v *word64Slice) Len() int { return len(*v) }
func (v *word64Slice) Index(i int) uint64 { return (*v)[i] }
func structPointer_Word64Slice(p structPointer, f field) *word64Slice {
return (*word64Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
func (p pointer) toUint64() *uint64 {
return (*uint64)(p.p)
}
func (p pointer) toUint64Ptr() **uint64 {
return (**uint64)(p.p)
}
func (p pointer) toUint64Slice() *[]uint64 {
return (*[]uint64)(p.p)
}
func (p pointer) toUint32() *uint32 {
return (*uint32)(p.p)
}
func (p pointer) toUint32Ptr() **uint32 {
return (**uint32)(p.p)
}
func (p pointer) toUint32Slice() *[]uint32 {
return (*[]uint32)(p.p)
}
func (p pointer) toBool() *bool {
return (*bool)(p.p)
}
func (p pointer) toBoolPtr() **bool {
return (**bool)(p.p)
}
func (p pointer) toBoolSlice() *[]bool {
return (*[]bool)(p.p)
}
func (p pointer) toFloat64() *float64 {
return (*float64)(p.p)
}
func (p pointer) toFloat64Ptr() **float64 {
return (**float64)(p.p)
}
func (p pointer) toFloat64Slice() *[]float64 {
return (*[]float64)(p.p)
}
func (p pointer) toFloat32() *float32 {
return (*float32)(p.p)
}
func (p pointer) toFloat32Ptr() **float32 {
return (**float32)(p.p)
}
func (p pointer) toFloat32Slice() *[]float32 {
return (*[]float32)(p.p)
}
func (p pointer) toString() *string {
return (*string)(p.p)
}
func (p pointer) toStringPtr() **string {
return (**string)(p.p)
}
func (p pointer) toStringSlice() *[]string {
return (*[]string)(p.p)
}
func (p pointer) toBytes() *[]byte {
return (*[]byte)(p.p)
}
func (p pointer) toBytesSlice() *[][]byte {
return (*[][]byte)(p.p)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(p.p)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return (*map[int32]Extension)(p.p)
}
// getPointerSlice loads []*T from p as a []pointer.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getPointerSlice() []pointer {
// Super-tricky - p should point to a []*T where T is a
// message type. We load it as []pointer.
return *(*[]pointer)(p.p)
}
// setPointerSlice stores []pointer into p as a []*T.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setPointerSlice(v []pointer) {
// Super-tricky - p should point to a []*T where T is a
// message type. We store it as []pointer.
*(*[]pointer)(p.p) = v
}
// getPointer loads the pointer at p and returns it.
func (p pointer) getPointer() pointer {
return pointer{p: *(*unsafe.Pointer)(p.p)}
}
// setPointer stores the pointer q at p.
func (p pointer) setPointer(q pointer) {
*(*unsafe.Pointer)(p.p) = q.p
}
// append q to the slice pointed to by p.
func (p pointer) appendPointer(q pointer) {
s := (*[]unsafe.Pointer)(p.p)
*s = append(*s, q.p)
}
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
// Super-tricky - read pointer out of data word of interface value.
return pointer{p: (*(*[2]unsafe.Pointer)(p.p))[1]}
}
// asPointerTo returns a reflect.Value that is a pointer to an
// object of type t stored at p.
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
return reflect.NewAt(t, p.p)
}
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
return (*unmarshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
return (*marshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
return (*mergeInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
return (*discardInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}

View file

@ -58,42 +58,6 @@ const (
WireFixed32 = 5
)
const startSize = 10 // initial slice/string sizes
// Encoders are defined in encode.go
// An encoder outputs the full representation of a field, including its
// tag and encoder type.
type encoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueEncoder encodes a single integer in a particular encoding.
type valueEncoder func(o *Buffer, x uint64) error
// Sizers are defined in encode.go
// A sizer returns the encoded size of a field, including its tag and encoder
// type.
type sizer func(prop *Properties, base structPointer) int
// A valueSizer returns the encoded size of a single integer in a particular
// encoding.
type valueSizer func(x uint64) int
// Decoders are defined in decode.go
// A decoder creates a value from its wire representation.
// Unrecognized subelements are saved in unrec.
type decoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueDecoder decodes a single integer in a particular encoding.
type valueDecoder func(o *Buffer) (x uint64, err error)
// A oneofMarshaler does the marshaling for all oneof fields in a message.
type oneofMarshaler func(Message, *Buffer) error
// A oneofUnmarshaler does the unmarshaling for a oneof field in a message.
type oneofUnmarshaler func(Message, int, int, *Buffer) (bool, error)
// A oneofSizer does the sizing for all oneof fields in a message.
type oneofSizer func(Message) int
// tagMap is an optimization over map[int]int for typical protocol buffer
// use-cases. Encoded protocol buffers are often in tag order with small tag
// numbers.
@ -140,13 +104,6 @@ type StructProperties struct {
decoderTags tagMap // map from proto tag to struct field number
decoderOrigNames map[string]int // map from original name to struct field number
order []int // list of struct field numbers in tag order
unrecField field // field id of the XXX_unrecognized []byte field
extendable bool // is this an extendable proto
oneofMarshaler oneofMarshaler
oneofUnmarshaler oneofUnmarshaler
oneofSizer oneofSizer
stype reflect.Type
// OneofTypes contains information about the oneof fields in this message.
// It is keyed by the original name of a field.
@ -182,41 +139,24 @@ type Properties struct {
Repeated bool
Packed bool // relevant for repeated primitives only
Enum string // set for enum types only
proto3 bool // whether this is known to be a proto3 field; set for []byte only
proto3 bool // whether this is known to be a proto3 field
oneof bool // whether this is a oneof field
Default string // default value
HasDefault bool // whether an explicit default was provided
def_uint64 uint64
enc encoder
valEnc valueEncoder // set for bool and numeric types only
field field
tagcode []byte // encoding of EncodeVarint((Tag<<3)|WireType)
tagbuf [8]byte
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
isMarshaler bool
isUnmarshaler bool
mtype reflect.Type // set for map types only
mkeyprop *Properties // set for map types only
mvalprop *Properties // set for map types only
size sizer
valSize valueSizer // set for bool and numeric types only
dec decoder
valDec valueDecoder // set for bool and numeric types only
// If this is a packable field, this will be the decoder for the packed version of the field.
packedDec decoder
MapKeyProp *Properties // set for map types only
MapValProp *Properties // set for map types only
}
// String formats the properties in the protobuf struct field tag style.
func (p *Properties) String() string {
s := p.Wire
s = ","
s += ","
s += strconv.Itoa(p.Tag)
if p.Required {
s += ",req"
@ -262,29 +202,14 @@ func (p *Properties) Parse(s string) {
switch p.Wire {
case "varint":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeVarint
p.valDec = (*Buffer).DecodeVarint
p.valSize = sizeVarint
case "fixed32":
p.WireType = WireFixed32
p.valEnc = (*Buffer).EncodeFixed32
p.valDec = (*Buffer).DecodeFixed32
p.valSize = sizeFixed32
case "fixed64":
p.WireType = WireFixed64
p.valEnc = (*Buffer).EncodeFixed64
p.valDec = (*Buffer).DecodeFixed64
p.valSize = sizeFixed64
case "zigzag32":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag32
p.valDec = (*Buffer).DecodeZigzag32
p.valSize = sizeZigzag32
case "zigzag64":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag64
p.valDec = (*Buffer).DecodeZigzag64
p.valSize = sizeZigzag64
case "bytes", "group":
p.WireType = WireBytes
// no numeric converter for non-numeric types
@ -299,6 +224,7 @@ func (p *Properties) Parse(s string) {
return
}
outer:
for i := 2; i < len(fields); i++ {
f := fields[i]
switch {
@ -326,260 +252,41 @@ func (p *Properties) Parse(s string) {
if i+1 < len(fields) {
// Commas aren't escaped, and def is always last.
p.Default += "," + strings.Join(fields[i+1:], ",")
break
break outer
}
}
}
}
func logNoSliceEnc(t1, t2 reflect.Type) {
fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2)
}
var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
// Initialize the fields for encoding and decoding.
func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
p.enc = nil
p.dec = nil
p.size = nil
// setFieldProps initializes the field properties for submessages and maps.
func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
switch t1 := typ; t1.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1)
// proto3 scalar types
case reflect.Bool:
p.enc = (*Buffer).enc_proto3_bool
p.dec = (*Buffer).dec_proto3_bool
p.size = size_proto3_bool
case reflect.Int32:
p.enc = (*Buffer).enc_proto3_int32
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_proto3_uint32
p.dec = (*Buffer).dec_proto3_int32 // can reuse
p.size = size_proto3_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_proto3_int64
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.Float32:
p.enc = (*Buffer).enc_proto3_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_proto3_int64 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.String:
p.enc = (*Buffer).enc_proto3_string
p.dec = (*Buffer).dec_proto3_string
p.size = size_proto3_string
case reflect.Ptr:
switch t2 := t1.Elem(); t2.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no encoder function for %v -> %v\n", t1, t2)
break
case reflect.Bool:
p.enc = (*Buffer).enc_bool
p.dec = (*Buffer).dec_bool
p.size = size_bool
case reflect.Int32:
p.enc = (*Buffer).enc_int32
p.dec = (*Buffer).dec_int32
p.size = size_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_uint32
p.dec = (*Buffer).dec_int32 // can reuse
p.size = size_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_int64
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.Float32:
p.enc = (*Buffer).enc_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_int32
p.size = size_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_int64 // can just treat them as bits
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.String:
p.enc = (*Buffer).enc_string
p.dec = (*Buffer).dec_string
p.size = size_string
case reflect.Struct:
if t1.Elem().Kind() == reflect.Struct {
p.stype = t1.Elem()
p.isMarshaler = isMarshaler(t1)
p.isUnmarshaler = isUnmarshaler(t1)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_struct_message
p.dec = (*Buffer).dec_struct_message
p.size = size_struct_message
} else {
p.enc = (*Buffer).enc_struct_group
p.dec = (*Buffer).dec_struct_group
p.size = size_struct_group
}
}
case reflect.Slice:
switch t2 := t1.Elem(); t2.Kind() {
default:
logNoSliceEnc(t1, t2)
break
case reflect.Bool:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_bool
p.size = size_slice_packed_bool
} else {
p.enc = (*Buffer).enc_slice_bool
p.size = size_slice_bool
}
p.dec = (*Buffer).dec_slice_bool
p.packedDec = (*Buffer).dec_slice_packed_bool
case reflect.Int32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int32
p.size = size_slice_packed_int32
} else {
p.enc = (*Buffer).enc_slice_int32
p.size = size_slice_int32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Uint32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Int64, reflect.Uint64:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_byte
p.dec = (*Buffer).dec_slice_byte
p.size = size_slice_byte
// This is a []byte, which is either a bytes field,
// or the value of a map field. In the latter case,
// we always encode an empty []byte, so we should not
// use the proto3 enc/size funcs.
// f == nil iff this is the key/value of a map field.
if p.proto3 && f != nil {
p.enc = (*Buffer).enc_proto3_slice_byte
p.size = size_proto3_slice_byte
}
case reflect.Float32, reflect.Float64:
switch t2.Bits() {
case 32:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case 64:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
default:
logNoSliceEnc(t1, t2)
break
}
case reflect.String:
p.enc = (*Buffer).enc_slice_string
p.dec = (*Buffer).dec_slice_string
p.size = size_slice_string
case reflect.Ptr:
switch t3 := t2.Elem(); t3.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3)
break
case reflect.Struct:
if t2 := t1.Elem(); t2.Kind() == reflect.Ptr && t2.Elem().Kind() == reflect.Struct {
p.stype = t2.Elem()
p.isMarshaler = isMarshaler(t2)
p.isUnmarshaler = isUnmarshaler(t2)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_slice_struct_message
p.dec = (*Buffer).dec_slice_struct_message
p.size = size_slice_struct_message
} else {
p.enc = (*Buffer).enc_slice_struct_group
p.dec = (*Buffer).dec_slice_struct_group
p.size = size_slice_struct_group
}
}
case reflect.Slice:
switch t2.Elem().Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem())
break
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_slice_byte
p.dec = (*Buffer).dec_slice_slice_byte
p.size = size_slice_slice_byte
}
}
case reflect.Map:
p.enc = (*Buffer).enc_new_map
p.dec = (*Buffer).dec_new_map
p.size = size_new_map
p.mtype = t1
p.mkeyprop = &Properties{}
p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.mvalprop = &Properties{}
p.MapKeyProp = &Properties{}
p.MapKeyProp.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.MapValProp = &Properties{}
vtype := p.mtype.Elem()
if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice {
// The value type is not a message (*T) or bytes ([]byte),
// so we need encoders for the pointer to this type.
vtype = reflect.PtrTo(vtype)
}
p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
p.MapValProp.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
}
// precalculate tag code
wire := p.WireType
if p.Packed {
wire = WireBytes
}
x := uint32(p.Tag)<<3 | uint32(wire)
i := 0
for i = 0; x > 127; i++ {
p.tagbuf[i] = 0x80 | uint8(x&0x7F)
x >>= 7
}
p.tagbuf[i] = uint8(x)
p.tagcode = p.tagbuf[0 : i+1]
if p.stype != nil {
if lockGetProp {
p.sprop = GetProperties(p.stype)
@ -591,31 +298,8 @@ func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lock
var (
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem()
)
// isMarshaler reports whether type t implements Marshaler.
func isMarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isMarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isMarshaler")
}
return t.Implements(marshalerType)
}
// isUnmarshaler reports whether type t implements Unmarshaler.
func isUnmarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isUnmarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isUnmarshaler")
}
return t.Implements(unmarshalerType)
}
// Init populates the properties from a protocol buffer struct tag.
func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
p.init(typ, name, tag, f, true)
@ -625,14 +309,11 @@ func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructF
// "bytes,49,opt,def=hello!"
p.Name = name
p.OrigName = name
if f != nil {
p.field = toField(f)
}
if tag == "" {
return
}
p.Parse(tag)
p.setEncAndDec(typ, f, lockGetProp)
p.setFieldProps(typ, f, lockGetProp)
}
var (
@ -682,8 +363,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
propertiesMap[t] = prop
// build properties
prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType)
prop.unrecField = invalidField
prop.Prop = make([]*Properties, t.NumField())
prop.order = make([]int, t.NumField())
@ -693,15 +372,11 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
name := f.Name
p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
if f.Name == "XXX_extensions" { // special case
p.enc = (*Buffer).enc_map
p.dec = nil // not needed
p.size = size_map
oneof := f.Tag.Get("protobuf_oneof") // special case
if oneof != "" {
// Oneof fields don't use the traditional protobuf tag.
p.OrigName = oneof
}
if f.Name == "XXX_unrecognized" { // special case
prop.unrecField = toField(&f)
}
oneof := f.Tag.Get("protobuf_oneof") != "" // special case
prop.Prop[i] = p
prop.order[i] = i
if debug {
@ -711,9 +386,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
}
print("\n")
}
if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") && !oneof {
fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]")
}
}
// Re-order prop.order.
@ -724,8 +396,7 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
}
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok {
var oots []interface{}
prop.oneofMarshaler, prop.oneofUnmarshaler, prop.oneofSizer, oots = om.XXX_OneofFuncs()
prop.stype = t
_, _, _, oots = om.XXX_OneofFuncs()
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
@ -775,30 +446,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
return prop
}
// Return the Properties object for the x[0]'th field of the structure.
func propByIndex(t reflect.Type, x []int) *Properties {
if len(x) != 1 {
fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t)
return nil
}
prop := GetProperties(t)
return prop.Prop[x[0]]
}
// Get the address and type of a pointer to a struct from an interface.
func getbase(pb Message) (t reflect.Type, b structPointer, err error) {
if pb == nil {
err = ErrNil
return
}
// get the reflect type of the pointer to the struct.
t = reflect.TypeOf(pb)
// get the address of the struct.
value := reflect.ValueOf(pb)
b = toStructPointer(value)
return
}
// A global registry of enum types.
// The generated code will register the generated maps by calling RegisterEnum.
@ -822,25 +469,76 @@ func EnumValueMap(enumType string) map[string]int32 {
// A registry of all linked message types.
// The string is a fully-qualified proto name ("pkg.Message").
var (
protoTypes = make(map[string]reflect.Type)
protoTypedNils = make(map[string]Message) // a map from proto names to typed nil pointers
protoMapTypes = make(map[string]reflect.Type) // a map from proto names to map types
revProtoTypes = make(map[reflect.Type]string)
)
// RegisterType is called from generated code and maps from the fully qualified
// proto name to the type (pointer to struct) of the protocol buffer.
func RegisterType(x Message, name string) {
if _, ok := protoTypes[name]; ok {
if _, ok := protoTypedNils[name]; ok {
// TODO: Some day, make this a panic.
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoTypes[name] = t
if v := reflect.ValueOf(x); v.Kind() == reflect.Ptr && v.Pointer() == 0 {
// Generated code always calls RegisterType with nil x.
// This check is just for extra safety.
protoTypedNils[name] = x
} else {
protoTypedNils[name] = reflect.Zero(t).Interface().(Message)
}
revProtoTypes[t] = name
}
// RegisterMapType is called from generated code and maps from the fully qualified
// proto name to the native map type of the proto map definition.
func RegisterMapType(x interface{}, name string) {
if reflect.TypeOf(x).Kind() != reflect.Map {
panic(fmt.Sprintf("RegisterMapType(%T, %q); want map", x, name))
}
if _, ok := protoMapTypes[name]; ok {
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoMapTypes[name] = t
revProtoTypes[t] = name
}
// MessageName returns the fully-qualified proto name for the given message type.
func MessageName(x Message) string { return revProtoTypes[reflect.TypeOf(x)] }
func MessageName(x Message) string {
type xname interface {
XXX_MessageName() string
}
if m, ok := x.(xname); ok {
return m.XXX_MessageName()
}
return revProtoTypes[reflect.TypeOf(x)]
}
// MessageType returns the message type (pointer to struct) for a named message.
func MessageType(name string) reflect.Type { return protoTypes[name] }
// The type is not guaranteed to implement proto.Message if the name refers to a
// map entry.
func MessageType(name string) reflect.Type {
if t, ok := protoTypedNils[name]; ok {
return reflect.TypeOf(t)
}
return protoMapTypes[name]
}
// A registry of all linked proto files.
var (
protoFiles = make(map[string][]byte) // file name => fileDescriptor
)
// RegisterFile is called from generated code and maps from the
// full file name of a .proto file to its compressed FileDescriptorProto.
func RegisterFile(filename string, fileDescriptor []byte) {
protoFiles[filename] = fileDescriptor
}
// FileDescriptor returns the compressed FileDescriptorProto for a .proto file.
func FileDescriptor(filename string) []byte { return protoFiles[filename] }

2767
vendor/github.com/golang/protobuf/proto/table_marshal.go generated vendored Normal file

File diff suppressed because it is too large Load diff

654
vendor/github.com/golang/protobuf/proto/table_merge.go generated vendored Normal file
View file

@ -0,0 +1,654 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
// Merge merges the src message into dst.
// This assumes that dst and src of the same type and are non-nil.
func (a *InternalMessageInfo) Merge(dst, src Message) {
mi := atomicLoadMergeInfo(&a.merge)
if mi == nil {
mi = getMergeInfo(reflect.TypeOf(dst).Elem())
atomicStoreMergeInfo(&a.merge, mi)
}
mi.merge(toPointer(&dst), toPointer(&src))
}
type mergeInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []mergeFieldInfo
unrecognized field // Offset of XXX_unrecognized
}
type mergeFieldInfo struct {
field field // Offset of field, guaranteed to be valid
// isPointer reports whether the value in the field is a pointer.
// This is true for the following situations:
// * Pointer to struct
// * Pointer to basic type (proto2 only)
// * Slice (first value in slice header is a pointer)
// * String (first value in string header is a pointer)
isPointer bool
// basicWidth reports the width of the field assuming that it is directly
// embedded in the struct (as is the case for basic types in proto3).
// The possible values are:
// 0: invalid
// 1: bool
// 4: int32, uint32, float32
// 8: int64, uint64, float64
basicWidth int
// Where dst and src are pointers to the types being merged.
merge func(dst, src pointer)
}
var (
mergeInfoMap = map[reflect.Type]*mergeInfo{}
mergeInfoLock sync.Mutex
)
func getMergeInfo(t reflect.Type) *mergeInfo {
mergeInfoLock.Lock()
defer mergeInfoLock.Unlock()
mi := mergeInfoMap[t]
if mi == nil {
mi = &mergeInfo{typ: t}
mergeInfoMap[t] = mi
}
return mi
}
// merge merges src into dst assuming they are both of type *mi.typ.
func (mi *mergeInfo) merge(dst, src pointer) {
if dst.isNil() {
panic("proto: nil destination")
}
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&mi.initialized) == 0 {
mi.computeMergeInfo()
}
for _, fi := range mi.fields {
sfp := src.offset(fi.field)
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
if fi.isPointer && sfp.getPointer().isNil() { // Could be slice or string
continue
}
if fi.basicWidth > 0 {
switch {
case fi.basicWidth == 1 && !*sfp.toBool():
continue
case fi.basicWidth == 4 && *sfp.toUint32() == 0:
continue
case fi.basicWidth == 8 && *sfp.toUint64() == 0:
continue
}
}
}
dfp := dst.offset(fi.field)
fi.merge(dfp, sfp)
}
// TODO: Make this faster?
out := dst.asPointerTo(mi.typ).Elem()
in := src.asPointerTo(mi.typ).Elem()
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
if mi.unrecognized.IsValid() {
if b := *src.offset(mi.unrecognized).toBytes(); len(b) > 0 {
*dst.offset(mi.unrecognized).toBytes() = append([]byte(nil), b...)
}
}
}
func (mi *mergeInfo) computeMergeInfo() {
mi.lock.Lock()
defer mi.lock.Unlock()
if mi.initialized != 0 {
return
}
t := mi.typ
n := t.NumField()
props := GetProperties(t)
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mfi := mergeFieldInfo{field: toField(&f)}
tf := f.Type
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
switch tf.Kind() {
case reflect.Ptr, reflect.Slice, reflect.String:
// As a special case, we assume slices and strings are pointers
// since we know that the first field in the SliceSlice or
// StringHeader is a data pointer.
mfi.isPointer = true
case reflect.Bool:
mfi.basicWidth = 1
case reflect.Int32, reflect.Uint32, reflect.Float32:
mfi.basicWidth = 4
case reflect.Int64, reflect.Uint64, reflect.Float64:
mfi.basicWidth = 8
}
}
// Unwrap tf to get at its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic("both pointer and slice for basic type in " + tf.Name())
}
switch tf.Kind() {
case reflect.Int32:
switch {
case isSlice: // E.g., []int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Slice is not defined (see pointer_reflect.go).
/*
sfsp := src.toInt32Slice()
if *sfsp != nil {
dfsp := dst.toInt32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
*/
sfs := src.getInt32Slice()
if sfs != nil {
dfs := dst.getInt32Slice()
dfs = append(dfs, sfs...)
if dfs == nil {
dfs = []int32{}
}
dst.setInt32Slice(dfs)
}
}
case isPointer: // E.g., *int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Ptr is not defined (see pointer_reflect.go).
/*
sfpp := src.toInt32Ptr()
if *sfpp != nil {
dfpp := dst.toInt32Ptr()
if *dfpp == nil {
*dfpp = Int32(**sfpp)
} else {
**dfpp = **sfpp
}
}
*/
sfp := src.getInt32Ptr()
if sfp != nil {
dfp := dst.getInt32Ptr()
if dfp == nil {
dst.setInt32Ptr(*sfp)
} else {
*dfp = *sfp
}
}
}
default: // E.g., int32
mfi.merge = func(dst, src pointer) {
if v := *src.toInt32(); v != 0 {
*dst.toInt32() = v
}
}
}
case reflect.Int64:
switch {
case isSlice: // E.g., []int64
mfi.merge = func(dst, src pointer) {
sfsp := src.toInt64Slice()
if *sfsp != nil {
dfsp := dst.toInt64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
}
case isPointer: // E.g., *int64
mfi.merge = func(dst, src pointer) {
sfpp := src.toInt64Ptr()
if *sfpp != nil {
dfpp := dst.toInt64Ptr()
if *dfpp == nil {
*dfpp = Int64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., int64
mfi.merge = func(dst, src pointer) {
if v := *src.toInt64(); v != 0 {
*dst.toInt64() = v
}
}
}
case reflect.Uint32:
switch {
case isSlice: // E.g., []uint32
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint32Slice()
if *sfsp != nil {
dfsp := dst.toUint32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint32{}
}
}
}
case isPointer: // E.g., *uint32
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint32Ptr()
if *sfpp != nil {
dfpp := dst.toUint32Ptr()
if *dfpp == nil {
*dfpp = Uint32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint32
mfi.merge = func(dst, src pointer) {
if v := *src.toUint32(); v != 0 {
*dst.toUint32() = v
}
}
}
case reflect.Uint64:
switch {
case isSlice: // E.g., []uint64
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint64Slice()
if *sfsp != nil {
dfsp := dst.toUint64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint64{}
}
}
}
case isPointer: // E.g., *uint64
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint64Ptr()
if *sfpp != nil {
dfpp := dst.toUint64Ptr()
if *dfpp == nil {
*dfpp = Uint64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint64
mfi.merge = func(dst, src pointer) {
if v := *src.toUint64(); v != 0 {
*dst.toUint64() = v
}
}
}
case reflect.Float32:
switch {
case isSlice: // E.g., []float32
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat32Slice()
if *sfsp != nil {
dfsp := dst.toFloat32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float32{}
}
}
}
case isPointer: // E.g., *float32
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat32Ptr()
if *sfpp != nil {
dfpp := dst.toFloat32Ptr()
if *dfpp == nil {
*dfpp = Float32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float32
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat32(); v != 0 {
*dst.toFloat32() = v
}
}
}
case reflect.Float64:
switch {
case isSlice: // E.g., []float64
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat64Slice()
if *sfsp != nil {
dfsp := dst.toFloat64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float64{}
}
}
}
case isPointer: // E.g., *float64
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat64Ptr()
if *sfpp != nil {
dfpp := dst.toFloat64Ptr()
if *dfpp == nil {
*dfpp = Float64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float64
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat64(); v != 0 {
*dst.toFloat64() = v
}
}
}
case reflect.Bool:
switch {
case isSlice: // E.g., []bool
mfi.merge = func(dst, src pointer) {
sfsp := src.toBoolSlice()
if *sfsp != nil {
dfsp := dst.toBoolSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []bool{}
}
}
}
case isPointer: // E.g., *bool
mfi.merge = func(dst, src pointer) {
sfpp := src.toBoolPtr()
if *sfpp != nil {
dfpp := dst.toBoolPtr()
if *dfpp == nil {
*dfpp = Bool(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., bool
mfi.merge = func(dst, src pointer) {
if v := *src.toBool(); v {
*dst.toBool() = v
}
}
}
case reflect.String:
switch {
case isSlice: // E.g., []string
mfi.merge = func(dst, src pointer) {
sfsp := src.toStringSlice()
if *sfsp != nil {
dfsp := dst.toStringSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []string{}
}
}
}
case isPointer: // E.g., *string
mfi.merge = func(dst, src pointer) {
sfpp := src.toStringPtr()
if *sfpp != nil {
dfpp := dst.toStringPtr()
if *dfpp == nil {
*dfpp = String(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., string
mfi.merge = func(dst, src pointer) {
if v := *src.toString(); v != "" {
*dst.toString() = v
}
}
}
case reflect.Slice:
isProto3 := props.Prop[i].proto3
switch {
case isPointer:
panic("bad pointer in byte slice case in " + tf.Name())
case tf.Elem().Kind() != reflect.Uint8:
panic("bad element kind in byte slice case in " + tf.Name())
case isSlice: // E.g., [][]byte
mfi.merge = func(dst, src pointer) {
sbsp := src.toBytesSlice()
if *sbsp != nil {
dbsp := dst.toBytesSlice()
for _, sb := range *sbsp {
if sb == nil {
*dbsp = append(*dbsp, nil)
} else {
*dbsp = append(*dbsp, append([]byte{}, sb...))
}
}
if *dbsp == nil {
*dbsp = [][]byte{}
}
}
}
default: // E.g., []byte
mfi.merge = func(dst, src pointer) {
sbp := src.toBytes()
if *sbp != nil {
dbp := dst.toBytes()
if !isProto3 || len(*sbp) > 0 {
*dbp = append([]byte{}, *sbp...)
}
}
}
}
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("message field %s without pointer", tf))
case isSlice: // E.g., []*pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sps := src.getPointerSlice()
if sps != nil {
dps := dst.getPointerSlice()
for _, sp := range sps {
var dp pointer
if !sp.isNil() {
dp = valToPointer(reflect.New(tf))
mi.merge(dp, sp)
}
dps = append(dps, dp)
}
if dps == nil {
dps = []pointer{}
}
dst.setPointerSlice(dps)
}
}
default: // E.g., *pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sp := src.getPointer()
if !sp.isNil() {
dp := dst.getPointer()
if dp.isNil() {
dp = valToPointer(reflect.New(tf))
dst.setPointer(dp)
}
mi.merge(dp, sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic("bad pointer or slice in map case in " + tf.Name())
default: // E.g., map[K]V
mfi.merge = func(dst, src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
dm := dst.asPointerTo(tf).Elem()
if dm.IsNil() {
dm.Set(reflect.MakeMap(tf))
}
switch tf.Elem().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(Clone(val.Interface().(Message)))
dm.SetMapIndex(key, val)
}
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(append([]byte{}, val.Bytes()...))
dm.SetMapIndex(key, val)
}
default: // Basic type (e.g., string)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
dm.SetMapIndex(key, val)
}
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic("bad pointer or slice in interface case in " + tf.Name())
default: // E.g., interface{}
// TODO: Make this faster?
mfi.merge = func(dst, src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
du := dst.asPointerTo(tf).Elem()
typ := su.Elem().Type()
if du.IsNil() || du.Elem().Type() != typ {
du.Set(reflect.New(typ.Elem())) // Initialize interface if empty
}
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
dv := du.Elem().Elem().Field(0)
if dv.Kind() == reflect.Ptr && dv.IsNil() {
dv.Set(reflect.New(sv.Type().Elem())) // Initialize proto message if empty
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
Merge(dv.Interface().(Message), sv.Interface().(Message))
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
dv.Set(reflect.ValueOf(append([]byte{}, sv.Bytes()...)))
default: // Basic type (e.g., string)
dv.Set(sv)
}
}
}
}
default:
panic(fmt.Sprintf("merger not found for type:%s", tf))
}
mi.fields = append(mi.fields, mfi)
}
mi.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
mi.unrecognized = toField(&f)
}
atomic.StoreInt32(&mi.initialized, 1)
}

File diff suppressed because it is too large Load diff

View file

@ -50,7 +50,6 @@ import (
var (
newline = []byte("\n")
spaces = []byte(" ")
gtNewline = []byte(">\n")
endBraceNewline = []byte("}\n")
backslashN = []byte{'\\', 'n'}
backslashR = []byte{'\\', 'r'}
@ -154,7 +153,7 @@ func (w *textWriter) indent() { w.ind++ }
func (w *textWriter) unindent() {
if w.ind == 0 {
log.Printf("proto: textWriter unindented too far")
log.Print("proto: textWriter unindented too far")
return
}
w.ind--
@ -170,11 +169,6 @@ func writeName(w *textWriter, props *Properties) error {
return nil
}
// raw is the interface satisfied by RawMessage.
type raw interface {
Bytes() []byte
}
func requiresQuotes(u string) bool {
// When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted.
for _, ch := range u {
@ -269,6 +263,10 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
props := sprops.Prop[i]
name := st.Field(i).Name
if name == "XXX_NoUnkeyedLiteral" {
continue
}
if strings.HasPrefix(name, "XXX_") {
// There are two XXX_ fields:
// XXX_unrecognized []byte
@ -355,7 +353,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if err := tm.writeAny(w, key, props.mkeyprop); err != nil {
if err := tm.writeAny(w, key, props.MapKeyProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
@ -372,7 +370,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if err := tm.writeAny(w, val, props.mvalprop); err != nil {
if err := tm.writeAny(w, val, props.MapValProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
@ -436,12 +434,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if b, ok := fv.Interface().(raw); ok {
if err := writeRaw(w, b.Bytes()); err != nil {
return err
}
continue
}
// Enums have a String method, so writeAny will work fine.
if err := tm.writeAny(w, fv, props); err != nil {
@ -455,7 +447,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
// Extensions (the XXX_extensions field).
pv := sv.Addr()
if pv.Type().Implements(extendableProtoType) {
if _, err := extendable(pv.Interface()); err == nil {
if err := tm.writeExtensions(w, pv); err != nil {
return err
}
@ -464,27 +456,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return nil
}
// writeRaw writes an uninterpreted raw message.
func writeRaw(w *textWriter, b []byte) error {
if err := w.WriteByte('<'); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if err := writeUnknownStruct(w, b); err != nil {
return err
}
w.unindent()
if err := w.WriteByte('>'); err != nil {
return err
}
return nil
}
// writeAny writes an arbitrary field.
func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v)
@ -513,7 +484,7 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
switch v.Kind() {
case reflect.Slice:
// Should only be a []byte; repeated fields are handled in writeStruct.
if err := writeString(w, string(v.Interface().([]byte))); err != nil {
if err := writeString(w, string(v.Bytes())); err != nil {
return err
}
case reflect.String:
@ -535,6 +506,19 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
}
}
w.indent()
if v.CanAddr() {
// Calling v.Interface on a struct causes the reflect package to
// copy the entire struct. This is racy with the new Marshaler
// since we atomically update the XXX_sizecache.
//
// Thus, we retrieve a pointer to the struct if possible to avoid
// a race since v.Interface on the pointer doesn't copy the struct.
//
// If v is not addressable, then we are not worried about a race
// since it implies that the binary Marshaler cannot possibly be
// mutating this value.
v = v.Addr()
}
if etm, ok := v.Interface().(encoding.TextMarshaler); ok {
text, err := etm.MarshalText()
if err != nil {
@ -543,9 +527,14 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
if _, err = w.Write(text); err != nil {
return err
}
} else if err := tm.writeStruct(w, v); err != nil {
} else {
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if err := tm.writeStruct(w, v); err != nil {
return err
}
}
w.unindent()
if err := w.WriteByte(ket); err != nil {
return err
@ -689,17 +678,22 @@ func (s int32Slice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// pv is assumed to be a pointer to a protocol message struct that is extendable.
func (tm *TextMarshaler) writeExtensions(w *textWriter, pv reflect.Value) error {
emap := extensionMaps[pv.Type().Elem()]
ep := pv.Interface().(extendableProto)
ep, _ := extendable(pv.Interface())
// Order the extensions by ID.
// This isn't strictly necessary, but it will give us
// canonical output, which will also make testing easier.
m := ep.ExtensionMap()
m, mu := ep.extensionsRead()
if m == nil {
return nil
}
mu.Lock()
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids))
mu.Unlock()
for _, extNum := range ids {
ext := m[extNum]

View file

@ -44,6 +44,9 @@ import (
"unicode/utf8"
)
// Error string emitted when deserializing Any and fields are already set
const anyRepeatedlyUnpacked = "Any message unpacked multiple times, or %q already set"
type ParseError struct {
Message string
Line int // 1-based line number
@ -203,7 +206,6 @@ func (p *textParser) advance() {
var (
errBadUTF8 = errors.New("proto: bad UTF-8")
errBadHex = errors.New("proto: bad hexadecimal")
)
func unquoteC(s string, quote rune) (string, error) {
@ -274,60 +276,47 @@ func unescape(s string) (ch string, tail string, err error) {
return "?", s, nil // trigraph workaround
case '\'', '"', '\\':
return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7', 'x', 'X':
case '0', '1', '2', '3', '4', '5', '6', '7':
if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
}
base := 8
ss := s[:2]
ss := string(r) + s[:2]
s = s[2:]
if r == 'x' || r == 'X' {
base = 16
} else {
ss = string(r) + ss
}
i, err := strconv.ParseUint(ss, base, 8)
i, err := strconv.ParseUint(ss, 8, 8)
if err != nil {
return "", "", err
return "", "", fmt.Errorf(`\%s contains non-octal digits`, ss)
}
return string([]byte{byte(i)}), s, nil
case 'u', 'U':
n := 4
if r == 'U' {
case 'x', 'X', 'u', 'U':
var n int
switch r {
case 'x', 'X':
n = 2
case 'u':
n = 4
case 'U':
n = 8
}
if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d digits`, r, n)
}
bs := make([]byte, n/2)
for i := 0; i < n; i += 2 {
a, ok1 := unhex(s[i])
b, ok2 := unhex(s[i+1])
if !ok1 || !ok2 {
return "", "", errBadHex
}
bs[i/2] = a<<4 | b
return "", "", fmt.Errorf(`\%c requires %d following digits`, r, n)
}
ss := s[:n]
s = s[n:]
return string(bs), s, nil
i, err := strconv.ParseUint(ss, 16, 64)
if err != nil {
return "", "", fmt.Errorf(`\%c%s contains non-hexadecimal digits`, r, ss)
}
if r == 'x' || r == 'X' {
return string([]byte{byte(i)}), s, nil
}
if i > utf8.MaxRune {
return "", "", fmt.Errorf(`\%c%s is not a valid Unicode code point`, r, ss)
}
return string(i), s, nil
}
return "", "", fmt.Errorf(`unknown escape \%c`, r)
}
// Adapted from src/pkg/strconv/quote.go.
func unhex(b byte) (v byte, ok bool) {
switch {
case '0' <= b && b <= '9':
return b - '0', true
case 'a' <= b && b <= 'f':
return b - 'a' + 10, true
case 'A' <= b && b <= 'F':
return b - 'A' + 10, true
}
return 0, false
}
// Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true }
@ -508,8 +497,16 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
if err != nil {
return p.errorf("failed to marshal message of type %q: %v", messageName, err)
}
if fieldSet["type_url"] {
return p.errorf(anyRepeatedlyUnpacked, "type_url")
}
if fieldSet["value"] {
return p.errorf(anyRepeatedlyUnpacked, "value")
}
sv.FieldByName("TypeUrl").SetString(extName)
sv.FieldByName("Value").SetBytes(b)
fieldSet["type_url"] = true
fieldSet["value"] = true
continue
}
@ -550,7 +547,7 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
}
reqFieldErr = err
}
ep := sv.Addr().Interface().(extendableProto)
ep := sv.Addr().Interface().(Message)
if !rep {
SetExtension(ep, desc, ext.Interface())
} else {
@ -581,7 +578,11 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
props = oop.Prop
nv := reflect.New(oop.Type.Elem())
dst = nv.Elem().Field(0)
sv.Field(oop.Field).Set(nv)
field := sv.Field(oop.Field)
if !field.IsNil() {
return p.errorf("field '%s' would overwrite already parsed oneof '%s'", name, sv.Type().Field(oop.Field).Name)
}
field.Set(nv)
}
if !dst.IsValid() {
return p.errorf("unknown field name %q in %v", name, st)
@ -602,8 +603,9 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
// The map entry should be this sequence of tokens:
// < key : KEY value : VALUE >
// Technically the "key" and "value" could come in any order,
// but in practice they won't.
// However, implementations may omit key or value, and technically
// we should support them in any order. See b/28924776 for a time
// this went wrong.
tok := p.next()
var terminator string
@ -615,32 +617,39 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
if err := p.consumeToken("key"); err != nil {
return err
for {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == terminator {
break
}
switch tok.value {
case "key":
if err := p.consumeToken(":"); err != nil {
return err
}
if err := p.readAny(key, props.mkeyprop); err != nil {
if err := p.readAny(key, props.MapKeyProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
if err := p.consumeToken("value"); err != nil {
case "value":
if err := p.checkForColon(props.MapValProp, dst.Type().Elem()); err != nil {
return err
}
if err := p.checkForColon(props.mvalprop, dst.Type().Elem()); err != nil {
return err
}
if err := p.readAny(val, props.mvalprop); err != nil {
if err := p.readAny(val, props.MapValProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
if err := p.consumeToken(terminator); err != nil {
return err
default:
p.back()
return p.errorf(`expected "key", "value", or %q, found %q`, terminator, tok.value)
}
}
dst.SetMapIndex(key, val)
@ -663,7 +672,8 @@ func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
return err
}
reqFieldErr = err
} else if props.Required {
}
if props.Required {
reqCount--
}
@ -704,6 +714,9 @@ func (p *textParser) consumeExtName() (string, error) {
if tok.err != nil {
return "", p.errorf("unrecognized type_url or extension name: %s", tok.err)
}
if p.done && tok.value != "]" {
return "", p.errorf("unclosed type_url or extension name")
}
}
return strings.Join(parts, ""), nil
}
@ -772,12 +785,12 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
fv.Set(reflect.Append(fv, reflect.New(at.Elem()).Elem()))
return p.readAny(fv.Index(fv.Len()-1), props)
case reflect.Bool:
// Either "true", "false", 1 or 0.
// true/1/t/True or false/f/0/False.
switch tok.value {
case "true", "1":
case "true", "1", "t", "True":
fv.SetBool(true)
return nil
case "false", "0":
case "false", "0", "f", "False":
fv.SetBool(false)
return nil
}
@ -859,13 +872,9 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
// UnmarshalText returns *RequiredNotSetError.
func UnmarshalText(s string, pb Message) error {
if um, ok := pb.(encoding.TextUnmarshaler); ok {
err := um.UnmarshalText([]byte(s))
return err
return um.UnmarshalText([]byte(s))
}
pb.Reset()
v := reflect.ValueOf(pb)
if pe := newTextParser(s).readStruct(v.Elem(), ""); pe != nil {
return pe
}
return nil
return newTextParser(s).readStruct(v.Elem(), "")
}

View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View file

@ -0,0 +1 @@
Copyright 2012 Matt T. Proud (matt.proud@gmail.com)

View file

@ -0,0 +1,75 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pbutil
import (
"encoding/binary"
"errors"
"io"
"github.com/golang/protobuf/proto"
)
var errInvalidVarint = errors.New("invalid varint32 encountered")
// ReadDelimited decodes a message from the provided length-delimited stream,
// where the length is encoded as 32-bit varint prefix to the message body.
// It returns the total number of bytes read and any applicable error. This is
// roughly equivalent to the companion Java API's
// MessageLite#parseDelimitedFrom. As per the reader contract, this function
// calls r.Read repeatedly as required until exactly one message including its
// prefix is read and decoded (or an error has occurred). The function never
// reads more bytes from the stream than required. The function never returns
// an error if a message has been read and decoded correctly, even if the end
// of the stream has been reached in doing so. In that case, any subsequent
// calls return (0, io.EOF).
func ReadDelimited(r io.Reader, m proto.Message) (n int, err error) {
// Per AbstractParser#parsePartialDelimitedFrom with
// CodedInputStream#readRawVarint32.
var headerBuf [binary.MaxVarintLen32]byte
var bytesRead, varIntBytes int
var messageLength uint64
for varIntBytes == 0 { // i.e. no varint has been decoded yet.
if bytesRead >= len(headerBuf) {
return bytesRead, errInvalidVarint
}
// We have to read byte by byte here to avoid reading more bytes
// than required. Each read byte is appended to what we have
// read before.
newBytesRead, err := r.Read(headerBuf[bytesRead : bytesRead+1])
if newBytesRead == 0 {
if err != nil {
return bytesRead, err
}
// A Reader should not return (0, nil), but if it does,
// it should be treated as no-op (according to the
// Reader contract). So let's go on...
continue
}
bytesRead += newBytesRead
// Now present everything read so far to the varint decoder and
// see if a varint can be decoded already.
messageLength, varIntBytes = proto.DecodeVarint(headerBuf[:bytesRead])
}
messageBuf := make([]byte, messageLength)
newBytesRead, err := io.ReadFull(r, messageBuf)
bytesRead += newBytesRead
if err != nil {
return bytesRead, err
}
return bytesRead, proto.Unmarshal(messageBuf, m)
}

View file

@ -0,0 +1,16 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pbutil provides record length-delimited Protocol Buffer streaming.
package pbutil

View file

@ -0,0 +1,46 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pbutil
import (
"encoding/binary"
"io"
"github.com/golang/protobuf/proto"
)
// WriteDelimited encodes and dumps a message to the provided writer prefixed
// with a 32-bit varint indicating the length of the encoded message, producing
// a length-delimited record stream, which can be used to chain together
// encoded messages of the same type together in a file. It returns the total
// number of bytes written and any applicable error. This is roughly
// equivalent to the companion Java API's MessageLite#writeDelimitedTo.
func WriteDelimited(w io.Writer, m proto.Message) (n int, err error) {
buffer, err := proto.Marshal(m)
if err != nil {
return 0, err
}
var buf [binary.MaxVarintLen32]byte
encodedLength := binary.PutUvarint(buf[:], uint64(len(buffer)))
sync, err := w.Write(buf[:encodedLength])
if err != nil {
return sync, err
}
n, err = w.Write(buffer)
return n + sync, err
}

201
vendor/github.com/prometheus/client_golang/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

23
vendor/github.com/prometheus/client_golang/NOTICE generated vendored Normal file
View file

@ -0,0 +1,23 @@
Prometheus instrumentation library for Go applications
Copyright 2012-2015 The Prometheus Authors
This product includes software developed at
SoundCloud Ltd. (http://soundcloud.com/).
The following components are included in this product:
perks - a fork of https://github.com/bmizerany/perks
https://github.com/beorn7/perks
Copyright 2013-2015 Blake Mizerany, Björn Rabenstein
See https://github.com/beorn7/perks/blob/master/README.md for license details.
Go support for Protocol Buffers - Google's data interchange format
http://github.com/golang/protobuf/
Copyright 2010 The Go Authors
See source code for license details.
Support for streaming Protocol Buffer messages for the Go language (golang).
https://github.com/matttproud/golang_protobuf_extensions
Copyright 2013 Matt T. Proud
Licensed under the Apache License, Version 2.0

View file

@ -0,0 +1,120 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
// Collector is the interface implemented by anything that can be used by
// Prometheus to collect metrics. A Collector has to be registered for
// collection. See Registerer.Register.
//
// The stock metrics provided by this package (Gauge, Counter, Summary,
// Histogram, Untyped) are also Collectors (which only ever collect one metric,
// namely itself). An implementer of Collector may, however, collect multiple
// metrics in a coordinated fashion and/or create metrics on the fly. Examples
// for collectors already implemented in this library are the metric vectors
// (i.e. collection of multiple instances of the same Metric but with different
// label values) like GaugeVec or SummaryVec, and the ExpvarCollector.
type Collector interface {
// Describe sends the super-set of all possible descriptors of metrics
// collected by this Collector to the provided channel and returns once
// the last descriptor has been sent. The sent descriptors fulfill the
// consistency and uniqueness requirements described in the Desc
// documentation.
//
// It is valid if one and the same Collector sends duplicate
// descriptors. Those duplicates are simply ignored. However, two
// different Collectors must not send duplicate descriptors.
//
// Sending no descriptor at all marks the Collector as “unchecked”,
// i.e. no checks will be performed at registration time, and the
// Collector may yield any Metric it sees fit in its Collect method.
//
// This method idempotently sends the same descriptors throughout the
// lifetime of the Collector. It may be called concurrently and
// therefore must be implemented in a concurrency safe way.
//
// If a Collector encounters an error while executing this method, it
// must send an invalid descriptor (created with NewInvalidDesc) to
// signal the error to the registry.
Describe(chan<- *Desc)
// Collect is called by the Prometheus registry when collecting
// metrics. The implementation sends each collected metric via the
// provided channel and returns once the last metric has been sent. The
// descriptor of each sent metric is one of those returned by Describe
// (unless the Collector is unchecked, see above). Returned metrics that
// share the same descriptor must differ in their variable label
// values.
//
// This method may be called concurrently and must therefore be
// implemented in a concurrency safe way. Blocking occurs at the expense
// of total performance of rendering all registered metrics. Ideally,
// Collector implementations support concurrent readers.
Collect(chan<- Metric)
}
// DescribeByCollect is a helper to implement the Describe method of a custom
// Collector. It collects the metrics from the provided Collector and sends
// their descriptors to the provided channel.
//
// If a Collector collects the same metrics throughout its lifetime, its
// Describe method can simply be implemented as:
//
// func (c customCollector) Describe(ch chan<- *Desc) {
// DescribeByCollect(c, ch)
// }
//
// However, this will not work if the metrics collected change dynamically over
// the lifetime of the Collector in a way that their combined set of descriptors
// changes as well. The shortcut implementation will then violate the contract
// of the Describe method. If a Collector sometimes collects no metrics at all
// (for example vectors like CounterVec, GaugeVec, etc., which only collect
// metrics after a metric with a fully specified label set has been accessed),
// it might even get registered as an unchecked Collecter (cf. the Register
// method of the Registerer interface). Hence, only use this shortcut
// implementation of Describe if you are certain to fulfill the contract.
//
// The Collector example demonstrates a use of DescribeByCollect.
func DescribeByCollect(c Collector, descs chan<- *Desc) {
metrics := make(chan Metric)
go func() {
c.Collect(metrics)
close(metrics)
}()
for m := range metrics {
descs <- m.Desc()
}
}
// selfCollector implements Collector for a single Metric so that the Metric
// collects itself. Add it as an anonymous field to a struct that implements
// Metric, and call init with the Metric itself as an argument.
type selfCollector struct {
self Metric
}
// init provides the selfCollector with a reference to the metric it is supposed
// to collect. It is usually called within the factory function to create a
// metric. See example.
func (c *selfCollector) init(self Metric) {
c.self = self
}
// Describe implements Collector.
func (c *selfCollector) Describe(ch chan<- *Desc) {
ch <- c.self.Desc()
}
// Collect implements Collector.
func (c *selfCollector) Collect(ch chan<- Metric) {
ch <- c.self
}

View file

@ -0,0 +1,277 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"math"
"sync/atomic"
dto "github.com/prometheus/client_model/go"
)
// Counter is a Metric that represents a single numerical value that only ever
// goes up. That implies that it cannot be used to count items whose number can
// also go down, e.g. the number of currently running goroutines. Those
// "counters" are represented by Gauges.
//
// A Counter is typically used to count requests served, tasks completed, errors
// occurred, etc.
//
// To create Counter instances, use NewCounter.
type Counter interface {
Metric
Collector
// Inc increments the counter by 1. Use Add to increment it by arbitrary
// non-negative values.
Inc()
// Add adds the given value to the counter. It panics if the value is <
// 0.
Add(float64)
}
// CounterOpts is an alias for Opts. See there for doc comments.
type CounterOpts Opts
// NewCounter creates a new Counter based on the provided CounterOpts.
//
// The returned implementation tracks the counter value in two separate
// variables, a float64 and a uint64. The latter is used to track calls of the
// Inc method and calls of the Add method with a value that can be represented
// as a uint64. This allows atomic increments of the counter with optimal
// performance. (It is common to have an Inc call in very hot execution paths.)
// Both internal tracking values are added up in the Write method. This has to
// be taken into account when it comes to precision and overflow behavior.
func NewCounter(opts CounterOpts) Counter {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
)
result := &counter{desc: desc, labelPairs: desc.constLabelPairs}
result.init(result) // Init self-collection.
return result
}
type counter struct {
// valBits contains the bits of the represented float64 value, while
// valInt stores values that are exact integers. Both have to go first
// in the struct to guarantee alignment for atomic operations.
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
valBits uint64
valInt uint64
selfCollector
desc *Desc
labelPairs []*dto.LabelPair
}
func (c *counter) Desc() *Desc {
return c.desc
}
func (c *counter) Add(v float64) {
if v < 0 {
panic(errors.New("counter cannot decrease in value"))
}
ival := uint64(v)
if float64(ival) == v {
atomic.AddUint64(&c.valInt, ival)
return
}
for {
oldBits := atomic.LoadUint64(&c.valBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&c.valBits, oldBits, newBits) {
return
}
}
}
func (c *counter) Inc() {
atomic.AddUint64(&c.valInt, 1)
}
func (c *counter) Write(out *dto.Metric) error {
fval := math.Float64frombits(atomic.LoadUint64(&c.valBits))
ival := atomic.LoadUint64(&c.valInt)
val := fval + float64(ival)
return populateMetric(CounterValue, val, c.labelPairs, out)
}
// CounterVec is a Collector that bundles a set of Counters that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. number of HTTP requests, partitioned by response code and
// method). Create instances with NewCounterVec.
type CounterVec struct {
*metricVec
}
// NewCounterVec creates a new CounterVec based on the provided CounterOpts and
// partitioned by the given label names.
func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &CounterVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(errInconsistentCardinality)
}
result := &counter{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result.init(result) // Init self-collection.
return result
}),
}
}
// GetMetricWithLabelValues returns the Counter for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Counter is created.
//
// It is possible to call this method without using the returned Counter to only
// create the new Counter but leave it at its starting value 0. See also the
// SummaryVec example.
//
// Keeping the Counter for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Counter from the CounterVec. In that case,
// the Counter will still exist, but it will not be exported anymore, even if a
// Counter with the same label values is created later.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Counter), err
}
return nil, err
}
// GetMetricWith returns the Counter for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Counter is created. Implications of
// creating a Counter without using it and keeping the Counter for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *CounterVec) GetMetricWith(labels Labels) (Counter, error) {
metric, err := v.metricVec.getMetricWith(labels)
if metric != nil {
return metric.(Counter), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (v *CounterVec) WithLabelValues(lvs ...string) Counter {
c, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return c
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Add(42)
func (v *CounterVec) With(labels Labels) Counter {
c, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return c
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the CounterVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *CounterVec) CurryWith(labels Labels) (*CounterVec, error) {
vec, err := v.curryWith(labels)
if vec != nil {
return &CounterVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *CounterVec) MustCurryWith(labels Labels) *CounterVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
// CounterFunc is a Counter whose value is determined at collect time by calling a
// provided function.
//
// To create CounterFunc instances, use NewCounterFunc.
type CounterFunc interface {
Metric
Collector
}
// NewCounterFunc creates a new CounterFunc based on the provided
// CounterOpts. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where a CounterFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe. The function should also honor
// the contract for a Counter (values only go up, not down), but compliance will
// not be checked.
func NewCounterFunc(opts CounterOpts, function func() float64) CounterFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), CounterValue, function)
}

View file

@ -0,0 +1,184 @@
// Copyright 2016 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"fmt"
"sort"
"strings"
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
dto "github.com/prometheus/client_model/go"
)
// Desc is the descriptor used by every Prometheus Metric. It is essentially
// the immutable meta-data of a Metric. The normal Metric implementations
// included in this package manage their Desc under the hood. Users only have to
// deal with Desc if they use advanced features like the ExpvarCollector or
// custom Collectors and Metrics.
//
// Descriptors registered with the same registry have to fulfill certain
// consistency and uniqueness criteria if they share the same fully-qualified
// name: They must have the same help string and the same label names (aka label
// dimensions) in each, constLabels and variableLabels, but they must differ in
// the values of the constLabels.
//
// Descriptors that share the same fully-qualified names and the same label
// values of their constLabels are considered equal.
//
// Use NewDesc to create new Desc instances.
type Desc struct {
// fqName has been built from Namespace, Subsystem, and Name.
fqName string
// help provides some helpful information about this metric.
help string
// constLabelPairs contains precalculated DTO label pairs based on
// the constant labels.
constLabelPairs []*dto.LabelPair
// VariableLabels contains names of labels for which the metric
// maintains variable values.
variableLabels []string
// id is a hash of the values of the ConstLabels and fqName. This
// must be unique among all registered descriptors and can therefore be
// used as an identifier of the descriptor.
id uint64
// dimHash is a hash of the label names (preset and variable) and the
// Help string. Each Desc with the same fqName must have the same
// dimHash.
dimHash uint64
// err is an error that occurred during construction. It is reported on
// registration time.
err error
}
// NewDesc allocates and initializes a new Desc. Errors are recorded in the Desc
// and will be reported on registration time. variableLabels and constLabels can
// be nil if no such labels should be set. fqName must not be empty.
//
// variableLabels only contain the label names. Their label values are variable
// and therefore not part of the Desc. (They are managed within the Metric.)
//
// For constLabels, the label values are constant. Therefore, they are fully
// specified in the Desc. See the Collector example for a usage pattern.
func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *Desc {
d := &Desc{
fqName: fqName,
help: help,
variableLabels: variableLabels,
}
if !model.IsValidMetricName(model.LabelValue(fqName)) {
d.err = fmt.Errorf("%q is not a valid metric name", fqName)
return d
}
// labelValues contains the label values of const labels (in order of
// their sorted label names) plus the fqName (at position 0).
labelValues := make([]string, 1, len(constLabels)+1)
labelValues[0] = fqName
labelNames := make([]string, 0, len(constLabels)+len(variableLabels))
labelNameSet := map[string]struct{}{}
// First add only the const label names and sort them...
for labelName := range constLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
return d
}
labelNames = append(labelNames, labelName)
labelNameSet[labelName] = struct{}{}
}
sort.Strings(labelNames)
// ... so that we can now add const label values in the order of their names.
for _, labelName := range labelNames {
labelValues = append(labelValues, constLabels[labelName])
}
// Validate the const label values. They can't have a wrong cardinality, so
// use in len(labelValues) as expectedNumberOfValues.
if err := validateLabelValues(labelValues, len(labelValues)); err != nil {
d.err = err
return d
}
// Now add the variable label names, but prefix them with something that
// cannot be in a regular label name. That prevents matching the label
// dimension with a different mix between preset and variable labels.
for _, labelName := range variableLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
return d
}
labelNames = append(labelNames, "$"+labelName)
labelNameSet[labelName] = struct{}{}
}
if len(labelNames) != len(labelNameSet) {
d.err = errors.New("duplicate label names")
return d
}
vh := hashNew()
for _, val := range labelValues {
vh = hashAdd(vh, val)
vh = hashAddByte(vh, separatorByte)
}
d.id = vh
// Sort labelNames so that order doesn't matter for the hash.
sort.Strings(labelNames)
// Now hash together (in this order) the help string and the sorted
// label names.
lh := hashNew()
lh = hashAdd(lh, help)
lh = hashAddByte(lh, separatorByte)
for _, labelName := range labelNames {
lh = hashAdd(lh, labelName)
lh = hashAddByte(lh, separatorByte)
}
d.dimHash = lh
d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels))
for n, v := range constLabels {
d.constLabelPairs = append(d.constLabelPairs, &dto.LabelPair{
Name: proto.String(n),
Value: proto.String(v),
})
}
sort.Sort(labelPairSorter(d.constLabelPairs))
return d
}
// NewInvalidDesc returns an invalid descriptor, i.e. a descriptor with the
// provided error set. If a collector returning such a descriptor is registered,
// registration will fail with the provided error. NewInvalidDesc can be used by
// a Collector to signal inability to describe itself.
func NewInvalidDesc(err error) *Desc {
return &Desc{
err: err,
}
}
func (d *Desc) String() string {
lpStrings := make([]string, 0, len(d.constLabelPairs))
for _, lp := range d.constLabelPairs {
lpStrings = append(
lpStrings,
fmt.Sprintf("%s=%q", lp.GetName(), lp.GetValue()),
)
}
return fmt.Sprintf(
"Desc{fqName: %q, help: %q, constLabels: {%s}, variableLabels: %v}",
d.fqName,
d.help,
strings.Join(lpStrings, ","),
d.variableLabels,
)
}

View file

@ -0,0 +1,201 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package prometheus is the core instrumentation package. It provides metrics
// primitives to instrument code for monitoring. It also offers a registry for
// metrics. Sub-packages allow to expose the registered metrics via HTTP
// (package promhttp) or push them to a Pushgateway (package push). There is
// also a sub-package promauto, which provides metrics constructors with
// automatic registration.
//
// All exported functions and methods are safe to be used concurrently unless
// specified otherwise.
//
// A Basic Example
//
// As a starting point, a very basic usage example:
//
// package main
//
// import (
// "log"
// "net/http"
//
// "github.com/prometheus/client_golang/prometheus"
// "github.com/prometheus/client_golang/prometheus/promhttp"
// )
//
// var (
// cpuTemp = prometheus.NewGauge(prometheus.GaugeOpts{
// Name: "cpu_temperature_celsius",
// Help: "Current temperature of the CPU.",
// })
// hdFailures = prometheus.NewCounterVec(
// prometheus.CounterOpts{
// Name: "hd_errors_total",
// Help: "Number of hard-disk errors.",
// },
// []string{"device"},
// )
// )
//
// func init() {
// // Metrics have to be registered to be exposed:
// prometheus.MustRegister(cpuTemp)
// prometheus.MustRegister(hdFailures)
// }
//
// func main() {
// cpuTemp.Set(65.3)
// hdFailures.With(prometheus.Labels{"device":"/dev/sda"}).Inc()
//
// // The Handler function provides a default handler to expose metrics
// // via an HTTP server. "/metrics" is the usual endpoint for that.
// http.Handle("/metrics", promhttp.Handler())
// log.Fatal(http.ListenAndServe(":8080", nil))
// }
//
//
// This is a complete program that exports two metrics, a Gauge and a Counter,
// the latter with a label attached to turn it into a (one-dimensional) vector.
//
// Metrics
//
// The number of exported identifiers in this package might appear a bit
// overwhelming. However, in addition to the basic plumbing shown in the example
// above, you only need to understand the different metric types and their
// vector versions for basic usage. Furthermore, if you are not concerned with
// fine-grained control of when and how to register metrics with the registry,
// have a look at the promauto package, which will effectively allow you to
// ignore registration altogether in simple cases.
//
// Above, you have already touched the Counter and the Gauge. There are two more
// advanced metric types: the Summary and Histogram. A more thorough description
// of those four metric types can be found in the Prometheus docs:
// https://prometheus.io/docs/concepts/metric_types/
//
// A fifth "type" of metric is Untyped. It behaves like a Gauge, but signals the
// Prometheus server not to assume anything about its type.
//
// In addition to the fundamental metric types Gauge, Counter, Summary,
// Histogram, and Untyped, a very important part of the Prometheus data model is
// the partitioning of samples along dimensions called labels, which results in
// metric vectors. The fundamental types are GaugeVec, CounterVec, SummaryVec,
// HistogramVec, and UntypedVec.
//
// While only the fundamental metric types implement the Metric interface, both
// the metrics and their vector versions implement the Collector interface. A
// Collector manages the collection of a number of Metrics, but for convenience,
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary,
// Histogram, and Untyped are interfaces themselves while GaugeVec, CounterVec,
// SummaryVec, HistogramVec, and UntypedVec are not.
//
// To create instances of Metrics and their vector versions, you need a suitable
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, HistogramOpts, or
// UntypedOpts.
//
// Custom Collectors and constant Metrics
//
// While you could create your own implementations of Metric, most likely you
// will only ever implement the Collector interface on your own. At a first
// glance, a custom Collector seems handy to bundle Metrics for common
// registration (with the prime example of the different metric vectors above,
// which bundle all the metrics of the same name but with different labels).
//
// There is a more involved use case, too: If you already have metrics
// available, created outside of the Prometheus context, you don't need the
// interface of the various Metric types. You essentially want to mirror the
// existing numbers into Prometheus Metrics during collection. An own
// implementation of the Collector interface is perfect for that. You can create
// Metric instances “on the fly” using NewConstMetric, NewConstHistogram, and
// NewConstSummary (and their respective Must… versions). That will happen in
// the Collect method. The Describe method has to return separate Desc
// instances, representative of the “throw-away” metrics to be created later.
// NewDesc comes in handy to create those Desc instances. Alternatively, you
// could return no Desc at all, which will marke the Collector “unchecked”. No
// checks are porformed at registration time, but metric consistency will still
// be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// errors. Thus, with unchecked Collectors, the responsibility to not collect
// metrics that lead to inconsistencies in the total scrape result lies with the
// implementer of the Collector. While this is not a desirable state, it is
// sometimes necessary. The typical use case is a situatios where the exact
// metrics to be returned by a Collector cannot be predicted at registration
// time, but the implementer has sufficient knowledge of the whole system to
// guarantee metric consistency.
//
// The Collector example illustrates the use case. You can also look at the
// source code of the processCollector (mirroring process metrics), the
// goCollector (mirroring Go metrics), or the expvarCollector (mirroring expvar
// metrics) as examples that are used in this package itself.
//
// If you just need to call a function to get a single float value to collect as
// a metric, GaugeFunc, CounterFunc, or UntypedFunc might be interesting
// shortcuts.
//
// Advanced Uses of the Registry
//
// While MustRegister is the by far most common way of registering a Collector,
// sometimes you might want to handle the errors the registration might cause.
// As suggested by the name, MustRegister panics if an error occurs. With the
// Register function, the error is returned and can be handled.
//
// An error is returned if the registered Collector is incompatible or
// inconsistent with already registered metrics. The registry aims for
// consistency of the collected metrics according to the Prometheus data model.
// Inconsistencies are ideally detected at registration time, not at collect
// time. The former will usually be detected at start-up time of a program,
// while the latter will only happen at scrape time, possibly not even on the
// first scrape if the inconsistency only becomes relevant later. That is the
// main reason why a Collector and a Metric have to describe themselves to the
// registry.
//
// So far, everything we did operated on the so-called default registry, as it
// can be found in the global DefaultRegisterer variable. With NewRegistry, you
// can create a custom registry, or you can even implement the Registerer or
// Gatherer interfaces yourself. The methods Register and Unregister work in the
// same way on a custom registry as the global functions Register and Unregister
// on the default registry.
//
// There are a number of uses for custom registries: You can use registries with
// special properties, see NewPedanticRegistry. You can avoid global state, as
// it is imposed by the DefaultRegisterer. You can use multiple registries at
// the same time to expose different metrics in different ways. You can use
// separate registries for testing purposes.
//
// Also note that the DefaultRegisterer comes registered with a Collector for Go
// runtime metrics (via NewGoCollector) and a Collector for process metrics (via
// NewProcessCollector). With a custom registry, you are in control and decide
// yourself about the Collectors to register.
//
// HTTP Exposition
//
// The Registry implements the Gatherer interface. The caller of the Gather
// method can then expose the gathered metrics in some way. Usually, the metrics
// are served via HTTP on the /metrics endpoint. That's happening in the example
// above. The tools to expose metrics via HTTP are in the promhttp sub-package.
// (The top-level functions in the prometheus package are deprecated.)
//
// Pushing to the Pushgateway
//
// Function for pushing to the Pushgateway can be found in the push sub-package.
//
// Graphite Bridge
//
// Functions and examples to push metrics from a Gatherer to Graphite can be
// found in the graphite sub-package.
//
// Other Means of Exposition
//
// More ways of exposing metrics can easily be added by following the approaches
// of the existing implementations.
package prometheus

View file

@ -0,0 +1,119 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"encoding/json"
"expvar"
)
type expvarCollector struct {
exports map[string]*Desc
}
// NewExpvarCollector returns a newly allocated expvar Collector that still has
// to be registered with a Prometheus registry.
//
// An expvar Collector collects metrics from the expvar interface. It provides a
// quick way to expose numeric values that are already exported via expvar as
// Prometheus metrics. Note that the data models of expvar and Prometheus are
// fundamentally different, and that the expvar Collector is inherently slower
// than native Prometheus metrics. Thus, the expvar Collector is probably great
// for experiments and prototying, but you should seriously consider a more
// direct implementation of Prometheus metrics for monitoring production
// systems.
//
// The exports map has the following meaning:
//
// The keys in the map correspond to expvar keys, i.e. for every expvar key you
// want to export as Prometheus metric, you need an entry in the exports
// map. The descriptor mapped to each key describes how to export the expvar
// value. It defines the name and the help string of the Prometheus metric
// proxying the expvar value. The type will always be Untyped.
//
// For descriptors without variable labels, the expvar value must be a number or
// a bool. The number is then directly exported as the Prometheus sample
// value. (For a bool, 'false' translates to 0 and 'true' to 1). Expvar values
// that are not numbers or bools are silently ignored.
//
// If the descriptor has one variable label, the expvar value must be an expvar
// map. The keys in the expvar map become the various values of the one
// Prometheus label. The values in the expvar map must be numbers or bools again
// as above.
//
// For descriptors with more than one variable label, the expvar must be a
// nested expvar map, i.e. where the values of the topmost map are maps again
// etc. until a depth is reached that corresponds to the number of labels. The
// leaves of that structure must be numbers or bools as above to serve as the
// sample values.
//
// Anything that does not fit into the scheme above is silently ignored.
func NewExpvarCollector(exports map[string]*Desc) Collector {
return &expvarCollector{
exports: exports,
}
}
// Describe implements Collector.
func (e *expvarCollector) Describe(ch chan<- *Desc) {
for _, desc := range e.exports {
ch <- desc
}
}
// Collect implements Collector.
func (e *expvarCollector) Collect(ch chan<- Metric) {
for name, desc := range e.exports {
var m Metric
expVar := expvar.Get(name)
if expVar == nil {
continue
}
var v interface{}
labels := make([]string, len(desc.variableLabels))
if err := json.Unmarshal([]byte(expVar.String()), &v); err != nil {
ch <- NewInvalidMetric(desc, err)
continue
}
var processValue func(v interface{}, i int)
processValue = func(v interface{}, i int) {
if i >= len(labels) {
copiedLabels := append(make([]string, 0, len(labels)), labels...)
switch v := v.(type) {
case float64:
m = MustNewConstMetric(desc, UntypedValue, v, copiedLabels...)
case bool:
if v {
m = MustNewConstMetric(desc, UntypedValue, 1, copiedLabels...)
} else {
m = MustNewConstMetric(desc, UntypedValue, 0, copiedLabels...)
}
default:
return
}
ch <- m
return
}
vm, ok := v.(map[string]interface{})
if !ok {
return
}
for lv, val := range vm {
labels[i] = lv
processValue(val, i+1)
}
}
processValue(v, 0)
}
}

View file

@ -0,0 +1,42 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
// Inline and byte-free variant of hash/fnv's fnv64a.
const (
offset64 = 14695981039346656037
prime64 = 1099511628211
)
// hashNew initializies a new fnv64a hash value.
func hashNew() uint64 {
return offset64
}
// hashAdd adds a string to a fnv64a hash value, returning the updated hash.
func hashAdd(h uint64, s string) uint64 {
for i := 0; i < len(s); i++ {
h ^= uint64(s[i])
h *= prime64
}
return h
}
// hashAddByte adds a byte to a fnv64a hash value, returning the updated hash.
func hashAddByte(h uint64, b byte) uint64 {
h ^= uint64(b)
h *= prime64
return h
}

View file

@ -0,0 +1,286 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"math"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
)
// Gauge is a Metric that represents a single numerical value that can
// arbitrarily go up and down.
//
// A Gauge is typically used for measured values like temperatures or current
// memory usage, but also "counts" that can go up and down, like the number of
// running goroutines.
//
// To create Gauge instances, use NewGauge.
type Gauge interface {
Metric
Collector
// Set sets the Gauge to an arbitrary value.
Set(float64)
// Inc increments the Gauge by 1. Use Add to increment it by arbitrary
// values.
Inc()
// Dec decrements the Gauge by 1. Use Sub to decrement it by arbitrary
// values.
Dec()
// Add adds the given value to the Gauge. (The value can be negative,
// resulting in a decrease of the Gauge.)
Add(float64)
// Sub subtracts the given value from the Gauge. (The value can be
// negative, resulting in an increase of the Gauge.)
Sub(float64)
// SetToCurrentTime sets the Gauge to the current Unix time in seconds.
SetToCurrentTime()
}
// GaugeOpts is an alias for Opts. See there for doc comments.
type GaugeOpts Opts
// NewGauge creates a new Gauge based on the provided GaugeOpts.
//
// The returned implementation is optimized for a fast Set method. If you have a
// choice for managing the value of a Gauge via Set vs. Inc/Dec/Add/Sub, pick
// the former. For example, the Inc method of the returned Gauge is slower than
// the Inc method of a Counter returned by NewCounter. This matches the typical
// scenarios for Gauges and Counters, where the former tends to be Set-heavy and
// the latter Inc-heavy.
func NewGauge(opts GaugeOpts) Gauge {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
)
result := &gauge{desc: desc, labelPairs: desc.constLabelPairs}
result.init(result) // Init self-collection.
return result
}
type gauge struct {
// valBits contains the bits of the represented float64 value. It has
// to go first in the struct to guarantee alignment for atomic
// operations. http://golang.org/pkg/sync/atomic/#pkg-note-BUG
valBits uint64
selfCollector
desc *Desc
labelPairs []*dto.LabelPair
}
func (g *gauge) Desc() *Desc {
return g.desc
}
func (g *gauge) Set(val float64) {
atomic.StoreUint64(&g.valBits, math.Float64bits(val))
}
func (g *gauge) SetToCurrentTime() {
g.Set(float64(time.Now().UnixNano()) / 1e9)
}
func (g *gauge) Inc() {
g.Add(1)
}
func (g *gauge) Dec() {
g.Add(-1)
}
func (g *gauge) Add(val float64) {
for {
oldBits := atomic.LoadUint64(&g.valBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + val)
if atomic.CompareAndSwapUint64(&g.valBits, oldBits, newBits) {
return
}
}
}
func (g *gauge) Sub(val float64) {
g.Add(val * -1)
}
func (g *gauge) Write(out *dto.Metric) error {
val := math.Float64frombits(atomic.LoadUint64(&g.valBits))
return populateMetric(GaugeValue, val, g.labelPairs, out)
}
// GaugeVec is a Collector that bundles a set of Gauges that all share the same
// Desc, but have different values for their variable labels. This is used if
// you want to count the same thing partitioned by various dimensions
// (e.g. number of operations queued, partitioned by user and operation
// type). Create instances with NewGaugeVec.
type GaugeVec struct {
*metricVec
}
// NewGaugeVec creates a new GaugeVec based on the provided GaugeOpts and
// partitioned by the given label names.
func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &GaugeVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
if len(lvs) != len(desc.variableLabels) {
panic(errInconsistentCardinality)
}
result := &gauge{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result.init(result) // Init self-collection.
return result
}),
}
}
// GetMetricWithLabelValues returns the Gauge for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Gauge is created.
//
// It is possible to call this method without using the returned Gauge to only
// create the new Gauge but leave it at its starting value 0. See also the
// SummaryVec example.
//
// Keeping the Gauge for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Gauge from the GaugeVec. In that case, the
// Gauge will still exist, but it will not be exported anymore, even if a
// Gauge with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
func (v *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Gauge), err
}
return nil, err
}
// GetMetricWith returns the Gauge for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Gauge is created. Implications of
// creating a Gauge without using it and keeping the Gauge for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *GaugeVec) GetMetricWith(labels Labels) (Gauge, error) {
metric, err := v.metricVec.getMetricWith(labels)
if metric != nil {
return metric.(Gauge), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (v *GaugeVec) WithLabelValues(lvs ...string) Gauge {
g, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return g
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Add(42)
func (v *GaugeVec) With(labels Labels) Gauge {
g, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return g
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the GaugeVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *GaugeVec) CurryWith(labels Labels) (*GaugeVec, error) {
vec, err := v.curryWith(labels)
if vec != nil {
return &GaugeVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *GaugeVec) MustCurryWith(labels Labels) *GaugeVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
// GaugeFunc is a Gauge whose value is determined at collect time by calling a
// provided function.
//
// To create GaugeFunc instances, use NewGaugeFunc.
type GaugeFunc interface {
Metric
Collector
}
// NewGaugeFunc creates a new GaugeFunc based on the provided GaugeOpts. The
// value reported is determined by calling the given function from within the
// Write method. Take into account that metric collection may happen
// concurrently. If that results in concurrent calls to Write, like in the case
// where a GaugeFunc is directly registered with Prometheus, the provided
// function must be concurrency-safe.
func NewGaugeFunc(opts GaugeOpts, function func() float64) GaugeFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), GaugeValue, function)
}

View file

@ -0,0 +1,301 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"runtime"
"runtime/debug"
"time"
)
type goCollector struct {
goroutinesDesc *Desc
threadsDesc *Desc
gcDesc *Desc
goInfoDesc *Desc
// metrics to describe and collect
metrics memStatsMetrics
}
// NewGoCollector returns a collector which exports metrics about the current Go
// process. This includes memory stats. To collect those, runtime.ReadMemStats
// is called. This causes a stop-the-world, which is very short with Go1.9+
// (~25µs). However, with older Go versions, the stop-the-world duration depends
// on the heap size and can be quite significant (~1.7 ms/GiB as per
// https://go-review.googlesource.com/c/go/+/34937).
func NewGoCollector() Collector {
return &goCollector{
goroutinesDesc: NewDesc(
"go_goroutines",
"Number of goroutines that currently exist.",
nil, nil),
threadsDesc: NewDesc(
"go_threads",
"Number of OS threads created.",
nil, nil),
gcDesc: NewDesc(
"go_gc_duration_seconds",
"A summary of the GC invocation durations.",
nil, nil),
goInfoDesc: NewDesc(
"go_info",
"Information about the Go environment.",
nil, Labels{"version": runtime.Version()}),
metrics: memStatsMetrics{
{
desc: NewDesc(
memstatNamespace("alloc_bytes"),
"Number of bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Alloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("alloc_bytes_total"),
"Total number of bytes allocated, even if freed.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.TotalAlloc) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("sys_bytes"),
"Number of bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Sys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("lookups_total"),
"Total number of pointer lookups.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Lookups) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("mallocs_total"),
"Total number of mallocs.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Mallocs) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("frees_total"),
"Total number of frees.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.Frees) },
valType: CounterValue,
}, {
desc: NewDesc(
memstatNamespace("heap_alloc_bytes"),
"Number of heap bytes allocated and still in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapAlloc) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_sys_bytes"),
"Number of heap bytes obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_idle_bytes"),
"Number of heap bytes waiting to be used.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapIdle) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_inuse_bytes"),
"Number of heap bytes that are in use.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_released_bytes"),
"Number of heap bytes released to OS.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapReleased) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("heap_objects"),
"Number of allocated objects.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.HeapObjects) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_inuse_bytes"),
"Number of bytes in use by the stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("stack_sys_bytes"),
"Number of bytes obtained from system for stack allocator.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.StackSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_inuse_bytes"),
"Number of bytes in use by mspan structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mspan_sys_bytes"),
"Number of bytes used for mspan structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MSpanSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_inuse_bytes"),
"Number of bytes in use by mcache structures.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheInuse) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("mcache_sys_bytes"),
"Number of bytes used for mcache structures obtained from system.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.MCacheSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("buck_hash_sys_bytes"),
"Number of bytes used by the profiling bucket hash table.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.BuckHashSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_sys_bytes"),
"Number of bytes used for garbage collection system metadata.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.GCSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("other_sys_bytes"),
"Number of bytes used for other system allocations.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.OtherSys) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("next_gc_bytes"),
"Number of heap bytes when next garbage collection will take place.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.NextGC) },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("last_gc_time_seconds"),
"Number of seconds since 1970 of last garbage collection.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return float64(ms.LastGC) / 1e9 },
valType: GaugeValue,
}, {
desc: NewDesc(
memstatNamespace("gc_cpu_fraction"),
"The fraction of this program's available CPU time used by the GC since the program started.",
nil, nil,
),
eval: func(ms *runtime.MemStats) float64 { return ms.GCCPUFraction },
valType: GaugeValue,
},
},
}
}
func memstatNamespace(s string) string {
return fmt.Sprintf("go_memstats_%s", s)
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
ch <- c.goroutinesDesc
ch <- c.threadsDesc
ch <- c.gcDesc
ch <- c.goInfoDesc
for _, i := range c.metrics {
ch <- i.desc
}
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
ch <- MustNewConstMetric(c.goroutinesDesc, GaugeValue, float64(runtime.NumGoroutine()))
n, _ := runtime.ThreadCreateProfile(nil)
ch <- MustNewConstMetric(c.threadsDesc, GaugeValue, float64(n))
var stats debug.GCStats
stats.PauseQuantiles = make([]time.Duration, 5)
debug.ReadGCStats(&stats)
quantiles := make(map[float64]float64)
for idx, pq := range stats.PauseQuantiles[1:] {
quantiles[float64(idx+1)/float64(len(stats.PauseQuantiles)-1)] = pq.Seconds()
}
quantiles[0.0] = stats.PauseQuantiles[0].Seconds()
ch <- MustNewConstSummary(c.gcDesc, uint64(stats.NumGC), stats.PauseTotal.Seconds(), quantiles)
ch <- MustNewConstMetric(c.goInfoDesc, GaugeValue, 1)
ms := &runtime.MemStats{}
runtime.ReadMemStats(ms)
for _, i := range c.metrics {
ch <- MustNewConstMetric(i.desc, i.valType, i.eval(ms))
}
}
// memStatsMetrics provide description, value, and value type for memstat metrics.
type memStatsMetrics []struct {
desc *Desc
eval func(*runtime.MemStats) float64
valType ValueType
}

View file

@ -0,0 +1,614 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// A Histogram counts individual observations from an event or sample stream in
// configurable buckets. Similar to a summary, it also provides a sum of
// observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile function in the query language.
//
// Note that Histograms, in contrast to Summaries, can be aggregated with the
// Prometheus query language (see the documentation for detailed
// procedures). However, Histograms require the user to pre-define suitable
// buckets, and they are in general less accurate. The Observe method of a
// Histogram has a very low performance overhead in comparison with the Observe
// method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram.
Observe(float64)
}
// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"
// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var (
DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
errBucketLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in histograms", bucketLabel,
)
)
// LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest
// bucket has an upper bound of 'start'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
if count < 1 {
panic("LinearBuckets needs a positive count")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start += width
}
return buckets
}
// ExponentialBuckets creates 'count' buckets, where the lowest bucket has an
// upper bound of 'start' and each following bucket's upper bound is 'factor'
// times the previous bucket's upper bound. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
if count < 1 {
panic("ExponentialBuckets needs a positive count")
}
if start <= 0 {
panic("ExponentialBuckets needs a positive start value")
}
if factor <= 1 {
panic("ExponentialBuckets needs a factor greater than 1")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start *= factor
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Histogram (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Histogram must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Histogram.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
// element in the slice is the upper inclusive bound of a bucket. The
// values must be sorted in strictly increasing order. There is no need
// to add a highest bucket with +Inf bound, it will be added
// implicitly. The default value is DefBuckets.
Buckets []float64
}
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
if len(desc.variableLabels) != len(labelValues) {
panic(errInconsistentCardinality)
}
for _, n := range desc.variableLabels {
if n == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
if len(opts.Buckets) == 0 {
opts.Buckets = DefBuckets
}
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: makeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{&histogramCounts{}, &histogramCounts{}},
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
if upperBound >= h.upperBounds[i+1] {
panic(fmt.Errorf(
"histogram buckets must be in increasing order: %f >= %f",
upperBound, h.upperBounds[i+1],
))
}
} else {
if math.IsInf(upperBound, +1) {
// The +Inf bucket is implicit. Remove it here.
h.upperBounds = h.upperBounds[:i]
}
}
}
// Finally we know the final length of h.upperBounds and can make counts
// for both states:
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
h.init(h) // Init self-collection.
return h
}
type histogramCounts struct {
// sumBits contains the bits of the float64 representing the sum of all
// observations. sumBits and count have to go first in the struct to
// guarantee alignment for atomic operations.
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
sumBits uint64
count uint64
buckets []uint64
}
type histogram struct {
// countAndHotIdx is a complicated one. For lock-free yet atomic
// observations, we need to save the total count of observations again,
// combined with the index of the currently-hot counts struct, so that
// we can perform the operation on both values atomically. The least
// significant bit defines the hot counts struct. The remaining 63 bits
// represent the total count of observations. This happens under the
// assumption that the 63bit count will never overflow. Rationale: An
// observations takes about 30ns. Let's assume it could happen in
// 10ns. Overflowing the counter will then take at least (2^63)*10ns,
// which is about 3000 years.
//
// This has to be first in the struct for 64bit alignment. See
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
selfCollector
desc *Desc
writeMtx sync.Mutex // Only used in the Write method.
upperBounds []float64
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*histogramCounts
hotIdx int // Index of currently-hot counts. Only used within Write.
labelPairs []*dto.LabelPair
}
func (h *histogram) Desc() *Desc {
return h.desc
}
func (h *histogram) Observe(v float64) {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
i := sort.SearchFloat64s(h.upperBounds, v)
// We increment h.countAndHotIdx by 2 so that the counter in the upper
// 63 bits gets incremented by 1. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 2)
hotCounts := h.counts[n%2]
if i < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[i], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
}
func (h *histogram) Write(out *dto.Metric) error {
var (
his = &dto.Histogram{}
buckets = make([]*dto.Bucket, len(h.upperBounds))
hotCounts, coldCounts *histogramCounts
count uint64
)
// For simplicity, we mutex the rest of this method. It is not in the
// hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it.
h.writeMtx.Lock()
defer h.writeMtx.Unlock()
// This is a bit arcane, which is why the following spells out this if
// clause in English:
//
// If the currently-hot counts struct is #0, we atomically increment
// h.countAndHotIdx by 1 so that from now on Observe will use the counts
// struct #1. Furthermore, the atomic increment gives us the new value,
// which, in its most significant 63 bits, tells us the count of
// observations done so far up to and including currently ongoing
// observations still using the counts struct just changed from hot to
// cold. To have a normal uint64 for the count, we bitshift by 1 and
// save the result in count. We also set h.hotIdx to 1 for the next
// Write call, and we will refer to counts #1 as hotCounts and to counts
// #0 as coldCounts.
//
// If the currently-hot counts struct is #1, we do the corresponding
// things the other way round. We have to _decrement_ h.countAndHotIdx
// (which is a bit arcane in itself, as we have to express -1 with an
// unsigned int...).
if h.hotIdx == 0 {
count = atomic.AddUint64(&h.countAndHotIdx, 1) >> 1
h.hotIdx = 1
hotCounts = h.counts[1]
coldCounts = h.counts[0]
} else {
count = atomic.AddUint64(&h.countAndHotIdx, ^uint64(0)) >> 1 // Decrement.
h.hotIdx = 0
hotCounts = h.counts[0]
coldCounts = h.counts[1]
}
// Now we have to wait for the now-declared-cold counts to actually cool
// down, i.e. wait for all observations still using it to finish. That's
// the case once the count in the cold counts struct is the same as the
// one atomically retrieved from the upper 63bits of h.countAndHotIdx.
for {
if count == atomic.LoadUint64(&coldCounts.count) {
break
}
runtime.Gosched() // Let observations get work done.
}
his.SampleCount = proto.Uint64(count)
his.SampleSum = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits)))
var cumCount uint64
for i, upperBound := range h.upperBounds {
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
buckets[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
// Finally add all the cold counts to the new hot counts and reset the cold counts.
atomic.AddUint64(&hotCounts.count, count)
atomic.StoreUint64(&coldCounts.count, 0)
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + his.GetSampleSum())
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
atomic.StoreUint64(&coldCounts.sumBits, 0)
break
}
}
for i := range h.upperBounds {
atomic.AddUint64(&hotCounts.buckets[i], atomic.LoadUint64(&coldCounts.buckets[i]))
atomic.StoreUint64(&coldCounts.buckets[i], 0)
}
return nil
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewHistogramVec.
type HistogramVec struct {
*metricVec
}
// NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and
// partitioned by the given label names.
func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &HistogramVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
return newHistogram(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Histogram for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Histogram is created.
//
// It is possible to call this method without using the returned Histogram to only
// create the new Histogram but leave it at its starting value, a Histogram without
// any observations.
//
// Keeping the Histogram for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Histogram from the HistogramVec. In that case, the
// Histogram will still exist, but it will not be exported anymore, even if a
// Histogram with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// GetMetricWith returns the Histogram for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Histogram is created. Implications of
// creating a Histogram without using it and keeping the Histogram for later use
// are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.metricVec.getMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *HistogramVec) WithLabelValues(lvs ...string) Observer {
h, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return h
}
// With works as GetMetricWith but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *HistogramVec) With(labels Labels) Observer {
h, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return h
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the HistogramVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.curryWith(labels)
if vec != nil {
return &HistogramVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
type constHistogram struct {
desc *Desc
count uint64
sum float64
buckets map[float64]uint64
labelPairs []*dto.LabelPair
}
func (h *constHistogram) Desc() *Desc {
return h.desc
}
func (h *constHistogram) Write(out *dto.Metric) error {
his := &dto.Histogram{}
buckets := make([]*dto.Bucket, 0, len(h.buckets))
his.SampleCount = proto.Uint64(h.count)
his.SampleSum = proto.Float64(h.sum)
for upperBound, count := range h.buckets {
buckets = append(buckets, &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(upperBound),
})
}
if len(buckets) > 0 {
sort.Sort(buckSort(buckets))
}
his.Bucket = buckets
out.Histogram = his
out.Label = h.labelPairs
return nil
}
// NewConstHistogram returns a metric representing a Prometheus histogram with
// fixed values for the count, sum, and bucket counts. As those parameters
// cannot be changed, the returned value does not implement the Histogram
// interface (but only the Metric interface). Users of this package will not
// have much use for it in regular operations. However, when implementing custom
// Collectors, it is useful as a throw-away metric that is generated on the fly
// to send it to Prometheus in the Collect method.
//
// buckets is a map of upper bounds to cumulative counts, excluding the +Inf
// bucket.
//
// NewConstHistogram returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
return nil, err
}
return &constHistogram{
desc: desc,
count: count,
sum: sum,
buckets: buckets,
labelPairs: makeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstHistogram is a version of NewConstHistogram that panics where
// NewConstMetric would have returned an error.
func MustNewConstHistogram(
desc *Desc,
count uint64,
sum float64,
buckets map[float64]uint64,
labelValues ...string,
) Metric {
m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...)
if err != nil {
panic(err)
}
return m
}
type buckSort []*dto.Bucket
func (s buckSort) Len() int {
return len(s)
}
func (s buckSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s buckSort) Less(i, j int) bool {
return s[i].GetUpperBound() < s[j].GetUpperBound()
}

View file

@ -0,0 +1,505 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"bufio"
"bytes"
"compress/gzip"
"fmt"
"io"
"net"
"net/http"
"strconv"
"strings"
"sync"
"time"
"github.com/prometheus/common/expfmt"
)
// TODO(beorn7): Remove this whole file. It is a partial mirror of
// promhttp/http.go (to avoid circular import chains) where everything HTTP
// related should live. The functions here are just for avoiding
// breakage. Everything is deprecated.
const (
contentTypeHeader = "Content-Type"
contentLengthHeader = "Content-Length"
contentEncodingHeader = "Content-Encoding"
acceptEncodingHeader = "Accept-Encoding"
)
var bufPool sync.Pool
func getBuf() *bytes.Buffer {
buf := bufPool.Get()
if buf == nil {
return &bytes.Buffer{}
}
return buf.(*bytes.Buffer)
}
func giveBuf(buf *bytes.Buffer) {
buf.Reset()
bufPool.Put(buf)
}
// Handler returns an HTTP handler for the DefaultGatherer. It is
// already instrumented with InstrumentHandler (using "prometheus" as handler
// name).
//
// Deprecated: Please note the issues described in the doc comment of
// InstrumentHandler. You might want to consider using promhttp.Handler instead.
func Handler() http.Handler {
return InstrumentHandler("prometheus", UninstrumentedHandler())
}
// UninstrumentedHandler returns an HTTP handler for the DefaultGatherer.
//
// Deprecated: Use promhttp.HandlerFor(DefaultGatherer, promhttp.HandlerOpts{})
// instead. See there for further documentation.
func UninstrumentedHandler() http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, req *http.Request) {
mfs, err := DefaultGatherer.Gather()
if err != nil {
http.Error(w, "An error has occurred during metrics collection:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
contentType := expfmt.Negotiate(req.Header)
buf := getBuf()
defer giveBuf(buf)
writer, encoding := decorateWriter(req, buf)
enc := expfmt.NewEncoder(writer, contentType)
var lastErr error
for _, mf := range mfs {
if err := enc.Encode(mf); err != nil {
lastErr = err
http.Error(w, "An error has occurred during metrics encoding:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
}
if closer, ok := writer.(io.Closer); ok {
closer.Close()
}
if lastErr != nil && buf.Len() == 0 {
http.Error(w, "No metrics encoded, last error:\n\n"+lastErr.Error(), http.StatusInternalServerError)
return
}
header := w.Header()
header.Set(contentTypeHeader, string(contentType))
header.Set(contentLengthHeader, fmt.Sprint(buf.Len()))
if encoding != "" {
header.Set(contentEncodingHeader, encoding)
}
w.Write(buf.Bytes())
})
}
// decorateWriter wraps a writer to handle gzip compression if requested. It
// returns the decorated writer and the appropriate "Content-Encoding" header
// (which is empty if no compression is enabled).
func decorateWriter(request *http.Request, writer io.Writer) (io.Writer, string) {
header := request.Header.Get(acceptEncodingHeader)
parts := strings.Split(header, ",")
for _, part := range parts {
part = strings.TrimSpace(part)
if part == "gzip" || strings.HasPrefix(part, "gzip;") {
return gzip.NewWriter(writer), "gzip"
}
}
return writer, ""
}
var instLabels = []string{"method", "code"}
type nower interface {
Now() time.Time
}
type nowFunc func() time.Time
func (n nowFunc) Now() time.Time {
return n()
}
var now nower = nowFunc(func() time.Time {
return time.Now()
})
// InstrumentHandler wraps the given HTTP handler for instrumentation. It
// registers four metric collectors (if not already done) and reports HTTP
// metrics to the (newly or already) registered collectors: http_requests_total
// (CounterVec), http_request_duration_microseconds (Summary),
// http_request_size_bytes (Summary), http_response_size_bytes (Summary). Each
// has a constant label named "handler" with the provided handlerName as
// value. http_requests_total is a metric vector partitioned by HTTP method
// (label name "method") and HTTP status code (label name "code").
//
// Deprecated: InstrumentHandler has several issues. Use the tooling provided in
// package promhttp instead. The issues are the following: (1) It uses Summaries
// rather than Histograms. Summaries are not useful if aggregation across
// multiple instances is required. (2) It uses microseconds as unit, which is
// deprecated and should be replaced by seconds. (3) The size of the request is
// calculated in a separate goroutine. Since this calculator requires access to
// the request header, it creates a race with any writes to the header performed
// during request handling. httputil.ReverseProxy is a prominent example for a
// handler performing such writes. (4) It has additional issues with HTTP/2, cf.
// https://github.com/prometheus/client_golang/issues/272.
func InstrumentHandler(handlerName string, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFunc(handlerName, handler.ServeHTTP)
}
// InstrumentHandlerFunc wraps the given function for instrumentation. It
// otherwise works in the same way as InstrumentHandler (and shares the same
// issues).
//
// Deprecated: InstrumentHandlerFunc is deprecated for the same reasons as
// InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerFunc(handlerName string, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(
SummaryOpts{
Subsystem: "http",
ConstLabels: Labels{"handler": handlerName},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
},
handlerFunc,
)
}
// InstrumentHandlerWithOpts works like InstrumentHandler (and shares the same
// issues) but provides more flexibility (at the cost of a more complex call
// syntax). As InstrumentHandler, this function registers four metric
// collectors, but it uses the provided SummaryOpts to create them. However, the
// fields "Name" and "Help" in the SummaryOpts are ignored. "Name" is replaced
// by "requests_total", "request_duration_microseconds", "request_size_bytes",
// and "response_size_bytes", respectively. "Help" is replaced by an appropriate
// help string. The names of the variable labels of the http_requests_total
// CounterVec are "method" (get, post, etc.), and "code" (HTTP status code).
//
// If InstrumentHandlerWithOpts is called as follows, it mimics exactly the
// behavior of InstrumentHandler:
//
// prometheus.InstrumentHandlerWithOpts(
// prometheus.SummaryOpts{
// Subsystem: "http",
// ConstLabels: prometheus.Labels{"handler": handlerName},
// },
// handler,
// )
//
// Technical detail: "requests_total" is a CounterVec, not a SummaryVec, so it
// cannot use SummaryOpts. Instead, a CounterOpts struct is created internally,
// and all its fields are set to the equally named fields in the provided
// SummaryOpts.
//
// Deprecated: InstrumentHandlerWithOpts is deprecated for the same reasons as
// InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerWithOpts(opts SummaryOpts, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(opts, handler.ServeHTTP)
}
// InstrumentHandlerFuncWithOpts works like InstrumentHandlerFunc (and shares
// the same issues) but provides more flexibility (at the cost of a more complex
// call syntax). See InstrumentHandlerWithOpts for details how the provided
// SummaryOpts are used.
//
// Deprecated: InstrumentHandlerFuncWithOpts is deprecated for the same reasons
// as InstrumentHandler is. Use the tooling provided in package promhttp instead.
func InstrumentHandlerFuncWithOpts(opts SummaryOpts, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
reqCnt := NewCounterVec(
CounterOpts{
Namespace: opts.Namespace,
Subsystem: opts.Subsystem,
Name: "requests_total",
Help: "Total number of HTTP requests made.",
ConstLabels: opts.ConstLabels,
},
instLabels,
)
if err := Register(reqCnt); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqCnt = are.ExistingCollector.(*CounterVec)
} else {
panic(err)
}
}
opts.Name = "request_duration_microseconds"
opts.Help = "The HTTP request latencies in microseconds."
reqDur := NewSummary(opts)
if err := Register(reqDur); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqDur = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
opts.Name = "request_size_bytes"
opts.Help = "The HTTP request sizes in bytes."
reqSz := NewSummary(opts)
if err := Register(reqSz); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
reqSz = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
opts.Name = "response_size_bytes"
opts.Help = "The HTTP response sizes in bytes."
resSz := NewSummary(opts)
if err := Register(resSz); err != nil {
if are, ok := err.(AlreadyRegisteredError); ok {
resSz = are.ExistingCollector.(Summary)
} else {
panic(err)
}
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
delegate := &responseWriterDelegator{ResponseWriter: w}
out := computeApproximateRequestSize(r)
_, cn := w.(http.CloseNotifier)
_, fl := w.(http.Flusher)
_, hj := w.(http.Hijacker)
_, rf := w.(io.ReaderFrom)
var rw http.ResponseWriter
if cn && fl && hj && rf {
rw = &fancyResponseWriterDelegator{delegate}
} else {
rw = delegate
}
handlerFunc(rw, r)
elapsed := float64(time.Since(now)) / float64(time.Microsecond)
method := sanitizeMethod(r.Method)
code := sanitizeCode(delegate.status)
reqCnt.WithLabelValues(method, code).Inc()
reqDur.Observe(elapsed)
resSz.Observe(float64(delegate.written))
reqSz.Observe(float64(<-out))
})
}
func computeApproximateRequestSize(r *http.Request) <-chan int {
// Get URL length in current goroutine for avoiding a race condition.
// HandlerFunc that runs in parallel may modify the URL.
s := 0
if r.URL != nil {
s += len(r.URL.String())
}
out := make(chan int, 1)
go func() {
s += len(r.Method)
s += len(r.Proto)
for name, values := range r.Header {
s += len(name)
for _, value := range values {
s += len(value)
}
}
s += len(r.Host)
// N.B. r.Form and r.MultipartForm are assumed to be included in r.URL.
if r.ContentLength != -1 {
s += int(r.ContentLength)
}
out <- s
close(out)
}()
return out
}
type responseWriterDelegator struct {
http.ResponseWriter
status int
written int64
wroteHeader bool
}
func (r *responseWriterDelegator) WriteHeader(code int) {
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {
if !r.wroteHeader {
r.WriteHeader(http.StatusOK)
}
n, err := r.ResponseWriter.Write(b)
r.written += int64(n)
return n, err
}
type fancyResponseWriterDelegator struct {
*responseWriterDelegator
}
func (f *fancyResponseWriterDelegator) CloseNotify() <-chan bool {
return f.ResponseWriter.(http.CloseNotifier).CloseNotify()
}
func (f *fancyResponseWriterDelegator) Flush() {
f.ResponseWriter.(http.Flusher).Flush()
}
func (f *fancyResponseWriterDelegator) Hijack() (net.Conn, *bufio.ReadWriter, error) {
return f.ResponseWriter.(http.Hijacker).Hijack()
}
func (f *fancyResponseWriterDelegator) ReadFrom(r io.Reader) (int64, error) {
if !f.wroteHeader {
f.WriteHeader(http.StatusOK)
}
n, err := f.ResponseWriter.(io.ReaderFrom).ReadFrom(r)
f.written += n
return n, err
}
func sanitizeMethod(m string) string {
switch m {
case "GET", "get":
return "get"
case "PUT", "put":
return "put"
case "HEAD", "head":
return "head"
case "POST", "post":
return "post"
case "DELETE", "delete":
return "delete"
case "CONNECT", "connect":
return "connect"
case "OPTIONS", "options":
return "options"
case "NOTIFY", "notify":
return "notify"
default:
return strings.ToLower(m)
}
}
func sanitizeCode(s int) string {
switch s {
case 100:
return "100"
case 101:
return "101"
case 200:
return "200"
case 201:
return "201"
case 202:
return "202"
case 203:
return "203"
case 204:
return "204"
case 205:
return "205"
case 206:
return "206"
case 300:
return "300"
case 301:
return "301"
case 302:
return "302"
case 304:
return "304"
case 305:
return "305"
case 307:
return "307"
case 400:
return "400"
case 401:
return "401"
case 402:
return "402"
case 403:
return "403"
case 404:
return "404"
case 405:
return "405"
case 406:
return "406"
case 407:
return "407"
case 408:
return "408"
case 409:
return "409"
case 410:
return "410"
case 411:
return "411"
case 412:
return "412"
case 413:
return "413"
case 414:
return "414"
case 415:
return "415"
case 416:
return "416"
case 417:
return "417"
case 418:
return "418"
case 500:
return "500"
case 501:
return "501"
case 502:
return "502"
case 503:
return "503"
case 504:
return "504"
case 505:
return "505"
case 428:
return "428"
case 429:
return "429"
case 431:
return "431"
case 511:
return "511"
default:
return strconv.Itoa(s)
}
}

View file

@ -0,0 +1,85 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package internal
import (
"sort"
dto "github.com/prometheus/client_model/go"
)
// metricSorter is a sortable slice of *dto.Metric.
type metricSorter []*dto.Metric
func (s metricSorter) Len() int {
return len(s)
}
func (s metricSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s metricSorter) Less(i, j int) bool {
if len(s[i].Label) != len(s[j].Label) {
// This should not happen. The metrics are
// inconsistent. However, we have to deal with the fact, as
// people might use custom collectors or metric family injection
// to create inconsistent metrics. So let's simply compare the
// number of labels in this case. That will still yield
// reproducible sorting.
return len(s[i].Label) < len(s[j].Label)
}
for n, lp := range s[i].Label {
vi := lp.GetValue()
vj := s[j].Label[n].GetValue()
if vi != vj {
return vi < vj
}
}
// We should never arrive here. Multiple metrics with the same
// label set in the same scrape will lead to undefined ingestion
// behavior. However, as above, we have to provide stable sorting
// here, even for inconsistent metrics. So sort equal metrics
// by their timestamp, with missing timestamps (implying "now")
// coming last.
if s[i].TimestampMs == nil {
return false
}
if s[j].TimestampMs == nil {
return true
}
return s[i].GetTimestampMs() < s[j].GetTimestampMs()
}
// NormalizeMetricFamilies returns a MetricFamily slice with empty
// MetricFamilies pruned and the remaining MetricFamilies sorted by name within
// the slice, with the contained Metrics sorted within each MetricFamily.
func NormalizeMetricFamilies(metricFamiliesByName map[string]*dto.MetricFamily) []*dto.MetricFamily {
for _, mf := range metricFamiliesByName {
sort.Sort(metricSorter(mf.Metric))
}
names := make([]string, 0, len(metricFamiliesByName))
for name, mf := range metricFamiliesByName {
if len(mf.Metric) > 0 {
names = append(names, name)
}
}
sort.Strings(names)
result := make([]*dto.MetricFamily, 0, len(names))
for _, name := range names {
result = append(result, metricFamiliesByName[name])
}
return result
}

View file

@ -0,0 +1,70 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"fmt"
"strings"
"unicode/utf8"
"github.com/prometheus/common/model"
)
// Labels represents a collection of label name -> value mappings. This type is
// commonly used with the With(Labels) and GetMetricWith(Labels) methods of
// metric vector Collectors, e.g.:
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
//
// The other use-case is the specification of constant label pairs in Opts or to
// create a Desc.
type Labels map[string]string
// reservedLabelPrefix is a prefix which is not legal in user-supplied
// label names.
const reservedLabelPrefix = "__"
var errInconsistentCardinality = errors.New("inconsistent label cardinality")
func validateValuesInLabels(labels Labels, expectedNumberOfValues int) error {
if len(labels) != expectedNumberOfValues {
return errInconsistentCardinality
}
for name, val := range labels {
if !utf8.ValidString(val) {
return fmt.Errorf("label %s: value %q is not valid UTF-8", name, val)
}
}
return nil
}
func validateLabelValues(vals []string, expectedNumberOfValues int) error {
if len(vals) != expectedNumberOfValues {
return errInconsistentCardinality
}
for _, val := range vals {
if !utf8.ValidString(val) {
return fmt.Errorf("label value %q is not valid UTF-8", val)
}
}
return nil
}
func checkLabelName(l string) bool {
return model.LabelName(l).IsValid() && !strings.HasPrefix(l, reservedLabelPrefix)
}

View file

@ -0,0 +1,174 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"strings"
"time"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
const separatorByte byte = 255
// A Metric models a single sample value with its meta data being exported to
// Prometheus. Implementations of Metric in this package are Gauge, Counter,
// Histogram, Summary, and Untyped.
type Metric interface {
// Desc returns the descriptor for the Metric. This method idempotently
// returns the same descriptor throughout the lifetime of the
// Metric. The returned descriptor is immutable by contract. A Metric
// unable to describe itself must return an invalid descriptor (created
// with NewInvalidDesc).
Desc() *Desc
// Write encodes the Metric into a "Metric" Protocol Buffer data
// transmission object.
//
// Metric implementations must observe concurrency safety as reads of
// this metric may occur at any time, and any blocking occurs at the
// expense of total performance of rendering all registered
// metrics. Ideally, Metric implementations should support concurrent
// readers.
//
// While populating dto.Metric, it is the responsibility of the
// implementation to ensure validity of the Metric protobuf (like valid
// UTF-8 strings or syntactically valid metric and label names). It is
// recommended to sort labels lexicographically. Callers of Write should
// still make sure of sorting if they depend on it.
Write(*dto.Metric) error
// TODO(beorn7): The original rationale of passing in a pre-allocated
// dto.Metric protobuf to save allocations has disappeared. The
// signature of this method should be changed to "Write() (*dto.Metric,
// error)".
}
// Opts bundles the options for creating most Metric types. Each metric
// implementation XXX has its own XXXOpts type, but in most cases, it is just be
// an alias of this type (which might change when the requirement arises.)
//
// It is mandatory to set Name to a non-empty string. All other fields are
// optional and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type Opts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Metric (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the metric must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this metric.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
ConstLabels Labels
}
// BuildFQName joins the given three name components by "_". Empty name
// components are ignored. If the name parameter itself is empty, an empty
// string is returned, no matter what. Metric implementations included in this
// library use this function internally to generate the fully-qualified metric
// name from the name component in their Opts. Users of the library will only
// need this function if they implement their own Metric or instantiate a Desc
// (with NewDesc) directly.
func BuildFQName(namespace, subsystem, name string) string {
if name == "" {
return ""
}
switch {
case namespace != "" && subsystem != "":
return strings.Join([]string{namespace, subsystem, name}, "_")
case namespace != "":
return strings.Join([]string{namespace, name}, "_")
case subsystem != "":
return strings.Join([]string{subsystem, name}, "_")
}
return name
}
// labelPairSorter implements sort.Interface. It is used to sort a slice of
// dto.LabelPair pointers.
type labelPairSorter []*dto.LabelPair
func (s labelPairSorter) Len() int {
return len(s)
}
func (s labelPairSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s labelPairSorter) Less(i, j int) bool {
return s[i].GetName() < s[j].GetName()
}
type invalidMetric struct {
desc *Desc
err error
}
// NewInvalidMetric returns a metric whose Write method always returns the
// provided error. It is useful if a Collector finds itself unable to collect
// a metric and wishes to report an error to the registry.
func NewInvalidMetric(desc *Desc, err error) Metric {
return &invalidMetric{desc, err}
}
func (m *invalidMetric) Desc() *Desc { return m.desc }
func (m *invalidMetric) Write(*dto.Metric) error { return m.err }
type timestampedMetric struct {
Metric
t time.Time
}
func (m timestampedMetric) Write(pb *dto.Metric) error {
e := m.Metric.Write(pb)
pb.TimestampMs = proto.Int64(m.t.Unix()*1000 + int64(m.t.Nanosecond()/1000000))
return e
}
// NewMetricWithTimestamp returns a new Metric wrapping the provided Metric in a
// way that it has an explicit timestamp set to the provided Time. This is only
// useful in rare cases as the timestamp of a Prometheus metric should usually
// be set by the Prometheus server during scraping. Exceptions include mirroring
// metrics with given timestamps from other metric
// sources.
//
// NewMetricWithTimestamp works best with MustNewConstMetric,
// MustNewConstHistogram, and MustNewConstSummary, see example.
//
// Currently, the exposition formats used by Prometheus are limited to
// millisecond resolution. Thus, the provided time will be rounded down to the
// next full millisecond value.
func NewMetricWithTimestamp(t time.Time, m Metric) Metric {
return timestampedMetric{Metric: m, t: t}
}

View file

@ -0,0 +1,52 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
// Observer is the interface that wraps the Observe method, which is used by
// Histogram and Summary to add observations.
type Observer interface {
Observe(float64)
}
// The ObserverFunc type is an adapter to allow the use of ordinary
// functions as Observers. If f is a function with the appropriate
// signature, ObserverFunc(f) is an Observer that calls f.
//
// This adapter is usually used in connection with the Timer type, and there are
// two general use cases:
//
// The most common one is to use a Gauge as the Observer for a Timer.
// See the "Gauge" Timer example.
//
// The more advanced use case is to create a function that dynamically decides
// which Observer to use for observing the duration. See the "Complex" Timer
// example.
type ObserverFunc func(float64)
// Observe calls f(value). It implements Observer.
func (f ObserverFunc) Observe(value float64) {
f(value)
}
// ObserverVec is an interface implemented by `HistogramVec` and `SummaryVec`.
type ObserverVec interface {
GetMetricWith(Labels) (Observer, error)
GetMetricWithLabelValues(lvs ...string) (Observer, error)
With(Labels) Observer
WithLabelValues(...string) Observer
CurryWith(Labels) (ObserverVec, error)
MustCurryWith(Labels) ObserverVec
Collector
}

View file

@ -0,0 +1,204 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"os"
"github.com/prometheus/procfs"
)
type processCollector struct {
collectFn func(chan<- Metric)
pidFn func() (int, error)
reportErrors bool
cpuTotal *Desc
openFDs, maxFDs *Desc
vsize, maxVsize *Desc
rss *Desc
startTime *Desc
}
// ProcessCollectorOpts defines the behavior of a process metrics collector
// created with NewProcessCollector.
type ProcessCollectorOpts struct {
// PidFn returns the PID of the process the collector collects metrics
// for. It is called upon each collection. By default, the PID of the
// current process is used, as determined on construction time by
// calling os.Getpid().
PidFn func() (int, error)
// If non-empty, each of the collected metrics is prefixed by the
// provided string and an underscore ("_").
Namespace string
// If true, any error encountered during collection is reported as an
// invalid metric (see NewInvalidMetric). Otherwise, errors are ignored
// and the collected metrics will be incomplete. (Possibly, no metrics
// will be collected at all.) While that's usually not desired, it is
// appropriate for the common "mix-in" of process metrics, where process
// metrics are nice to have, but failing to collect them should not
// disrupt the collection of the remaining metrics.
ReportErrors bool
}
// NewProcessCollector returns a collector which exports the current state of
// process metrics including CPU, memory and file descriptor usage as well as
// the process start time. The detailed behavior is defined by the provided
// ProcessCollectorOpts. The zero value of ProcessCollectorOpts creates a
// collector for the current process with an empty namespace string and no error
// reporting.
//
// Currently, the collector depends on a Linux-style proc filesystem and
// therefore only exports metrics for Linux.
//
// Note: An older version of this function had the following signature:
//
// NewProcessCollector(pid int, namespace string) Collector
//
// Most commonly, it was called as
//
// NewProcessCollector(os.Getpid(), "")
//
// The following call of the current version is equivalent to the above:
//
// NewProcessCollector(ProcessCollectorOpts{})
func NewProcessCollector(opts ProcessCollectorOpts) Collector {
ns := ""
if len(opts.Namespace) > 0 {
ns = opts.Namespace + "_"
}
c := &processCollector{
reportErrors: opts.ReportErrors,
cpuTotal: NewDesc(
ns+"process_cpu_seconds_total",
"Total user and system CPU time spent in seconds.",
nil, nil,
),
openFDs: NewDesc(
ns+"process_open_fds",
"Number of open file descriptors.",
nil, nil,
),
maxFDs: NewDesc(
ns+"process_max_fds",
"Maximum number of open file descriptors.",
nil, nil,
),
vsize: NewDesc(
ns+"process_virtual_memory_bytes",
"Virtual memory size in bytes.",
nil, nil,
),
maxVsize: NewDesc(
ns+"process_virtual_memory_max_bytes",
"Maximum amount of virtual memory available in bytes.",
nil, nil,
),
rss: NewDesc(
ns+"process_resident_memory_bytes",
"Resident memory size in bytes.",
nil, nil,
),
startTime: NewDesc(
ns+"process_start_time_seconds",
"Start time of the process since unix epoch in seconds.",
nil, nil,
),
}
if opts.PidFn == nil {
pid := os.Getpid()
c.pidFn = func() (int, error) { return pid, nil }
} else {
c.pidFn = opts.PidFn
}
// Set up process metric collection if supported by the runtime.
if _, err := procfs.NewStat(); err == nil {
c.collectFn = c.processCollect
} else {
c.collectFn = func(ch chan<- Metric) {
c.reportError(ch, nil, errors.New("process metrics not supported on this platform"))
}
}
return c
}
// Describe returns all descriptions of the collector.
func (c *processCollector) Describe(ch chan<- *Desc) {
ch <- c.cpuTotal
ch <- c.openFDs
ch <- c.maxFDs
ch <- c.vsize
ch <- c.maxVsize
ch <- c.rss
ch <- c.startTime
}
// Collect returns the current state of all metrics of the collector.
func (c *processCollector) Collect(ch chan<- Metric) {
c.collectFn(ch)
}
func (c *processCollector) processCollect(ch chan<- Metric) {
pid, err := c.pidFn()
if err != nil {
c.reportError(ch, nil, err)
return
}
p, err := procfs.NewProc(pid)
if err != nil {
c.reportError(ch, nil, err)
return
}
if stat, err := p.NewStat(); err == nil {
ch <- MustNewConstMetric(c.cpuTotal, CounterValue, stat.CPUTime())
ch <- MustNewConstMetric(c.vsize, GaugeValue, float64(stat.VirtualMemory()))
ch <- MustNewConstMetric(c.rss, GaugeValue, float64(stat.ResidentMemory()))
if startTime, err := stat.StartTime(); err == nil {
ch <- MustNewConstMetric(c.startTime, GaugeValue, startTime)
} else {
c.reportError(ch, c.startTime, err)
}
} else {
c.reportError(ch, nil, err)
}
if fds, err := p.FileDescriptorsLen(); err == nil {
ch <- MustNewConstMetric(c.openFDs, GaugeValue, float64(fds))
} else {
c.reportError(ch, c.openFDs, err)
}
if limits, err := p.NewLimits(); err == nil {
ch <- MustNewConstMetric(c.maxFDs, GaugeValue, float64(limits.OpenFiles))
ch <- MustNewConstMetric(c.maxVsize, GaugeValue, float64(limits.AddressSpace))
} else {
c.reportError(ch, nil, err)
}
}
func (c *processCollector) reportError(ch chan<- Metric, desc *Desc, err error) {
if !c.reportErrors {
return
}
if desc == nil {
desc = NewInvalidDesc(err)
}
ch <- NewInvalidMetric(desc, err)
}

View file

@ -0,0 +1,199 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promhttp
import (
"bufio"
"io"
"net"
"net/http"
)
const (
closeNotifier = 1 << iota
flusher
hijacker
readerFrom
pusher
)
type delegator interface {
http.ResponseWriter
Status() int
Written() int64
}
type responseWriterDelegator struct {
http.ResponseWriter
handler, method string
status int
written int64
wroteHeader bool
observeWriteHeader func(int)
}
func (r *responseWriterDelegator) Status() int {
return r.status
}
func (r *responseWriterDelegator) Written() int64 {
return r.written
}
func (r *responseWriterDelegator) WriteHeader(code int) {
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
if r.observeWriteHeader != nil {
r.observeWriteHeader(code)
}
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {
if !r.wroteHeader {
r.WriteHeader(http.StatusOK)
}
n, err := r.ResponseWriter.Write(b)
r.written += int64(n)
return n, err
}
type closeNotifierDelegator struct{ *responseWriterDelegator }
type flusherDelegator struct{ *responseWriterDelegator }
type hijackerDelegator struct{ *responseWriterDelegator }
type readerFromDelegator struct{ *responseWriterDelegator }
func (d closeNotifierDelegator) CloseNotify() <-chan bool {
return d.ResponseWriter.(http.CloseNotifier).CloseNotify()
}
func (d flusherDelegator) Flush() {
d.ResponseWriter.(http.Flusher).Flush()
}
func (d hijackerDelegator) Hijack() (net.Conn, *bufio.ReadWriter, error) {
return d.ResponseWriter.(http.Hijacker).Hijack()
}
func (d readerFromDelegator) ReadFrom(re io.Reader) (int64, error) {
if !d.wroteHeader {
d.WriteHeader(http.StatusOK)
}
n, err := d.ResponseWriter.(io.ReaderFrom).ReadFrom(re)
d.written += n
return n, err
}
var pickDelegator = make([]func(*responseWriterDelegator) delegator, 32)
func init() {
// TODO(beorn7): Code generation would help here.
pickDelegator[0] = func(d *responseWriterDelegator) delegator { // 0
return d
}
pickDelegator[closeNotifier] = func(d *responseWriterDelegator) delegator { // 1
return closeNotifierDelegator{d}
}
pickDelegator[flusher] = func(d *responseWriterDelegator) delegator { // 2
return flusherDelegator{d}
}
pickDelegator[flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 3
return struct {
*responseWriterDelegator
http.Flusher
http.CloseNotifier
}{d, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[hijacker] = func(d *responseWriterDelegator) delegator { // 4
return hijackerDelegator{d}
}
pickDelegator[hijacker+closeNotifier] = func(d *responseWriterDelegator) delegator { // 5
return struct {
*responseWriterDelegator
http.Hijacker
http.CloseNotifier
}{d, hijackerDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[hijacker+flusher] = func(d *responseWriterDelegator) delegator { // 6
return struct {
*responseWriterDelegator
http.Hijacker
http.Flusher
}{d, hijackerDelegator{d}, flusherDelegator{d}}
}
pickDelegator[hijacker+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 7
return struct {
*responseWriterDelegator
http.Hijacker
http.Flusher
http.CloseNotifier
}{d, hijackerDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[readerFrom] = func(d *responseWriterDelegator) delegator { // 8
return readerFromDelegator{d}
}
pickDelegator[readerFrom+closeNotifier] = func(d *responseWriterDelegator) delegator { // 9
return struct {
*responseWriterDelegator
io.ReaderFrom
http.CloseNotifier
}{d, readerFromDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[readerFrom+flusher] = func(d *responseWriterDelegator) delegator { // 10
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Flusher
}{d, readerFromDelegator{d}, flusherDelegator{d}}
}
pickDelegator[readerFrom+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 11
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Flusher
http.CloseNotifier
}{d, readerFromDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[readerFrom+hijacker] = func(d *responseWriterDelegator) delegator { // 12
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Hijacker
}{d, readerFromDelegator{d}, hijackerDelegator{d}}
}
pickDelegator[readerFrom+hijacker+closeNotifier] = func(d *responseWriterDelegator) delegator { // 13
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Hijacker
http.CloseNotifier
}{d, readerFromDelegator{d}, hijackerDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[readerFrom+hijacker+flusher] = func(d *responseWriterDelegator) delegator { // 14
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Hijacker
http.Flusher
}{d, readerFromDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}}
}
pickDelegator[readerFrom+hijacker+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 15
return struct {
*responseWriterDelegator
io.ReaderFrom
http.Hijacker
http.Flusher
http.CloseNotifier
}{d, readerFromDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
}

View file

@ -0,0 +1,181 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build go1.8
package promhttp
import (
"io"
"net/http"
)
type pusherDelegator struct{ *responseWriterDelegator }
func (d pusherDelegator) Push(target string, opts *http.PushOptions) error {
return d.ResponseWriter.(http.Pusher).Push(target, opts)
}
func init() {
pickDelegator[pusher] = func(d *responseWriterDelegator) delegator { // 16
return pusherDelegator{d}
}
pickDelegator[pusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 17
return struct {
*responseWriterDelegator
http.Pusher
http.CloseNotifier
}{d, pusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+flusher] = func(d *responseWriterDelegator) delegator { // 18
return struct {
*responseWriterDelegator
http.Pusher
http.Flusher
}{d, pusherDelegator{d}, flusherDelegator{d}}
}
pickDelegator[pusher+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 19
return struct {
*responseWriterDelegator
http.Pusher
http.Flusher
http.CloseNotifier
}{d, pusherDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+hijacker] = func(d *responseWriterDelegator) delegator { // 20
return struct {
*responseWriterDelegator
http.Pusher
http.Hijacker
}{d, pusherDelegator{d}, hijackerDelegator{d}}
}
pickDelegator[pusher+hijacker+closeNotifier] = func(d *responseWriterDelegator) delegator { // 21
return struct {
*responseWriterDelegator
http.Pusher
http.Hijacker
http.CloseNotifier
}{d, pusherDelegator{d}, hijackerDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+hijacker+flusher] = func(d *responseWriterDelegator) delegator { // 22
return struct {
*responseWriterDelegator
http.Pusher
http.Hijacker
http.Flusher
}{d, pusherDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}}
}
pickDelegator[pusher+hijacker+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { //23
return struct {
*responseWriterDelegator
http.Pusher
http.Hijacker
http.Flusher
http.CloseNotifier
}{d, pusherDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+readerFrom] = func(d *responseWriterDelegator) delegator { // 24
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
}{d, pusherDelegator{d}, readerFromDelegator{d}}
}
pickDelegator[pusher+readerFrom+closeNotifier] = func(d *responseWriterDelegator) delegator { // 25
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.CloseNotifier
}{d, pusherDelegator{d}, readerFromDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+readerFrom+flusher] = func(d *responseWriterDelegator) delegator { // 26
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Flusher
}{d, pusherDelegator{d}, readerFromDelegator{d}, flusherDelegator{d}}
}
pickDelegator[pusher+readerFrom+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 27
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Flusher
http.CloseNotifier
}{d, pusherDelegator{d}, readerFromDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+readerFrom+hijacker] = func(d *responseWriterDelegator) delegator { // 28
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Hijacker
}{d, pusherDelegator{d}, readerFromDelegator{d}, hijackerDelegator{d}}
}
pickDelegator[pusher+readerFrom+hijacker+closeNotifier] = func(d *responseWriterDelegator) delegator { // 29
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Hijacker
http.CloseNotifier
}{d, pusherDelegator{d}, readerFromDelegator{d}, hijackerDelegator{d}, closeNotifierDelegator{d}}
}
pickDelegator[pusher+readerFrom+hijacker+flusher] = func(d *responseWriterDelegator) delegator { // 30
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Hijacker
http.Flusher
}{d, pusherDelegator{d}, readerFromDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}}
}
pickDelegator[pusher+readerFrom+hijacker+flusher+closeNotifier] = func(d *responseWriterDelegator) delegator { // 31
return struct {
*responseWriterDelegator
http.Pusher
io.ReaderFrom
http.Hijacker
http.Flusher
http.CloseNotifier
}{d, pusherDelegator{d}, readerFromDelegator{d}, hijackerDelegator{d}, flusherDelegator{d}, closeNotifierDelegator{d}}
}
}
func newDelegator(w http.ResponseWriter, observeWriteHeaderFunc func(int)) delegator {
d := &responseWriterDelegator{
ResponseWriter: w,
observeWriteHeader: observeWriteHeaderFunc,
}
id := 0
if _, ok := w.(http.CloseNotifier); ok {
id += closeNotifier
}
if _, ok := w.(http.Flusher); ok {
id += flusher
}
if _, ok := w.(http.Hijacker); ok {
id += hijacker
}
if _, ok := w.(io.ReaderFrom); ok {
id += readerFrom
}
if _, ok := w.(http.Pusher); ok {
id += pusher
}
return pickDelegator[id](d)
}

View file

@ -0,0 +1,44 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !go1.8
package promhttp
import (
"io"
"net/http"
)
func newDelegator(w http.ResponseWriter, observeWriteHeaderFunc func(int)) delegator {
d := &responseWriterDelegator{
ResponseWriter: w,
observeWriteHeader: observeWriteHeaderFunc,
}
id := 0
if _, ok := w.(http.CloseNotifier); ok {
id += closeNotifier
}
if _, ok := w.(http.Flusher); ok {
id += flusher
}
if _, ok := w.(http.Hijacker); ok {
id += hijacker
}
if _, ok := w.(io.ReaderFrom); ok {
id += readerFrom
}
return pickDelegator[id](d)
}

View file

@ -0,0 +1,311 @@
// Copyright 2016 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package promhttp provides tooling around HTTP servers and clients.
//
// First, the package allows the creation of http.Handler instances to expose
// Prometheus metrics via HTTP. promhttp.Handler acts on the
// prometheus.DefaultGatherer. With HandlerFor, you can create a handler for a
// custom registry or anything that implements the Gatherer interface. It also
// allows the creation of handlers that act differently on errors or allow to
// log errors.
//
// Second, the package provides tooling to instrument instances of http.Handler
// via middleware. Middleware wrappers follow the naming scheme
// InstrumentHandlerX, where X describes the intended use of the middleware.
// See each function's doc comment for specific details.
//
// Finally, the package allows for an http.RoundTripper to be instrumented via
// middleware. Middleware wrappers follow the naming scheme
// InstrumentRoundTripperX, where X describes the intended use of the
// middleware. See each function's doc comment for specific details.
package promhttp
import (
"bytes"
"compress/gzip"
"fmt"
"io"
"net/http"
"strings"
"sync"
"time"
"github.com/prometheus/common/expfmt"
"github.com/prometheus/client_golang/prometheus"
)
const (
contentTypeHeader = "Content-Type"
contentLengthHeader = "Content-Length"
contentEncodingHeader = "Content-Encoding"
acceptEncodingHeader = "Accept-Encoding"
)
var bufPool sync.Pool
func getBuf() *bytes.Buffer {
buf := bufPool.Get()
if buf == nil {
return &bytes.Buffer{}
}
return buf.(*bytes.Buffer)
}
func giveBuf(buf *bytes.Buffer) {
buf.Reset()
bufPool.Put(buf)
}
// Handler returns an http.Handler for the prometheus.DefaultGatherer, using
// default HandlerOpts, i.e. it reports the first error as an HTTP error, it has
// no error logging, and it applies compression if requested by the client.
//
// The returned http.Handler is already instrumented using the
// InstrumentMetricHandler function and the prometheus.DefaultRegisterer. If you
// create multiple http.Handlers by separate calls of the Handler function, the
// metrics used for instrumentation will be shared between them, providing
// global scrape counts.
//
// This function is meant to cover the bulk of basic use cases. If you are doing
// anything that requires more customization (including using a non-default
// Gatherer, different instrumentation, and non-default HandlerOpts), use the
// HandlerFor function. See there for details.
func Handler() http.Handler {
return InstrumentMetricHandler(
prometheus.DefaultRegisterer, HandlerFor(prometheus.DefaultGatherer, HandlerOpts{}),
)
}
// HandlerFor returns an uninstrumented http.Handler for the provided
// Gatherer. The behavior of the Handler is defined by the provided
// HandlerOpts. Thus, HandlerFor is useful to create http.Handlers for custom
// Gatherers, with non-default HandlerOpts, and/or with custom (or no)
// instrumentation. Use the InstrumentMetricHandler function to apply the same
// kind of instrumentation as it is used by the Handler function.
func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
var inFlightSem chan struct{}
if opts.MaxRequestsInFlight > 0 {
inFlightSem = make(chan struct{}, opts.MaxRequestsInFlight)
}
h := http.HandlerFunc(func(w http.ResponseWriter, req *http.Request) {
if inFlightSem != nil {
select {
case inFlightSem <- struct{}{}: // All good, carry on.
defer func() { <-inFlightSem }()
default:
http.Error(w, fmt.Sprintf(
"Limit of concurrent requests reached (%d), try again later.", opts.MaxRequestsInFlight,
), http.StatusServiceUnavailable)
return
}
}
mfs, err := reg.Gather()
if err != nil {
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error gathering metrics:", err)
}
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case ContinueOnError:
if len(mfs) == 0 {
http.Error(w, "No metrics gathered, last error:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
case HTTPErrorOnError:
http.Error(w, "An error has occurred during metrics gathering:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
}
contentType := expfmt.Negotiate(req.Header)
buf := getBuf()
defer giveBuf(buf)
writer, encoding := decorateWriter(req, buf, opts.DisableCompression)
enc := expfmt.NewEncoder(writer, contentType)
var lastErr error
for _, mf := range mfs {
if err := enc.Encode(mf); err != nil {
lastErr = err
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error encoding metric family:", err)
}
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case ContinueOnError:
// Handled later.
case HTTPErrorOnError:
http.Error(w, "An error has occurred during metrics encoding:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
}
}
if closer, ok := writer.(io.Closer); ok {
closer.Close()
}
if lastErr != nil && buf.Len() == 0 {
http.Error(w, "No metrics encoded, last error:\n\n"+lastErr.Error(), http.StatusInternalServerError)
return
}
header := w.Header()
header.Set(contentTypeHeader, string(contentType))
header.Set(contentLengthHeader, fmt.Sprint(buf.Len()))
if encoding != "" {
header.Set(contentEncodingHeader, encoding)
}
if _, err := w.Write(buf.Bytes()); err != nil && opts.ErrorLog != nil {
opts.ErrorLog.Println("error while sending encoded metrics:", err)
}
// TODO(beorn7): Consider streaming serving of metrics.
})
if opts.Timeout <= 0 {
return h
}
return http.TimeoutHandler(h, opts.Timeout, fmt.Sprintf(
"Exceeded configured timeout of %v.\n",
opts.Timeout,
))
}
// InstrumentMetricHandler is usually used with an http.Handler returned by the
// HandlerFor function. It instruments the provided http.Handler with two
// metrics: A counter vector "promhttp_metric_handler_requests_total" to count
// scrapes partitioned by HTTP status code, and a gauge
// "promhttp_metric_handler_requests_in_flight" to track the number of
// simultaneous scrapes. This function idempotently registers collectors for
// both metrics with the provided Registerer. It panics if the registration
// fails. The provided metrics are useful to see how many scrapes hit the
// monitored target (which could be from different Prometheus servers or other
// scrapers), and how often they overlap (which would result in more than one
// scrape in flight at the same time). Note that the scrapes-in-flight gauge
// will contain the scrape by which it is exposed, while the scrape counter will
// only get incremented after the scrape is complete (as only then the status
// code is known). For tracking scrape durations, use the
// "scrape_duration_seconds" gauge created by the Prometheus server upon each
// scrape.
func InstrumentMetricHandler(reg prometheus.Registerer, handler http.Handler) http.Handler {
cnt := prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "promhttp_metric_handler_requests_total",
Help: "Total number of scrapes by HTTP status code.",
},
[]string{"code"},
)
// Initialize the most likely HTTP status codes.
cnt.WithLabelValues("200")
cnt.WithLabelValues("500")
cnt.WithLabelValues("503")
if err := reg.Register(cnt); err != nil {
if are, ok := err.(prometheus.AlreadyRegisteredError); ok {
cnt = are.ExistingCollector.(*prometheus.CounterVec)
} else {
panic(err)
}
}
gge := prometheus.NewGauge(prometheus.GaugeOpts{
Name: "promhttp_metric_handler_requests_in_flight",
Help: "Current number of scrapes being served.",
})
if err := reg.Register(gge); err != nil {
if are, ok := err.(prometheus.AlreadyRegisteredError); ok {
gge = are.ExistingCollector.(prometheus.Gauge)
} else {
panic(err)
}
}
return InstrumentHandlerCounter(cnt, InstrumentHandlerInFlight(gge, handler))
}
// HandlerErrorHandling defines how a Handler serving metrics will handle
// errors.
type HandlerErrorHandling int
// These constants cause handlers serving metrics to behave as described if
// errors are encountered.
const (
// Serve an HTTP status code 500 upon the first error
// encountered. Report the error message in the body.
HTTPErrorOnError HandlerErrorHandling = iota
// Ignore errors and try to serve as many metrics as possible. However,
// if no metrics can be served, serve an HTTP status code 500 and the
// last error message in the body. Only use this in deliberate "best
// effort" metrics collection scenarios. It is recommended to at least
// log errors (by providing an ErrorLog in HandlerOpts) to not mask
// errors completely.
ContinueOnError
// Panic upon the first error encountered (useful for "crash only" apps).
PanicOnError
)
// Logger is the minimal interface HandlerOpts needs for logging. Note that
// log.Logger from the standard library implements this interface, and it is
// easy to implement by custom loggers, if they don't do so already anyway.
type Logger interface {
Println(v ...interface{})
}
// HandlerOpts specifies options how to serve metrics via an http.Handler. The
// zero value of HandlerOpts is a reasonable default.
type HandlerOpts struct {
// ErrorLog specifies an optional logger for errors collecting and
// serving metrics. If nil, errors are not logged at all.
ErrorLog Logger
// ErrorHandling defines how errors are handled. Note that errors are
// logged regardless of the configured ErrorHandling provided ErrorLog
// is not nil.
ErrorHandling HandlerErrorHandling
// If DisableCompression is true, the handler will never compress the
// response, even if requested by the client.
DisableCompression bool
// The number of concurrent HTTP requests is limited to
// MaxRequestsInFlight. Additional requests are responded to with 503
// Service Unavailable and a suitable message in the body. If
// MaxRequestsInFlight is 0 or negative, no limit is applied.
MaxRequestsInFlight int
// If handling a request takes longer than Timeout, it is responded to
// with 503 ServiceUnavailable and a suitable Message. No timeout is
// applied if Timeout is 0 or negative. Note that with the current
// implementation, reaching the timeout simply ends the HTTP requests as
// described above (and even that only if sending of the body hasn't
// started yet), while the bulk work of gathering all the metrics keeps
// running in the background (with the eventual result to be thrown
// away). Until the implementation is improved, it is recommended to
// implement a separate timeout in potentially slow Collectors.
Timeout time.Duration
}
// decorateWriter wraps a writer to handle gzip compression if requested. It
// returns the decorated writer and the appropriate "Content-Encoding" header
// (which is empty if no compression is enabled).
func decorateWriter(request *http.Request, writer io.Writer, compressionDisabled bool) (io.Writer, string) {
if compressionDisabled {
return writer, ""
}
header := request.Header.Get(acceptEncodingHeader)
parts := strings.Split(header, ",")
for _, part := range parts {
part = strings.TrimSpace(part)
if part == "gzip" || strings.HasPrefix(part, "gzip;") {
return gzip.NewWriter(writer), "gzip"
}
}
return writer, ""
}

View file

@ -0,0 +1,97 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promhttp
import (
"net/http"
"time"
"github.com/prometheus/client_golang/prometheus"
)
// The RoundTripperFunc type is an adapter to allow the use of ordinary
// functions as RoundTrippers. If f is a function with the appropriate
// signature, RountTripperFunc(f) is a RoundTripper that calls f.
type RoundTripperFunc func(req *http.Request) (*http.Response, error)
// RoundTrip implements the RoundTripper interface.
func (rt RoundTripperFunc) RoundTrip(r *http.Request) (*http.Response, error) {
return rt(r)
}
// InstrumentRoundTripperInFlight is a middleware that wraps the provided
// http.RoundTripper. It sets the provided prometheus.Gauge to the number of
// requests currently handled by the wrapped http.RoundTripper.
//
// See the example for ExampleInstrumentRoundTripperDuration for example usage.
func InstrumentRoundTripperInFlight(gauge prometheus.Gauge, next http.RoundTripper) RoundTripperFunc {
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
gauge.Inc()
defer gauge.Dec()
return next.RoundTrip(r)
})
}
// InstrumentRoundTripperCounter is a middleware that wraps the provided
// http.RoundTripper to observe the request result with the provided CounterVec.
// The CounterVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. Partitioning of the CounterVec happens by HTTP status code
// and/or HTTP method if the respective instance label names are present in the
// CounterVec. For unpartitioned counting, use a CounterVec with zero labels.
//
// If the wrapped RoundTripper panics or returns a non-nil error, the Counter
// is not incremented.
//
// See the example for ExampleInstrumentRoundTripperDuration for example usage.
func InstrumentRoundTripperCounter(counter *prometheus.CounterVec, next http.RoundTripper) RoundTripperFunc {
code, method := checkLabels(counter)
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
resp, err := next.RoundTrip(r)
if err == nil {
counter.With(labels(code, method, r.Method, resp.StatusCode)).Inc()
}
return resp, err
})
}
// InstrumentRoundTripperDuration is a middleware that wraps the provided
// http.RoundTripper to observe the request duration with the provided
// ObserverVec. The ObserverVec must have zero, one, or two non-const
// non-curried labels. For those, the only allowed label names are "code" and
// "method". The function panics otherwise. The Observe method of the Observer
// in the ObserverVec is called with the request duration in
// seconds. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
//
// If the wrapped RoundTripper panics or returns a non-nil error, no values are
// reported.
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
func InstrumentRoundTripperDuration(obs prometheus.ObserverVec, next http.RoundTripper) RoundTripperFunc {
code, method := checkLabels(obs)
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
start := time.Now()
resp, err := next.RoundTrip(r)
if err == nil {
obs.With(labels(code, method, r.Method, resp.StatusCode)).Observe(time.Since(start).Seconds())
}
return resp, err
})
}

View file

@ -0,0 +1,144 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build go1.8
package promhttp
import (
"context"
"crypto/tls"
"net/http"
"net/http/httptrace"
"time"
)
// InstrumentTrace is used to offer flexibility in instrumenting the available
// httptrace.ClientTrace hook functions. Each function is passed a float64
// representing the time in seconds since the start of the http request. A user
// may choose to use separately buckets Histograms, or implement custom
// instance labels on a per function basis.
type InstrumentTrace struct {
GotConn func(float64)
PutIdleConn func(float64)
GotFirstResponseByte func(float64)
Got100Continue func(float64)
DNSStart func(float64)
DNSDone func(float64)
ConnectStart func(float64)
ConnectDone func(float64)
TLSHandshakeStart func(float64)
TLSHandshakeDone func(float64)
WroteHeaders func(float64)
Wait100Continue func(float64)
WroteRequest func(float64)
}
// InstrumentRoundTripperTrace is a middleware that wraps the provided
// RoundTripper and reports times to hook functions provided in the
// InstrumentTrace struct. Hook functions that are not present in the provided
// InstrumentTrace struct are ignored. Times reported to the hook functions are
// time since the start of the request. Only with Go1.9+, those times are
// guaranteed to never be negative. (Earlier Go versions are not using a
// monotonic clock.) Note that partitioning of Histograms is expensive and
// should be used judiciously.
//
// For hook functions that receive an error as an argument, no observations are
// made in the event of a non-nil error value.
//
// See the example for ExampleInstrumentRoundTripperDuration for example usage.
func InstrumentRoundTripperTrace(it *InstrumentTrace, next http.RoundTripper) RoundTripperFunc {
return RoundTripperFunc(func(r *http.Request) (*http.Response, error) {
start := time.Now()
trace := &httptrace.ClientTrace{
GotConn: func(_ httptrace.GotConnInfo) {
if it.GotConn != nil {
it.GotConn(time.Since(start).Seconds())
}
},
PutIdleConn: func(err error) {
if err != nil {
return
}
if it.PutIdleConn != nil {
it.PutIdleConn(time.Since(start).Seconds())
}
},
DNSStart: func(_ httptrace.DNSStartInfo) {
if it.DNSStart != nil {
it.DNSStart(time.Since(start).Seconds())
}
},
DNSDone: func(_ httptrace.DNSDoneInfo) {
if it.DNSDone != nil {
it.DNSDone(time.Since(start).Seconds())
}
},
ConnectStart: func(_, _ string) {
if it.ConnectStart != nil {
it.ConnectStart(time.Since(start).Seconds())
}
},
ConnectDone: func(_, _ string, err error) {
if err != nil {
return
}
if it.ConnectDone != nil {
it.ConnectDone(time.Since(start).Seconds())
}
},
GotFirstResponseByte: func() {
if it.GotFirstResponseByte != nil {
it.GotFirstResponseByte(time.Since(start).Seconds())
}
},
Got100Continue: func() {
if it.Got100Continue != nil {
it.Got100Continue(time.Since(start).Seconds())
}
},
TLSHandshakeStart: func() {
if it.TLSHandshakeStart != nil {
it.TLSHandshakeStart(time.Since(start).Seconds())
}
},
TLSHandshakeDone: func(_ tls.ConnectionState, err error) {
if err != nil {
return
}
if it.TLSHandshakeDone != nil {
it.TLSHandshakeDone(time.Since(start).Seconds())
}
},
WroteHeaders: func() {
if it.WroteHeaders != nil {
it.WroteHeaders(time.Since(start).Seconds())
}
},
Wait100Continue: func() {
if it.Wait100Continue != nil {
it.Wait100Continue(time.Since(start).Seconds())
}
},
WroteRequest: func(_ httptrace.WroteRequestInfo) {
if it.WroteRequest != nil {
it.WroteRequest(time.Since(start).Seconds())
}
},
}
r = r.WithContext(httptrace.WithClientTrace(context.Background(), trace))
return next.RoundTrip(r)
})
}

View file

@ -0,0 +1,447 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promhttp
import (
"errors"
"net/http"
"strconv"
"strings"
"time"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/prometheus"
)
// magicString is used for the hacky label test in checkLabels. Remove once fixed.
const magicString = "zZgWfBxLqvG8kc8IMv3POi2Bb0tZI3vAnBx+gBaFi9FyPzB/CzKUer1yufDa"
// InstrumentHandlerInFlight is a middleware that wraps the provided
// http.Handler. It sets the provided prometheus.Gauge to the number of
// requests currently handled by the wrapped http.Handler.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerInFlight(g prometheus.Gauge, next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
g.Inc()
defer g.Dec()
next.ServeHTTP(w, r)
})
}
// InstrumentHandlerDuration is a middleware that wraps the provided
// http.Handler to observe the request duration with the provided ObserverVec.
// The ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the request duration in seconds. Partitioning happens by HTTP
// status code and/or HTTP method if the respective instance label names are
// present in the ObserverVec. For unpartitioned observations, use an
// ObserverVec with zero labels. Note that partitioning of Histograms is
// expensive and should be used judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, no values are reported.
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
func InstrumentHandlerDuration(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
code, method := checkLabels(obs)
if code {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(time.Since(now).Seconds())
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
next.ServeHTTP(w, r)
obs.With(labels(code, method, r.Method, 0)).Observe(time.Since(now).Seconds())
})
}
// InstrumentHandlerCounter is a middleware that wraps the provided http.Handler
// to observe the request result with the provided CounterVec. The CounterVec
// must have zero, one, or two non-const non-curried labels. For those, the only
// allowed label names are "code" and "method". The function panics
// otherwise. Partitioning of the CounterVec happens by HTTP status code and/or
// HTTP method if the respective instance label names are present in the
// CounterVec. For unpartitioned counting, use a CounterVec with zero labels.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, the Counter is not incremented.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerCounter(counter *prometheus.CounterVec, next http.Handler) http.HandlerFunc {
code, method := checkLabels(counter)
if code {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
counter.With(labels(code, method, r.Method, d.Status())).Inc()
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
next.ServeHTTP(w, r)
counter.With(labels(code, method, r.Method, 0)).Inc()
})
}
// InstrumentHandlerTimeToWriteHeader is a middleware that wraps the provided
// http.Handler to observe with the provided ObserverVec the request duration
// until the response headers are written. The ObserverVec must have zero, one,
// or two non-const non-curried labels. For those, the only allowed label names
// are "code" and "method". The function panics otherwise. The Observe method of
// the Observer in the ObserverVec is called with the request duration in
// seconds. Partitioning happens by HTTP status code and/or HTTP method if the
// respective instance label names are present in the ObserverVec. For
// unpartitioned observations, use an ObserverVec with zero labels. Note that
// partitioning of Histograms is expensive and should be used judiciously.
//
// If the wrapped Handler panics before calling WriteHeader, no value is
// reported.
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerTimeToWriteHeader(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
code, method := checkLabels(obs)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
d := newDelegator(w, func(status int) {
obs.With(labels(code, method, r.Method, status)).Observe(time.Since(now).Seconds())
})
next.ServeHTTP(d, r)
})
}
// InstrumentHandlerRequestSize is a middleware that wraps the provided
// http.Handler to observe the request size with the provided ObserverVec. The
// ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the request size in bytes. Partitioning happens by HTTP status
// code and/or HTTP method if the respective instance label names are present in
// the ObserverVec. For unpartitioned observations, use an ObserverVec with zero
// labels. Note that partitioning of Histograms is expensive and should be used
// judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, no values are reported.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerRequestSize(obs prometheus.ObserverVec, next http.Handler) http.HandlerFunc {
code, method := checkLabels(obs)
if code {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
size := computeApproximateRequestSize(r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(float64(size))
})
}
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
next.ServeHTTP(w, r)
size := computeApproximateRequestSize(r)
obs.With(labels(code, method, r.Method, 0)).Observe(float64(size))
})
}
// InstrumentHandlerResponseSize is a middleware that wraps the provided
// http.Handler to observe the response size with the provided ObserverVec. The
// ObserverVec must have zero, one, or two non-const non-curried labels. For
// those, the only allowed label names are "code" and "method". The function
// panics otherwise. The Observe method of the Observer in the ObserverVec is
// called with the response size in bytes. Partitioning happens by HTTP status
// code and/or HTTP method if the respective instance label names are present in
// the ObserverVec. For unpartitioned observations, use an ObserverVec with zero
// labels. Note that partitioning of Histograms is expensive and should be used
// judiciously.
//
// If the wrapped Handler does not set a status code, a status code of 200 is assumed.
//
// If the wrapped Handler panics, no values are reported.
//
// See the example for InstrumentHandlerDuration for example usage.
func InstrumentHandlerResponseSize(obs prometheus.ObserverVec, next http.Handler) http.Handler {
code, method := checkLabels(obs)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
d := newDelegator(w, nil)
next.ServeHTTP(d, r)
obs.With(labels(code, method, r.Method, d.Status())).Observe(float64(d.Written()))
})
}
func checkLabels(c prometheus.Collector) (code bool, method bool) {
// TODO(beorn7): Remove this hacky way to check for instance labels
// once Descriptors can have their dimensionality queried.
var (
desc *prometheus.Desc
m prometheus.Metric
pm dto.Metric
lvs []string
)
// Get the Desc from the Collector.
descc := make(chan *prometheus.Desc, 1)
c.Describe(descc)
select {
case desc = <-descc:
default:
panic("no description provided by collector")
}
select {
case <-descc:
panic("more than one description provided by collector")
default:
}
close(descc)
// Create a ConstMetric with the Desc. Since we don't know how many
// variable labels there are, try for as long as it needs.
for err := errors.New("dummy"); err != nil; lvs = append(lvs, magicString) {
m, err = prometheus.NewConstMetric(desc, prometheus.UntypedValue, 0, lvs...)
}
// Write out the metric into a proto message and look at the labels.
// If the value is not the magicString, it is a constLabel, which doesn't interest us.
// If the label is curried, it doesn't interest us.
// In all other cases, only "code" or "method" is allowed.
if err := m.Write(&pm); err != nil {
panic("error checking metric for labels")
}
for _, label := range pm.Label {
name, value := label.GetName(), label.GetValue()
if value != magicString || isLabelCurried(c, name) {
continue
}
switch name {
case "code":
code = true
case "method":
method = true
default:
panic("metric partitioned with non-supported labels")
}
}
return
}
func isLabelCurried(c prometheus.Collector, label string) bool {
// This is even hackier than the label test above.
// We essentially try to curry again and see if it works.
// But for that, we need to type-convert to the two
// types we use here, ObserverVec or *CounterVec.
switch v := c.(type) {
case *prometheus.CounterVec:
if _, err := v.CurryWith(prometheus.Labels{label: "dummy"}); err == nil {
return false
}
case prometheus.ObserverVec:
if _, err := v.CurryWith(prometheus.Labels{label: "dummy"}); err == nil {
return false
}
default:
panic("unsupported metric vec type")
}
return true
}
// emptyLabels is a one-time allocation for non-partitioned metrics to avoid
// unnecessary allocations on each request.
var emptyLabels = prometheus.Labels{}
func labels(code, method bool, reqMethod string, status int) prometheus.Labels {
if !(code || method) {
return emptyLabels
}
labels := prometheus.Labels{}
if code {
labels["code"] = sanitizeCode(status)
}
if method {
labels["method"] = sanitizeMethod(reqMethod)
}
return labels
}
func computeApproximateRequestSize(r *http.Request) int {
s := 0
if r.URL != nil {
s += len(r.URL.String())
}
s += len(r.Method)
s += len(r.Proto)
for name, values := range r.Header {
s += len(name)
for _, value := range values {
s += len(value)
}
}
s += len(r.Host)
// N.B. r.Form and r.MultipartForm are assumed to be included in r.URL.
if r.ContentLength != -1 {
s += int(r.ContentLength)
}
return s
}
func sanitizeMethod(m string) string {
switch m {
case "GET", "get":
return "get"
case "PUT", "put":
return "put"
case "HEAD", "head":
return "head"
case "POST", "post":
return "post"
case "DELETE", "delete":
return "delete"
case "CONNECT", "connect":
return "connect"
case "OPTIONS", "options":
return "options"
case "NOTIFY", "notify":
return "notify"
default:
return strings.ToLower(m)
}
}
// If the wrapped http.Handler has not set a status code, i.e. the value is
// currently 0, santizeCode will return 200, for consistency with behavior in
// the stdlib.
func sanitizeCode(s int) string {
switch s {
case 100:
return "100"
case 101:
return "101"
case 200, 0:
return "200"
case 201:
return "201"
case 202:
return "202"
case 203:
return "203"
case 204:
return "204"
case 205:
return "205"
case 206:
return "206"
case 300:
return "300"
case 301:
return "301"
case 302:
return "302"
case 304:
return "304"
case 305:
return "305"
case 307:
return "307"
case 400:
return "400"
case 401:
return "401"
case 402:
return "402"
case 403:
return "403"
case 404:
return "404"
case 405:
return "405"
case 406:
return "406"
case 407:
return "407"
case 408:
return "408"
case 409:
return "409"
case 410:
return "410"
case 411:
return "411"
case 412:
return "412"
case 413:
return "413"
case 414:
return "414"
case 415:
return "415"
case 416:
return "416"
case 417:
return "417"
case 418:
return "418"
case 500:
return "500"
case 501:
return "501"
case 502:
return "502"
case 503:
return "503"
case 504:
return "504"
case 505:
return "505"
case 428:
return "428"
case 429:
return "429"
case 431:
return "431"
case 511:
return "511"
default:
return strconv.Itoa(s)
}
}

View file

@ -0,0 +1,895 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"bytes"
"fmt"
"runtime"
"sort"
"strings"
"sync"
"unicode/utf8"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/prometheus/internal"
)
const (
// Capacity for the channel to collect metrics and descriptors.
capMetricChan = 1000
capDescChan = 10
)
// DefaultRegisterer and DefaultGatherer are the implementations of the
// Registerer and Gatherer interface a number of convenience functions in this
// package act on. Initially, both variables point to the same Registry, which
// has a process collector (currently on Linux only, see NewProcessCollector)
// and a Go collector (see NewGoCollector, in particular the note about
// stop-the-world implication with Go versions older than 1.9) already
// registered. This approach to keep default instances as global state mirrors
// the approach of other packages in the Go standard library. Note that there
// are caveats. Change the variables with caution and only if you understand the
// consequences. Users who want to avoid global state altogether should not use
// the convenience functions and act on custom instances instead.
var (
defaultRegistry = NewRegistry()
DefaultRegisterer Registerer = defaultRegistry
DefaultGatherer Gatherer = defaultRegistry
)
func init() {
MustRegister(NewProcessCollector(ProcessCollectorOpts{}))
MustRegister(NewGoCollector())
}
// NewRegistry creates a new vanilla Registry without any Collectors
// pre-registered.
func NewRegistry() *Registry {
return &Registry{
collectorsByID: map[uint64]Collector{},
descIDs: map[uint64]struct{}{},
dimHashesByName: map[string]uint64{},
}
}
// NewPedanticRegistry returns a registry that checks during collection if each
// collected Metric is consistent with its reported Desc, and if the Desc has
// actually been registered with the registry. Unchecked Collectors (those whose
// Describe methed does not yield any descriptors) are excluded from the check.
//
// Usually, a Registry will be happy as long as the union of all collected
// Metrics is consistent and valid even if some metrics are not consistent with
// their own Desc or a Desc provided by their registered Collector. Well-behaved
// Collectors and Metrics will only provide consistent Descs. This Registry is
// useful to test the implementation of Collectors and Metrics.
func NewPedanticRegistry() *Registry {
r := NewRegistry()
r.pedanticChecksEnabled = true
return r
}
// Registerer is the interface for the part of a registry in charge of
// registering and unregistering. Users of custom registries should use
// Registerer as type for registration purposes (rather than the Registry type
// directly). In that way, they are free to use custom Registerer implementation
// (e.g. for testing purposes).
type Registerer interface {
// Register registers a new Collector to be included in metrics
// collection. It returns an error if the descriptors provided by the
// Collector are invalid or if they — in combination with descriptors of
// already registered Collectors — do not fulfill the consistency and
// uniqueness criteria described in the documentation of metric.Desc.
//
// If the provided Collector is equal to a Collector already registered
// (which includes the case of re-registering the same Collector), the
// returned error is an instance of AlreadyRegisteredError, which
// contains the previously registered Collector.
//
// A Collector whose Describe method does not yield any Desc is treated
// as unchecked. Registration will always succeed. No check for
// re-registering (see previous paragraph) is performed. Thus, the
// caller is responsible for not double-registering the same unchecked
// Collector, and for providing a Collector that will not cause
// inconsistent metrics on collection. (This would lead to scrape
// errors.)
Register(Collector) error
// MustRegister works like Register but registers any number of
// Collectors and panics upon the first registration that causes an
// error.
MustRegister(...Collector)
// Unregister unregisters the Collector that equals the Collector passed
// in as an argument. (Two Collectors are considered equal if their
// Describe method yields the same set of descriptors.) The function
// returns whether a Collector was unregistered. Note that an unchecked
// Collector cannot be unregistered (as its Describe method does not
// yield any descriptor).
//
// Note that even after unregistering, it will not be possible to
// register a new Collector that is inconsistent with the unregistered
// Collector, e.g. a Collector collecting metrics with the same name but
// a different help string. The rationale here is that the same registry
// instance must only collect consistent metrics throughout its
// lifetime.
Unregister(Collector) bool
}
// Gatherer is the interface for the part of a registry in charge of gathering
// the collected metrics into a number of MetricFamilies. The Gatherer interface
// comes with the same general implication as described for the Registerer
// interface.
type Gatherer interface {
// Gather calls the Collect method of the registered Collectors and then
// gathers the collected metrics into a lexicographically sorted slice
// of uniquely named MetricFamily protobufs. Gather ensures that the
// returned slice is valid and self-consistent so that it can be used
// for valid exposition. As an exception to the strict consistency
// requirements described for metric.Desc, Gather will tolerate
// different sets of label names for metrics of the same metric family.
//
// Even if an error occurs, Gather attempts to gather as many metrics as
// possible. Hence, if a non-nil error is returned, the returned
// MetricFamily slice could be nil (in case of a fatal error that
// prevented any meaningful metric collection) or contain a number of
// MetricFamily protobufs, some of which might be incomplete, and some
// might be missing altogether. The returned error (which might be a
// MultiError) explains the details. Note that this is mostly useful for
// debugging purposes. If the gathered protobufs are to be used for
// exposition in actual monitoring, it is almost always better to not
// expose an incomplete result and instead disregard the returned
// MetricFamily protobufs in case the returned error is non-nil.
Gather() ([]*dto.MetricFamily, error)
}
// Register registers the provided Collector with the DefaultRegisterer.
//
// Register is a shortcut for DefaultRegisterer.Register(c). See there for more
// details.
func Register(c Collector) error {
return DefaultRegisterer.Register(c)
}
// MustRegister registers the provided Collectors with the DefaultRegisterer and
// panics if any error occurs.
//
// MustRegister is a shortcut for DefaultRegisterer.MustRegister(cs...). See
// there for more details.
func MustRegister(cs ...Collector) {
DefaultRegisterer.MustRegister(cs...)
}
// Unregister removes the registration of the provided Collector from the
// DefaultRegisterer.
//
// Unregister is a shortcut for DefaultRegisterer.Unregister(c). See there for
// more details.
func Unregister(c Collector) bool {
return DefaultRegisterer.Unregister(c)
}
// GathererFunc turns a function into a Gatherer.
type GathererFunc func() ([]*dto.MetricFamily, error)
// Gather implements Gatherer.
func (gf GathererFunc) Gather() ([]*dto.MetricFamily, error) {
return gf()
}
// AlreadyRegisteredError is returned by the Register method if the Collector to
// be registered has already been registered before, or a different Collector
// that collects the same metrics has been registered before. Registration fails
// in that case, but you can detect from the kind of error what has
// happened. The error contains fields for the existing Collector and the
// (rejected) new Collector that equals the existing one. This can be used to
// find out if an equal Collector has been registered before and switch over to
// using the old one, as demonstrated in the example.
type AlreadyRegisteredError struct {
ExistingCollector, NewCollector Collector
}
func (err AlreadyRegisteredError) Error() string {
return "duplicate metrics collector registration attempted"
}
// MultiError is a slice of errors implementing the error interface. It is used
// by a Gatherer to report multiple errors during MetricFamily gathering.
type MultiError []error
func (errs MultiError) Error() string {
if len(errs) == 0 {
return ""
}
buf := &bytes.Buffer{}
fmt.Fprintf(buf, "%d error(s) occurred:", len(errs))
for _, err := range errs {
fmt.Fprintf(buf, "\n* %s", err)
}
return buf.String()
}
// Append appends the provided error if it is not nil.
func (errs *MultiError) Append(err error) {
if err != nil {
*errs = append(*errs, err)
}
}
// MaybeUnwrap returns nil if len(errs) is 0. It returns the first and only
// contained error as error if len(errs is 1). In all other cases, it returns
// the MultiError directly. This is helpful for returning a MultiError in a way
// that only uses the MultiError if needed.
func (errs MultiError) MaybeUnwrap() error {
switch len(errs) {
case 0:
return nil
case 1:
return errs[0]
default:
return errs
}
}
// Registry registers Prometheus collectors, collects their metrics, and gathers
// them into MetricFamilies for exposition. It implements both Registerer and
// Gatherer. The zero value is not usable. Create instances with NewRegistry or
// NewPedanticRegistry.
type Registry struct {
mtx sync.RWMutex
collectorsByID map[uint64]Collector // ID is a hash of the descIDs.
descIDs map[uint64]struct{}
dimHashesByName map[string]uint64
uncheckedCollectors []Collector
pedanticChecksEnabled bool
}
// Register implements Registerer.
func (r *Registry) Register(c Collector) error {
var (
descChan = make(chan *Desc, capDescChan)
newDescIDs = map[uint64]struct{}{}
newDimHashesByName = map[string]uint64{}
collectorID uint64 // Just a sum of all desc IDs.
duplicateDescErr error
)
go func() {
c.Describe(descChan)
close(descChan)
}()
r.mtx.Lock()
defer func() {
// Drain channel in case of premature return to not leak a goroutine.
for range descChan {
}
r.mtx.Unlock()
}()
// Conduct various tests...
for desc := range descChan {
// Is the descriptor valid at all?
if desc.err != nil {
return fmt.Errorf("descriptor %s is invalid: %s", desc, desc.err)
}
// Is the descID unique?
// (In other words: Is the fqName + constLabel combination unique?)
if _, exists := r.descIDs[desc.id]; exists {
duplicateDescErr = fmt.Errorf("descriptor %s already exists with the same fully-qualified name and const label values", desc)
}
// If it is not a duplicate desc in this collector, add it to
// the collectorID. (We allow duplicate descs within the same
// collector, but their existence must be a no-op.)
if _, exists := newDescIDs[desc.id]; !exists {
newDescIDs[desc.id] = struct{}{}
collectorID += desc.id
}
// Are all the label names and the help string consistent with
// previous descriptors of the same name?
// First check existing descriptors...
if dimHash, exists := r.dimHashesByName[desc.fqName]; exists {
if dimHash != desc.dimHash {
return fmt.Errorf("a previously registered descriptor with the same fully-qualified name as %s has different label names or a different help string", desc)
}
} else {
// ...then check the new descriptors already seen.
if dimHash, exists := newDimHashesByName[desc.fqName]; exists {
if dimHash != desc.dimHash {
return fmt.Errorf("descriptors reported by collector have inconsistent label names or help strings for the same fully-qualified name, offender is %s", desc)
}
} else {
newDimHashesByName[desc.fqName] = desc.dimHash
}
}
}
// A Collector yielding no Desc at all is considered unchecked.
if len(newDescIDs) == 0 {
r.uncheckedCollectors = append(r.uncheckedCollectors, c)
return nil
}
if existing, exists := r.collectorsByID[collectorID]; exists {
return AlreadyRegisteredError{
ExistingCollector: existing,
NewCollector: c,
}
}
// If the collectorID is new, but at least one of the descs existed
// before, we are in trouble.
if duplicateDescErr != nil {
return duplicateDescErr
}
// Only after all tests have passed, actually register.
r.collectorsByID[collectorID] = c
for hash := range newDescIDs {
r.descIDs[hash] = struct{}{}
}
for name, dimHash := range newDimHashesByName {
r.dimHashesByName[name] = dimHash
}
return nil
}
// Unregister implements Registerer.
func (r *Registry) Unregister(c Collector) bool {
var (
descChan = make(chan *Desc, capDescChan)
descIDs = map[uint64]struct{}{}
collectorID uint64 // Just a sum of the desc IDs.
)
go func() {
c.Describe(descChan)
close(descChan)
}()
for desc := range descChan {
if _, exists := descIDs[desc.id]; !exists {
collectorID += desc.id
descIDs[desc.id] = struct{}{}
}
}
r.mtx.RLock()
if _, exists := r.collectorsByID[collectorID]; !exists {
r.mtx.RUnlock()
return false
}
r.mtx.RUnlock()
r.mtx.Lock()
defer r.mtx.Unlock()
delete(r.collectorsByID, collectorID)
for id := range descIDs {
delete(r.descIDs, id)
}
// dimHashesByName is left untouched as those must be consistent
// throughout the lifetime of a program.
return true
}
// MustRegister implements Registerer.
func (r *Registry) MustRegister(cs ...Collector) {
for _, c := range cs {
if err := r.Register(c); err != nil {
panic(err)
}
}
}
// Gather implements Gatherer.
func (r *Registry) Gather() ([]*dto.MetricFamily, error) {
var (
checkedMetricChan = make(chan Metric, capMetricChan)
uncheckedMetricChan = make(chan Metric, capMetricChan)
metricHashes = map[uint64]struct{}{}
wg sync.WaitGroup
errs MultiError // The collected errors to return in the end.
registeredDescIDs map[uint64]struct{} // Only used for pedantic checks
)
r.mtx.RLock()
goroutineBudget := len(r.collectorsByID) + len(r.uncheckedCollectors)
metricFamiliesByName := make(map[string]*dto.MetricFamily, len(r.dimHashesByName))
checkedCollectors := make(chan Collector, len(r.collectorsByID))
uncheckedCollectors := make(chan Collector, len(r.uncheckedCollectors))
for _, collector := range r.collectorsByID {
checkedCollectors <- collector
}
for _, collector := range r.uncheckedCollectors {
uncheckedCollectors <- collector
}
// In case pedantic checks are enabled, we have to copy the map before
// giving up the RLock.
if r.pedanticChecksEnabled {
registeredDescIDs = make(map[uint64]struct{}, len(r.descIDs))
for id := range r.descIDs {
registeredDescIDs[id] = struct{}{}
}
}
r.mtx.RUnlock()
wg.Add(goroutineBudget)
collectWorker := func() {
for {
select {
case collector := <-checkedCollectors:
collector.Collect(checkedMetricChan)
case collector := <-uncheckedCollectors:
collector.Collect(uncheckedMetricChan)
default:
return
}
wg.Done()
}
}
// Start the first worker now to make sure at least one is running.
go collectWorker()
goroutineBudget--
// Close checkedMetricChan and uncheckedMetricChan once all collectors
// are collected.
go func() {
wg.Wait()
close(checkedMetricChan)
close(uncheckedMetricChan)
}()
// Drain checkedMetricChan and uncheckedMetricChan in case of premature return.
defer func() {
if checkedMetricChan != nil {
for range checkedMetricChan {
}
}
if uncheckedMetricChan != nil {
for range uncheckedMetricChan {
}
}
}()
// Copy the channel references so we can nil them out later to remove
// them from the select statements below.
cmc := checkedMetricChan
umc := uncheckedMetricChan
for {
select {
case metric, ok := <-cmc:
if !ok {
cmc = nil
break
}
errs.Append(processMetric(
metric, metricFamiliesByName,
metricHashes,
registeredDescIDs,
))
case metric, ok := <-umc:
if !ok {
umc = nil
break
}
errs.Append(processMetric(
metric, metricFamiliesByName,
metricHashes,
nil,
))
default:
if goroutineBudget <= 0 || len(checkedCollectors)+len(uncheckedCollectors) == 0 {
// All collectors are already being worked on or
// we have already as many goroutines started as
// there are collectors. Do the same as above,
// just without the default.
select {
case metric, ok := <-cmc:
if !ok {
cmc = nil
break
}
errs.Append(processMetric(
metric, metricFamiliesByName,
metricHashes,
registeredDescIDs,
))
case metric, ok := <-umc:
if !ok {
umc = nil
break
}
errs.Append(processMetric(
metric, metricFamiliesByName,
metricHashes,
nil,
))
}
break
}
// Start more workers.
go collectWorker()
goroutineBudget--
runtime.Gosched()
}
// Once both checkedMetricChan and uncheckdMetricChan are closed
// and drained, the contraption above will nil out cmc and umc,
// and then we can leave the collect loop here.
if cmc == nil && umc == nil {
break
}
}
return internal.NormalizeMetricFamilies(metricFamiliesByName), errs.MaybeUnwrap()
}
// processMetric is an internal helper method only used by the Gather method.
func processMetric(
metric Metric,
metricFamiliesByName map[string]*dto.MetricFamily,
metricHashes map[uint64]struct{},
registeredDescIDs map[uint64]struct{},
) error {
desc := metric.Desc()
// Wrapped metrics collected by an unchecked Collector can have an
// invalid Desc.
if desc.err != nil {
return desc.err
}
dtoMetric := &dto.Metric{}
if err := metric.Write(dtoMetric); err != nil {
return fmt.Errorf("error collecting metric %v: %s", desc, err)
}
metricFamily, ok := metricFamiliesByName[desc.fqName]
if ok { // Existing name.
if metricFamily.GetHelp() != desc.help {
return fmt.Errorf(
"collected metric %s %s has help %q but should have %q",
desc.fqName, dtoMetric, desc.help, metricFamily.GetHelp(),
)
}
// TODO(beorn7): Simplify switch once Desc has type.
switch metricFamily.GetType() {
case dto.MetricType_COUNTER:
if dtoMetric.Counter == nil {
return fmt.Errorf(
"collected metric %s %s should be a Counter",
desc.fqName, dtoMetric,
)
}
case dto.MetricType_GAUGE:
if dtoMetric.Gauge == nil {
return fmt.Errorf(
"collected metric %s %s should be a Gauge",
desc.fqName, dtoMetric,
)
}
case dto.MetricType_SUMMARY:
if dtoMetric.Summary == nil {
return fmt.Errorf(
"collected metric %s %s should be a Summary",
desc.fqName, dtoMetric,
)
}
case dto.MetricType_UNTYPED:
if dtoMetric.Untyped == nil {
return fmt.Errorf(
"collected metric %s %s should be Untyped",
desc.fqName, dtoMetric,
)
}
case dto.MetricType_HISTOGRAM:
if dtoMetric.Histogram == nil {
return fmt.Errorf(
"collected metric %s %s should be a Histogram",
desc.fqName, dtoMetric,
)
}
default:
panic("encountered MetricFamily with invalid type")
}
} else { // New name.
metricFamily = &dto.MetricFamily{}
metricFamily.Name = proto.String(desc.fqName)
metricFamily.Help = proto.String(desc.help)
// TODO(beorn7): Simplify switch once Desc has type.
switch {
case dtoMetric.Gauge != nil:
metricFamily.Type = dto.MetricType_GAUGE.Enum()
case dtoMetric.Counter != nil:
metricFamily.Type = dto.MetricType_COUNTER.Enum()
case dtoMetric.Summary != nil:
metricFamily.Type = dto.MetricType_SUMMARY.Enum()
case dtoMetric.Untyped != nil:
metricFamily.Type = dto.MetricType_UNTYPED.Enum()
case dtoMetric.Histogram != nil:
metricFamily.Type = dto.MetricType_HISTOGRAM.Enum()
default:
return fmt.Errorf("empty metric collected: %s", dtoMetric)
}
if err := checkSuffixCollisions(metricFamily, metricFamiliesByName); err != nil {
return err
}
metricFamiliesByName[desc.fqName] = metricFamily
}
if err := checkMetricConsistency(metricFamily, dtoMetric, metricHashes); err != nil {
return err
}
if registeredDescIDs != nil {
// Is the desc registered at all?
if _, exist := registeredDescIDs[desc.id]; !exist {
return fmt.Errorf(
"collected metric %s %s with unregistered descriptor %s",
metricFamily.GetName(), dtoMetric, desc,
)
}
if err := checkDescConsistency(metricFamily, dtoMetric, desc); err != nil {
return err
}
}
metricFamily.Metric = append(metricFamily.Metric, dtoMetric)
return nil
}
// Gatherers is a slice of Gatherer instances that implements the Gatherer
// interface itself. Its Gather method calls Gather on all Gatherers in the
// slice in order and returns the merged results. Errors returned from the
// Gather calles are all returned in a flattened MultiError. Duplicate and
// inconsistent Metrics are skipped (first occurrence in slice order wins) and
// reported in the returned error.
//
// Gatherers can be used to merge the Gather results from multiple
// Registries. It also provides a way to directly inject existing MetricFamily
// protobufs into the gathering by creating a custom Gatherer with a Gather
// method that simply returns the existing MetricFamily protobufs. Note that no
// registration is involved (in contrast to Collector registration), so
// obviously registration-time checks cannot happen. Any inconsistencies between
// the gathered MetricFamilies are reported as errors by the Gather method, and
// inconsistent Metrics are dropped. Invalid parts of the MetricFamilies
// (e.g. syntactically invalid metric or label names) will go undetected.
type Gatherers []Gatherer
// Gather implements Gatherer.
func (gs Gatherers) Gather() ([]*dto.MetricFamily, error) {
var (
metricFamiliesByName = map[string]*dto.MetricFamily{}
metricHashes = map[uint64]struct{}{}
errs MultiError // The collected errors to return in the end.
)
for i, g := range gs {
mfs, err := g.Gather()
if err != nil {
if multiErr, ok := err.(MultiError); ok {
for _, err := range multiErr {
errs = append(errs, fmt.Errorf("[from Gatherer #%d] %s", i+1, err))
}
} else {
errs = append(errs, fmt.Errorf("[from Gatherer #%d] %s", i+1, err))
}
}
for _, mf := range mfs {
existingMF, exists := metricFamiliesByName[mf.GetName()]
if exists {
if existingMF.GetHelp() != mf.GetHelp() {
errs = append(errs, fmt.Errorf(
"gathered metric family %s has help %q but should have %q",
mf.GetName(), mf.GetHelp(), existingMF.GetHelp(),
))
continue
}
if existingMF.GetType() != mf.GetType() {
errs = append(errs, fmt.Errorf(
"gathered metric family %s has type %s but should have %s",
mf.GetName(), mf.GetType(), existingMF.GetType(),
))
continue
}
} else {
existingMF = &dto.MetricFamily{}
existingMF.Name = mf.Name
existingMF.Help = mf.Help
existingMF.Type = mf.Type
if err := checkSuffixCollisions(existingMF, metricFamiliesByName); err != nil {
errs = append(errs, err)
continue
}
metricFamiliesByName[mf.GetName()] = existingMF
}
for _, m := range mf.Metric {
if err := checkMetricConsistency(existingMF, m, metricHashes); err != nil {
errs = append(errs, err)
continue
}
existingMF.Metric = append(existingMF.Metric, m)
}
}
}
return internal.NormalizeMetricFamilies(metricFamiliesByName), errs.MaybeUnwrap()
}
// checkSuffixCollisions checks for collisions with the “magic” suffixes the
// Prometheus text format and the internal metric representation of the
// Prometheus server add while flattening Summaries and Histograms.
func checkSuffixCollisions(mf *dto.MetricFamily, mfs map[string]*dto.MetricFamily) error {
var (
newName = mf.GetName()
newType = mf.GetType()
newNameWithoutSuffix = ""
)
switch {
case strings.HasSuffix(newName, "_count"):
newNameWithoutSuffix = newName[:len(newName)-6]
case strings.HasSuffix(newName, "_sum"):
newNameWithoutSuffix = newName[:len(newName)-4]
case strings.HasSuffix(newName, "_bucket"):
newNameWithoutSuffix = newName[:len(newName)-7]
}
if newNameWithoutSuffix != "" {
if existingMF, ok := mfs[newNameWithoutSuffix]; ok {
switch existingMF.GetType() {
case dto.MetricType_SUMMARY:
if !strings.HasSuffix(newName, "_bucket") {
return fmt.Errorf(
"collected metric named %q collides with previously collected summary named %q",
newName, newNameWithoutSuffix,
)
}
case dto.MetricType_HISTOGRAM:
return fmt.Errorf(
"collected metric named %q collides with previously collected histogram named %q",
newName, newNameWithoutSuffix,
)
}
}
}
if newType == dto.MetricType_SUMMARY || newType == dto.MetricType_HISTOGRAM {
if _, ok := mfs[newName+"_count"]; ok {
return fmt.Errorf(
"collected histogram or summary named %q collides with previously collected metric named %q",
newName, newName+"_count",
)
}
if _, ok := mfs[newName+"_sum"]; ok {
return fmt.Errorf(
"collected histogram or summary named %q collides with previously collected metric named %q",
newName, newName+"_sum",
)
}
}
if newType == dto.MetricType_HISTOGRAM {
if _, ok := mfs[newName+"_bucket"]; ok {
return fmt.Errorf(
"collected histogram named %q collides with previously collected metric named %q",
newName, newName+"_bucket",
)
}
}
return nil
}
// checkMetricConsistency checks if the provided Metric is consistent with the
// provided MetricFamily. It also hashes the Metric labels and the MetricFamily
// name. If the resulting hash is already in the provided metricHashes, an error
// is returned. If not, it is added to metricHashes.
func checkMetricConsistency(
metricFamily *dto.MetricFamily,
dtoMetric *dto.Metric,
metricHashes map[uint64]struct{},
) error {
name := metricFamily.GetName()
// Type consistency with metric family.
if metricFamily.GetType() == dto.MetricType_GAUGE && dtoMetric.Gauge == nil ||
metricFamily.GetType() == dto.MetricType_COUNTER && dtoMetric.Counter == nil ||
metricFamily.GetType() == dto.MetricType_SUMMARY && dtoMetric.Summary == nil ||
metricFamily.GetType() == dto.MetricType_HISTOGRAM && dtoMetric.Histogram == nil ||
metricFamily.GetType() == dto.MetricType_UNTYPED && dtoMetric.Untyped == nil {
return fmt.Errorf(
"collected metric %q { %s} is not a %s",
name, dtoMetric, metricFamily.GetType(),
)
}
previousLabelName := ""
for _, labelPair := range dtoMetric.GetLabel() {
labelName := labelPair.GetName()
if labelName == previousLabelName {
return fmt.Errorf(
"collected metric %q { %s} has two or more labels with the same name: %s",
name, dtoMetric, labelName,
)
}
if !checkLabelName(labelName) {
return fmt.Errorf(
"collected metric %q { %s} has a label with an invalid name: %s",
name, dtoMetric, labelName,
)
}
if dtoMetric.Summary != nil && labelName == quantileLabel {
return fmt.Errorf(
"collected metric %q { %s} must not have an explicit %q label",
name, dtoMetric, quantileLabel,
)
}
if !utf8.ValidString(labelPair.GetValue()) {
return fmt.Errorf(
"collected metric %q { %s} has a label named %q whose value is not utf8: %#v",
name, dtoMetric, labelName, labelPair.GetValue())
}
previousLabelName = labelName
}
// Is the metric unique (i.e. no other metric with the same name and the same labels)?
h := hashNew()
h = hashAdd(h, name)
h = hashAddByte(h, separatorByte)
// Make sure label pairs are sorted. We depend on it for the consistency
// check.
sort.Sort(labelPairSorter(dtoMetric.Label))
for _, lp := range dtoMetric.Label {
h = hashAdd(h, lp.GetName())
h = hashAddByte(h, separatorByte)
h = hashAdd(h, lp.GetValue())
h = hashAddByte(h, separatorByte)
}
if _, exists := metricHashes[h]; exists {
return fmt.Errorf(
"collected metric %q { %s} was collected before with the same name and label values",
name, dtoMetric,
)
}
metricHashes[h] = struct{}{}
return nil
}
func checkDescConsistency(
metricFamily *dto.MetricFamily,
dtoMetric *dto.Metric,
desc *Desc,
) error {
// Desc help consistency with metric family help.
if metricFamily.GetHelp() != desc.help {
return fmt.Errorf(
"collected metric %s %s has help %q but should have %q",
metricFamily.GetName(), dtoMetric, metricFamily.GetHelp(), desc.help,
)
}
// Is the desc consistent with the content of the metric?
lpsFromDesc := make([]*dto.LabelPair, 0, len(dtoMetric.Label))
lpsFromDesc = append(lpsFromDesc, desc.constLabelPairs...)
for _, l := range desc.variableLabels {
lpsFromDesc = append(lpsFromDesc, &dto.LabelPair{
Name: proto.String(l),
})
}
if len(lpsFromDesc) != len(dtoMetric.Label) {
return fmt.Errorf(
"labels in collected metric %s %s are inconsistent with descriptor %s",
metricFamily.GetName(), dtoMetric, desc,
)
}
sort.Sort(labelPairSorter(lpsFromDesc))
for i, lpFromDesc := range lpsFromDesc {
lpFromMetric := dtoMetric.Label[i]
if lpFromDesc.GetName() != lpFromMetric.GetName() ||
lpFromDesc.Value != nil && lpFromDesc.GetValue() != lpFromMetric.GetValue() {
return fmt.Errorf(
"labels in collected metric %s %s are inconsistent with descriptor %s",
metricFamily.GetName(), dtoMetric, desc,
)
}
}
return nil
}

View file

@ -0,0 +1,626 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"sort"
"sync"
"time"
"github.com/beorn7/perks/quantile"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// quantileLabel is used for the label that defines the quantile in a
// summary.
const quantileLabel = "quantile"
// A Summary captures individual observations from an event or sample stream and
// summarizes them in a manner similar to traditional summary statistics: 1. sum
// of observations, 2. observation count, 3. rank estimations.
//
// A typical use-case is the observation of request latencies. By default, a
// Summary provides the median, the 90th and the 99th percentile of the latency
// as rank estimations. However, the default behavior will change in the
// upcoming v0.10 of the library. There will be no rank estimations at all by
// default. For a sane transition, it is recommended to set the desired rank
// estimations explicitly.
//
// Note that the rank estimations cannot be aggregated in a meaningful way with
// the Prometheus query language (i.e. you cannot average or add them). If you
// need aggregatable quantiles (e.g. you want the 99th percentile latency of all
// queries served across all instances of a service), consider the Histogram
// metric type. See the Prometheus documentation for more details.
//
// To create Summary instances, use NewSummary.
type Summary interface {
Metric
Collector
// Observe adds a single observation to the summary.
Observe(float64)
}
// DefObjectives are the default Summary quantile values.
//
// Deprecated: DefObjectives will not be used as the default objectives in
// v0.10 of the library. The default Summary will have no quantiles then.
var (
DefObjectives = map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}
errQuantileLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in summaries", quantileLabel,
)
)
// Default values for SummaryOpts.
const (
// DefMaxAge is the default duration for which observations stay
// relevant.
DefMaxAge time.Duration = 10 * time.Minute
// DefAgeBuckets is the default number of buckets used to calculate the
// age of observations.
DefAgeBuckets = 5
// DefBufCap is the standard buffer size for collecting Summary observations.
DefBufCap = 500
)
// SummaryOpts bundles the options for creating a Summary metric. It is
// mandatory to set Name to a non-empty string. While all other fields are
// optional and can safely be left at their zero value, it is recommended to set
// a help string and to explicitly set the Objectives field to the desired value
// as the default value will change in the upcoming v0.10 of the library.
type SummaryOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Summary (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Summary must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Summary.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// Due to the way a Summary is represented in the Prometheus text format
// and how it is handled by the Prometheus server internally, “quantile”
// is an illegal label name. Construction of a Summary or SummaryVec
// will panic if this label name is used in ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
ConstLabels Labels
// Objectives defines the quantile rank estimates with their respective
// absolute error. If Objectives[q] = e, then the value reported for q
// will be the φ-quantile value for some φ between q-e and q+e. The
// default value is DefObjectives. It is used if Objectives is left at
// its zero value (i.e. nil). To create a Summary without Objectives,
// set it to an empty map (i.e. map[float64]float64{}).
//
// Deprecated: Note that the current value of DefObjectives is
// deprecated. It will be replaced by an empty map in v0.10 of the
// library. Please explicitly set Objectives to the desired value.
Objectives map[float64]float64
// MaxAge defines the duration for which an observation stays relevant
// for the summary. Must be positive. The default value is DefMaxAge.
MaxAge time.Duration
// AgeBuckets is the number of buckets used to exclude observations that
// are older than MaxAge from the summary. A higher number has a
// resource penalty, so only increase it if the higher resolution is
// really required. For very high observation rates, you might want to
// reduce the number of age buckets. With only one age bucket, you will
// effectively see a complete reset of the summary each time MaxAge has
// passed. The default value is DefAgeBuckets.
AgeBuckets uint32
// BufCap defines the default sample stream buffer size. The default
// value of DefBufCap should suffice for most uses. If there is a need
// to increase the value, a multiple of 500 is recommended (because that
// is the internal buffer size of the underlying package
// "github.com/bmizerany/perks/quantile").
BufCap uint32
}
// Great fuck-up with the sliding-window decay algorithm... The Merge method of
// perk/quantile is actually not working as advertised - and it might be
// unfixable, as the underlying algorithm is apparently not capable of merging
// summaries in the first place. To avoid using Merge, we are currently adding
// observations to _each_ age bucket, i.e. the effort to add a sample is
// essentially multiplied by the number of age buckets. When rotating age
// buckets, we empty the previous head stream. On scrape time, we simply take
// the quantiles from the head stream (no merging required). Result: More effort
// on observation time, less effort on scrape time, which is exactly the
// opposite of what we try to accomplish, but at least the results are correct.
//
// The quite elegant previous contraption to merge the age buckets efficiently
// on scrape time (see code up commit 6b9530d72ea715f0ba612c0120e6e09fbf1d49d0)
// can't be used anymore.
// NewSummary creates a new Summary based on the provided SummaryOpts.
func NewSummary(opts SummaryOpts) Summary {
return newSummary(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
if len(desc.variableLabels) != len(labelValues) {
panic(errInconsistentCardinality)
}
for _, n := range desc.variableLabels {
if n == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
if opts.Objectives == nil {
opts.Objectives = DefObjectives
}
if opts.MaxAge < 0 {
panic(fmt.Errorf("illegal max age MaxAge=%v", opts.MaxAge))
}
if opts.MaxAge == 0 {
opts.MaxAge = DefMaxAge
}
if opts.AgeBuckets == 0 {
opts.AgeBuckets = DefAgeBuckets
}
if opts.BufCap == 0 {
opts.BufCap = DefBufCap
}
s := &summary{
desc: desc,
objectives: opts.Objectives,
sortedObjectives: make([]float64, 0, len(opts.Objectives)),
labelPairs: makeLabelPairs(desc, labelValues),
hotBuf: make([]float64, 0, opts.BufCap),
coldBuf: make([]float64, 0, opts.BufCap),
streamDuration: opts.MaxAge / time.Duration(opts.AgeBuckets),
}
s.headStreamExpTime = time.Now().Add(s.streamDuration)
s.hotBufExpTime = s.headStreamExpTime
for i := uint32(0); i < opts.AgeBuckets; i++ {
s.streams = append(s.streams, s.newStream())
}
s.headStream = s.streams[0]
for qu := range s.objectives {
s.sortedObjectives = append(s.sortedObjectives, qu)
}
sort.Float64s(s.sortedObjectives)
s.init(s) // Init self-collection.
return s
}
type summary struct {
selfCollector
bufMtx sync.Mutex // Protects hotBuf and hotBufExpTime.
mtx sync.Mutex // Protects every other moving part.
// Lock bufMtx before mtx if both are needed.
desc *Desc
objectives map[float64]float64
sortedObjectives []float64
labelPairs []*dto.LabelPair
sum float64
cnt uint64
hotBuf, coldBuf []float64
streams []*quantile.Stream
streamDuration time.Duration
headStream *quantile.Stream
headStreamIdx int
headStreamExpTime, hotBufExpTime time.Time
}
func (s *summary) Desc() *Desc {
return s.desc
}
func (s *summary) Observe(v float64) {
s.bufMtx.Lock()
defer s.bufMtx.Unlock()
now := time.Now()
if now.After(s.hotBufExpTime) {
s.asyncFlush(now)
}
s.hotBuf = append(s.hotBuf, v)
if len(s.hotBuf) == cap(s.hotBuf) {
s.asyncFlush(now)
}
}
func (s *summary) Write(out *dto.Metric) error {
sum := &dto.Summary{}
qs := make([]*dto.Quantile, 0, len(s.objectives))
s.bufMtx.Lock()
s.mtx.Lock()
// Swap bufs even if hotBuf is empty to set new hotBufExpTime.
s.swapBufs(time.Now())
s.bufMtx.Unlock()
s.flushColdBuf()
sum.SampleCount = proto.Uint64(s.cnt)
sum.SampleSum = proto.Float64(s.sum)
for _, rank := range s.sortedObjectives {
var q float64
if s.headStream.Count() == 0 {
q = math.NaN()
} else {
q = s.headStream.Query(rank)
}
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(q),
})
}
s.mtx.Unlock()
if len(qs) > 0 {
sort.Sort(quantSort(qs))
}
sum.Quantile = qs
out.Summary = sum
out.Label = s.labelPairs
return nil
}
func (s *summary) newStream() *quantile.Stream {
return quantile.NewTargeted(s.objectives)
}
// asyncFlush needs bufMtx locked.
func (s *summary) asyncFlush(now time.Time) {
s.mtx.Lock()
s.swapBufs(now)
// Unblock the original goroutine that was responsible for the mutation
// that triggered the compaction. But hold onto the global non-buffer
// state mutex until the operation finishes.
go func() {
s.flushColdBuf()
s.mtx.Unlock()
}()
}
// rotateStreams needs mtx AND bufMtx locked.
func (s *summary) maybeRotateStreams() {
for !s.hotBufExpTime.Equal(s.headStreamExpTime) {
s.headStream.Reset()
s.headStreamIdx++
if s.headStreamIdx >= len(s.streams) {
s.headStreamIdx = 0
}
s.headStream = s.streams[s.headStreamIdx]
s.headStreamExpTime = s.headStreamExpTime.Add(s.streamDuration)
}
}
// flushColdBuf needs mtx locked.
func (s *summary) flushColdBuf() {
for _, v := range s.coldBuf {
for _, stream := range s.streams {
stream.Insert(v)
}
s.cnt++
s.sum += v
}
s.coldBuf = s.coldBuf[0:0]
s.maybeRotateStreams()
}
// swapBufs needs mtx AND bufMtx locked, coldBuf must be empty.
func (s *summary) swapBufs(now time.Time) {
if len(s.coldBuf) != 0 {
panic("coldBuf is not empty")
}
s.hotBuf, s.coldBuf = s.coldBuf, s.hotBuf
// hotBuf is now empty and gets new expiration set.
for now.After(s.hotBufExpTime) {
s.hotBufExpTime = s.hotBufExpTime.Add(s.streamDuration)
}
}
type quantSort []*dto.Quantile
func (s quantSort) Len() int {
return len(s)
}
func (s quantSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s quantSort) Less(i, j int) bool {
return s[i].GetQuantile() < s[j].GetQuantile()
}
// SummaryVec is a Collector that bundles a set of Summaries that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewSummaryVec.
type SummaryVec struct {
*metricVec
}
// NewSummaryVec creates a new SummaryVec based on the provided SummaryOpts and
// partitioned by the given label names.
//
// Due to the way a Summary is represented in the Prometheus text format and how
// it is handled by the Prometheus server internally, “quantile” is an illegal
// label name. NewSummaryVec will panic if this label name is used.
func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
for _, ln := range labelNames {
if ln == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &SummaryVec{
metricVec: newMetricVec(desc, func(lvs ...string) Metric {
return newSummary(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Summary for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Summary is created.
//
// It is possible to call this method without using the returned Summary to only
// create the new Summary but leave it at its starting value, a Summary without
// any observations.
//
// Keeping the Summary for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Summary from the SummaryVec. In that case,
// the Summary will still exist, but it will not be exported anymore, even if a
// Summary with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.metricVec.getMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// GetMetricWith returns the Summary for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Summary is created. Implications of
// creating a Summary without using it and keeping the Summary for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *SummaryVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.metricVec.getMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *SummaryVec) WithLabelValues(lvs ...string) Observer {
s, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return s
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *SummaryVec) With(labels Labels) Observer {
s, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return s
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the SummaryVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *SummaryVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.curryWith(labels)
if vec != nil {
return &SummaryVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *SummaryVec) MustCurryWith(labels Labels) ObserverVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
type constSummary struct {
desc *Desc
count uint64
sum float64
quantiles map[float64]float64
labelPairs []*dto.LabelPair
}
func (s *constSummary) Desc() *Desc {
return s.desc
}
func (s *constSummary) Write(out *dto.Metric) error {
sum := &dto.Summary{}
qs := make([]*dto.Quantile, 0, len(s.quantiles))
sum.SampleCount = proto.Uint64(s.count)
sum.SampleSum = proto.Float64(s.sum)
for rank, q := range s.quantiles {
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(q),
})
}
if len(qs) > 0 {
sort.Sort(quantSort(qs))
}
sum.Quantile = qs
out.Summary = sum
out.Label = s.labelPairs
return nil
}
// NewConstSummary returns a metric representing a Prometheus summary with fixed
// values for the count, sum, and quantiles. As those parameters cannot be
// changed, the returned value does not implement the Summary interface (but
// only the Metric interface). Users of this package will not have much use for
// it in regular operations. However, when implementing custom Collectors, it is
// useful as a throw-away metric that is generated on the fly to send it to
// Prometheus in the Collect method.
//
// quantiles maps ranks to quantile values. For example, a median latency of
// 0.23s and a 99th percentile latency of 0.56s would be expressed as:
// map[float64]float64{0.5: 0.23, 0.99: 0.56}
//
// NewConstSummary returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstSummary(
desc *Desc,
count uint64,
sum float64,
quantiles map[float64]float64,
labelValues ...string,
) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
return nil, err
}
return &constSummary{
desc: desc,
count: count,
sum: sum,
quantiles: quantiles,
labelPairs: makeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstSummary is a version of NewConstSummary that panics where
// NewConstMetric would have returned an error.
func MustNewConstSummary(
desc *Desc,
count uint64,
sum float64,
quantiles map[float64]float64,
labelValues ...string,
) Metric {
m, err := NewConstSummary(desc, count, sum, quantiles, labelValues...)
if err != nil {
panic(err)
}
return m
}

View file

@ -0,0 +1,51 @@
// Copyright 2016 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import "time"
// Timer is a helper type to time functions. Use NewTimer to create new
// instances.
type Timer struct {
begin time.Time
observer Observer
}
// NewTimer creates a new Timer. The provided Observer is used to observe a
// duration in seconds. Timer is usually used to time a function call in the
// following way:
// func TimeMe() {
// timer := NewTimer(myHistogram)
// defer timer.ObserveDuration()
// // Do actual work.
// }
func NewTimer(o Observer) *Timer {
return &Timer{
begin: time.Now(),
observer: o,
}
}
// ObserveDuration records the duration passed since the Timer was created with
// NewTimer. It calls the Observe method of the Observer provided during
// construction with the duration in seconds as an argument. ObserveDuration is
// usually called with a defer statement.
//
// Note that this method is only guaranteed to never observe negative durations
// if used with Go1.9+.
func (t *Timer) ObserveDuration() {
if t.observer != nil {
t.observer.Observe(time.Since(t.begin).Seconds())
}
}

View file

@ -0,0 +1,42 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
// UntypedOpts is an alias for Opts. See there for doc comments.
type UntypedOpts Opts
// UntypedFunc works like GaugeFunc but the collected metric is of type
// "Untyped". UntypedFunc is useful to mirror an external metric of unknown
// type.
//
// To create UntypedFunc instances, use NewUntypedFunc.
type UntypedFunc interface {
Metric
Collector
}
// NewUntypedFunc creates a new UntypedFunc based on the provided
// UntypedOpts. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where an UntypedFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe.
func NewUntypedFunc(opts UntypedOpts, function func() float64) UntypedFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), UntypedValue, function)
}

View file

@ -0,0 +1,162 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"sort"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// ValueType is an enumeration of metric types that represent a simple value.
type ValueType int
// Possible values for the ValueType enum.
const (
_ ValueType = iota
CounterValue
GaugeValue
UntypedValue
)
// valueFunc is a generic metric for simple values retrieved on collect time
// from a function. It implements Metric and Collector. Its effective type is
// determined by ValueType. This is a low-level building block used by the
// library to back the implementations of CounterFunc, GaugeFunc, and
// UntypedFunc.
type valueFunc struct {
selfCollector
desc *Desc
valType ValueType
function func() float64
labelPairs []*dto.LabelPair
}
// newValueFunc returns a newly allocated valueFunc with the given Desc and
// ValueType. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where a valueFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe.
func newValueFunc(desc *Desc, valueType ValueType, function func() float64) *valueFunc {
result := &valueFunc{
desc: desc,
valType: valueType,
function: function,
labelPairs: makeLabelPairs(desc, nil),
}
result.init(result)
return result
}
func (v *valueFunc) Desc() *Desc {
return v.desc
}
func (v *valueFunc) Write(out *dto.Metric) error {
return populateMetric(v.valType, v.function(), v.labelPairs, out)
}
// NewConstMetric returns a metric with one fixed value that cannot be
// changed. Users of this package will not have much use for it in regular
// operations. However, when implementing custom Collectors, it is useful as a
// throw-away metric that is generated on the fly to send it to Prometheus in
// the Collect method. NewConstMetric returns an error if the length of
// labelValues is not consistent with the variable labels in Desc or if Desc is
// invalid.
func NewConstMetric(desc *Desc, valueType ValueType, value float64, labelValues ...string) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
return nil, err
}
return &constMetric{
desc: desc,
valType: valueType,
val: value,
labelPairs: makeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstMetric is a version of NewConstMetric that panics where
// NewConstMetric would have returned an error.
func MustNewConstMetric(desc *Desc, valueType ValueType, value float64, labelValues ...string) Metric {
m, err := NewConstMetric(desc, valueType, value, labelValues...)
if err != nil {
panic(err)
}
return m
}
type constMetric struct {
desc *Desc
valType ValueType
val float64
labelPairs []*dto.LabelPair
}
func (m *constMetric) Desc() *Desc {
return m.desc
}
func (m *constMetric) Write(out *dto.Metric) error {
return populateMetric(m.valType, m.val, m.labelPairs, out)
}
func populateMetric(
t ValueType,
v float64,
labelPairs []*dto.LabelPair,
m *dto.Metric,
) error {
m.Label = labelPairs
switch t {
case CounterValue:
m.Counter = &dto.Counter{Value: proto.Float64(v)}
case GaugeValue:
m.Gauge = &dto.Gauge{Value: proto.Float64(v)}
case UntypedValue:
m.Untyped = &dto.Untyped{Value: proto.Float64(v)}
default:
return fmt.Errorf("encountered unknown type %v", t)
}
return nil
}
func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
totalLen := len(desc.variableLabels) + len(desc.constLabelPairs)
if totalLen == 0 {
// Super fast path.
return nil
}
if len(desc.variableLabels) == 0 {
// Moderately fast path.
return desc.constLabelPairs
}
labelPairs := make([]*dto.LabelPair, 0, totalLen)
for i, n := range desc.variableLabels {
labelPairs = append(labelPairs, &dto.LabelPair{
Name: proto.String(n),
Value: proto.String(labelValues[i]),
})
}
labelPairs = append(labelPairs, desc.constLabelPairs...)
sort.Sort(labelPairSorter(labelPairs))
return labelPairs
}

View file

@ -0,0 +1,472 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"sync"
"github.com/prometheus/common/model"
)
// metricVec is a Collector to bundle metrics of the same name that differ in
// their label values. metricVec is not used directly (and therefore
// unexported). It is used as a building block for implementations of vectors of
// a given metric type, like GaugeVec, CounterVec, SummaryVec, and HistogramVec.
// It also handles label currying. It uses basicMetricVec internally.
type metricVec struct {
*metricMap
curry []curriedLabelValue
// hashAdd and hashAddByte can be replaced for testing collision handling.
hashAdd func(h uint64, s string) uint64
hashAddByte func(h uint64, b byte) uint64
}
// newMetricVec returns an initialized metricVec.
func newMetricVec(desc *Desc, newMetric func(lvs ...string) Metric) *metricVec {
return &metricVec{
metricMap: &metricMap{
metrics: map[uint64][]metricWithLabelValues{},
desc: desc,
newMetric: newMetric,
},
hashAdd: hashAdd,
hashAddByte: hashAddByte,
}
}
// DeleteLabelValues removes the metric where the variable labels are the same
// as those passed in as labels (same order as the VariableLabels in Desc). It
// returns true if a metric was deleted.
//
// It is not an error if the number of label values is not the same as the
// number of VariableLabels in Desc. However, such inconsistent label count can
// never match an actual metric, so the method will always return false in that
// case.
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider Delete(Labels) as an
// alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the CounterVec example.
func (m *metricVec) DeleteLabelValues(lvs ...string) bool {
h, err := m.hashLabelValues(lvs)
if err != nil {
return false
}
return m.metricMap.deleteByHashWithLabelValues(h, lvs, m.curry)
}
// Delete deletes the metric where the variable labels are the same as those
// passed in as labels. It returns true if a metric was deleted.
//
// It is not an error if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc. However, such inconsistent Labels
// can never match an actual metric, so the method will always return false in
// that case.
//
// This method is used for the same purpose as DeleteLabelValues(...string). See
// there for pros and cons of the two methods.
func (m *metricVec) Delete(labels Labels) bool {
h, err := m.hashLabels(labels)
if err != nil {
return false
}
return m.metricMap.deleteByHashWithLabels(h, labels, m.curry)
}
func (m *metricVec) curryWith(labels Labels) (*metricVec, error) {
var (
newCurry []curriedLabelValue
oldCurry = m.curry
iCurry int
)
for i, label := range m.desc.variableLabels {
val, ok := labels[label]
if iCurry < len(oldCurry) && oldCurry[iCurry].index == i {
if ok {
return nil, fmt.Errorf("label name %q is already curried", label)
}
newCurry = append(newCurry, oldCurry[iCurry])
iCurry++
} else {
if !ok {
continue // Label stays uncurried.
}
newCurry = append(newCurry, curriedLabelValue{i, val})
}
}
if l := len(oldCurry) + len(labels) - len(newCurry); l > 0 {
return nil, fmt.Errorf("%d unknown label(s) found during currying", l)
}
return &metricVec{
metricMap: m.metricMap,
curry: newCurry,
hashAdd: m.hashAdd,
hashAddByte: m.hashAddByte,
}, nil
}
func (m *metricVec) getMetricWithLabelValues(lvs ...string) (Metric, error) {
h, err := m.hashLabelValues(lvs)
if err != nil {
return nil, err
}
return m.metricMap.getOrCreateMetricWithLabelValues(h, lvs, m.curry), nil
}
func (m *metricVec) getMetricWith(labels Labels) (Metric, error) {
h, err := m.hashLabels(labels)
if err != nil {
return nil, err
}
return m.metricMap.getOrCreateMetricWithLabels(h, labels, m.curry), nil
}
func (m *metricVec) hashLabelValues(vals []string) (uint64, error) {
if err := validateLabelValues(vals, len(m.desc.variableLabels)-len(m.curry)); err != nil {
return 0, err
}
var (
h = hashNew()
curry = m.curry
iVals, iCurry int
)
for i := 0; i < len(m.desc.variableLabels); i++ {
if iCurry < len(curry) && curry[iCurry].index == i {
h = m.hashAdd(h, curry[iCurry].value)
iCurry++
} else {
h = m.hashAdd(h, vals[iVals])
iVals++
}
h = m.hashAddByte(h, model.SeparatorByte)
}
return h, nil
}
func (m *metricVec) hashLabels(labels Labels) (uint64, error) {
if err := validateValuesInLabels(labels, len(m.desc.variableLabels)-len(m.curry)); err != nil {
return 0, err
}
var (
h = hashNew()
curry = m.curry
iCurry int
)
for i, label := range m.desc.variableLabels {
val, ok := labels[label]
if iCurry < len(curry) && curry[iCurry].index == i {
if ok {
return 0, fmt.Errorf("label name %q is already curried", label)
}
h = m.hashAdd(h, curry[iCurry].value)
iCurry++
} else {
if !ok {
return 0, fmt.Errorf("label name %q missing in label map", label)
}
h = m.hashAdd(h, val)
}
h = m.hashAddByte(h, model.SeparatorByte)
}
return h, nil
}
// metricWithLabelValues provides the metric and its label values for
// disambiguation on hash collision.
type metricWithLabelValues struct {
values []string
metric Metric
}
// curriedLabelValue sets the curried value for a label at the given index.
type curriedLabelValue struct {
index int
value string
}
// metricMap is a helper for metricVec and shared between differently curried
// metricVecs.
type metricMap struct {
mtx sync.RWMutex // Protects metrics.
metrics map[uint64][]metricWithLabelValues
desc *Desc
newMetric func(labelValues ...string) Metric
}
// Describe implements Collector. It will send exactly one Desc to the provided
// channel.
func (m *metricMap) Describe(ch chan<- *Desc) {
ch <- m.desc
}
// Collect implements Collector.
func (m *metricMap) Collect(ch chan<- Metric) {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, metrics := range m.metrics {
for _, metric := range metrics {
ch <- metric.metric
}
}
}
// Reset deletes all metrics in this vector.
func (m *metricMap) Reset() {
m.mtx.Lock()
defer m.mtx.Unlock()
for h := range m.metrics {
delete(m.metrics, h)
}
}
// deleteByHashWithLabelValues removes the metric from the hash bucket h. If
// there are multiple matches in the bucket, use lvs to select a metric and
// remove only that metric.
func (m *metricMap) deleteByHashWithLabelValues(
h uint64, lvs []string, curry []curriedLabelValue,
) bool {
m.mtx.Lock()
defer m.mtx.Unlock()
metrics, ok := m.metrics[h]
if !ok {
return false
}
i := findMetricWithLabelValues(metrics, lvs, curry)
if i >= len(metrics) {
return false
}
if len(metrics) > 1 {
m.metrics[h] = append(metrics[:i], metrics[i+1:]...)
} else {
delete(m.metrics, h)
}
return true
}
// deleteByHashWithLabels removes the metric from the hash bucket h. If there
// are multiple matches in the bucket, use lvs to select a metric and remove
// only that metric.
func (m *metricMap) deleteByHashWithLabels(
h uint64, labels Labels, curry []curriedLabelValue,
) bool {
m.mtx.Lock()
defer m.mtx.Unlock()
metrics, ok := m.metrics[h]
if !ok {
return false
}
i := findMetricWithLabels(m.desc, metrics, labels, curry)
if i >= len(metrics) {
return false
}
if len(metrics) > 1 {
m.metrics[h] = append(metrics[:i], metrics[i+1:]...)
} else {
delete(m.metrics, h)
}
return true
}
// getOrCreateMetricWithLabelValues retrieves the metric by hash and label value
// or creates it and returns the new one.
//
// This function holds the mutex.
func (m *metricMap) getOrCreateMetricWithLabelValues(
hash uint64, lvs []string, curry []curriedLabelValue,
) Metric {
m.mtx.RLock()
metric, ok := m.getMetricWithHashAndLabelValues(hash, lvs, curry)
m.mtx.RUnlock()
if ok {
return metric
}
m.mtx.Lock()
defer m.mtx.Unlock()
metric, ok = m.getMetricWithHashAndLabelValues(hash, lvs, curry)
if !ok {
inlinedLVs := inlineLabelValues(lvs, curry)
metric = m.newMetric(inlinedLVs...)
m.metrics[hash] = append(m.metrics[hash], metricWithLabelValues{values: inlinedLVs, metric: metric})
}
return metric
}
// getOrCreateMetricWithLabelValues retrieves the metric by hash and label value
// or creates it and returns the new one.
//
// This function holds the mutex.
func (m *metricMap) getOrCreateMetricWithLabels(
hash uint64, labels Labels, curry []curriedLabelValue,
) Metric {
m.mtx.RLock()
metric, ok := m.getMetricWithHashAndLabels(hash, labels, curry)
m.mtx.RUnlock()
if ok {
return metric
}
m.mtx.Lock()
defer m.mtx.Unlock()
metric, ok = m.getMetricWithHashAndLabels(hash, labels, curry)
if !ok {
lvs := extractLabelValues(m.desc, labels, curry)
metric = m.newMetric(lvs...)
m.metrics[hash] = append(m.metrics[hash], metricWithLabelValues{values: lvs, metric: metric})
}
return metric
}
// getMetricWithHashAndLabelValues gets a metric while handling possible
// collisions in the hash space. Must be called while holding the read mutex.
func (m *metricMap) getMetricWithHashAndLabelValues(
h uint64, lvs []string, curry []curriedLabelValue,
) (Metric, bool) {
metrics, ok := m.metrics[h]
if ok {
if i := findMetricWithLabelValues(metrics, lvs, curry); i < len(metrics) {
return metrics[i].metric, true
}
}
return nil, false
}
// getMetricWithHashAndLabels gets a metric while handling possible collisions in
// the hash space. Must be called while holding read mutex.
func (m *metricMap) getMetricWithHashAndLabels(
h uint64, labels Labels, curry []curriedLabelValue,
) (Metric, bool) {
metrics, ok := m.metrics[h]
if ok {
if i := findMetricWithLabels(m.desc, metrics, labels, curry); i < len(metrics) {
return metrics[i].metric, true
}
}
return nil, false
}
// findMetricWithLabelValues returns the index of the matching metric or
// len(metrics) if not found.
func findMetricWithLabelValues(
metrics []metricWithLabelValues, lvs []string, curry []curriedLabelValue,
) int {
for i, metric := range metrics {
if matchLabelValues(metric.values, lvs, curry) {
return i
}
}
return len(metrics)
}
// findMetricWithLabels returns the index of the matching metric or len(metrics)
// if not found.
func findMetricWithLabels(
desc *Desc, metrics []metricWithLabelValues, labels Labels, curry []curriedLabelValue,
) int {
for i, metric := range metrics {
if matchLabels(desc, metric.values, labels, curry) {
return i
}
}
return len(metrics)
}
func matchLabelValues(values []string, lvs []string, curry []curriedLabelValue) bool {
if len(values) != len(lvs)+len(curry) {
return false
}
var iLVs, iCurry int
for i, v := range values {
if iCurry < len(curry) && curry[iCurry].index == i {
if v != curry[iCurry].value {
return false
}
iCurry++
continue
}
if v != lvs[iLVs] {
return false
}
iLVs++
}
return true
}
func matchLabels(desc *Desc, values []string, labels Labels, curry []curriedLabelValue) bool {
if len(values) != len(labels)+len(curry) {
return false
}
iCurry := 0
for i, k := range desc.variableLabels {
if iCurry < len(curry) && curry[iCurry].index == i {
if values[i] != curry[iCurry].value {
return false
}
iCurry++
continue
}
if values[i] != labels[k] {
return false
}
}
return true
}
func extractLabelValues(desc *Desc, labels Labels, curry []curriedLabelValue) []string {
labelValues := make([]string, len(labels)+len(curry))
iCurry := 0
for i, k := range desc.variableLabels {
if iCurry < len(curry) && curry[iCurry].index == i {
labelValues[i] = curry[iCurry].value
iCurry++
continue
}
labelValues[i] = labels[k]
}
return labelValues
}
func inlineLabelValues(lvs []string, curry []curriedLabelValue) []string {
labelValues := make([]string, len(lvs)+len(curry))
var iCurry, iLVs int
for i := range labelValues {
if iCurry < len(curry) && curry[iCurry].index == i {
labelValues[i] = curry[iCurry].value
iCurry++
continue
}
labelValues[i] = lvs[iLVs]
iLVs++
}
return labelValues
}

View file

@ -0,0 +1,179 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"sort"
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// WrapRegistererWith returns a Registerer wrapping the provided
// Registerer. Collectors registered with the returned Registerer will be
// registered with the wrapped Registerer in a modified way. The modified
// Collector adds the provided Labels to all Metrics it collects (as
// ConstLabels). The Metrics collected by the unmodified Collector must not
// duplicate any of those labels.
//
// WrapRegistererWith provides a way to add fixed labels to a subset of
// Collectors. It should not be used to add fixed labels to all metrics exposed.
//
// The Collector example demonstrates a use of WrapRegistererWith.
func WrapRegistererWith(labels Labels, reg Registerer) Registerer {
return &wrappingRegisterer{
wrappedRegisterer: reg,
labels: labels,
}
}
// WrapRegistererWithPrefix returns a Registerer wrapping the provided
// Registerer. Collectors registered with the returned Registerer will be
// registered with the wrapped Registerer in a modified way. The modified
// Collector adds the provided prefix to the name of all Metrics it collects.
//
// WrapRegistererWithPrefix is useful to have one place to prefix all metrics of
// a sub-system. To make this work, register metrics of the sub-system with the
// wrapping Registerer returned by WrapRegistererWithPrefix. It is rarely useful
// to use the same prefix for all metrics exposed. In particular, do not prefix
// metric names that are standardized across applications, as that would break
// horizontal monitoring, for example the metrics provided by the Go collector
// (see NewGoCollector) and the process collector (see NewProcessCollector). (In
// fact, those metrics are already prefixed with “go_” or “process_”,
// respectively.)
func WrapRegistererWithPrefix(prefix string, reg Registerer) Registerer {
return &wrappingRegisterer{
wrappedRegisterer: reg,
prefix: prefix,
}
}
type wrappingRegisterer struct {
wrappedRegisterer Registerer
prefix string
labels Labels
}
func (r *wrappingRegisterer) Register(c Collector) error {
return r.wrappedRegisterer.Register(&wrappingCollector{
wrappedCollector: c,
prefix: r.prefix,
labels: r.labels,
})
}
func (r *wrappingRegisterer) MustRegister(cs ...Collector) {
for _, c := range cs {
if err := r.Register(c); err != nil {
panic(err)
}
}
}
func (r *wrappingRegisterer) Unregister(c Collector) bool {
return r.wrappedRegisterer.Unregister(&wrappingCollector{
wrappedCollector: c,
prefix: r.prefix,
labels: r.labels,
})
}
type wrappingCollector struct {
wrappedCollector Collector
prefix string
labels Labels
}
func (c *wrappingCollector) Collect(ch chan<- Metric) {
wrappedCh := make(chan Metric)
go func() {
c.wrappedCollector.Collect(wrappedCh)
close(wrappedCh)
}()
for m := range wrappedCh {
ch <- &wrappingMetric{
wrappedMetric: m,
prefix: c.prefix,
labels: c.labels,
}
}
}
func (c *wrappingCollector) Describe(ch chan<- *Desc) {
wrappedCh := make(chan *Desc)
go func() {
c.wrappedCollector.Describe(wrappedCh)
close(wrappedCh)
}()
for desc := range wrappedCh {
ch <- wrapDesc(desc, c.prefix, c.labels)
}
}
type wrappingMetric struct {
wrappedMetric Metric
prefix string
labels Labels
}
func (m *wrappingMetric) Desc() *Desc {
return wrapDesc(m.wrappedMetric.Desc(), m.prefix, m.labels)
}
func (m *wrappingMetric) Write(out *dto.Metric) error {
if err := m.wrappedMetric.Write(out); err != nil {
return err
}
if len(m.labels) == 0 {
// No wrapping labels.
return nil
}
for ln, lv := range m.labels {
out.Label = append(out.Label, &dto.LabelPair{
Name: proto.String(ln),
Value: proto.String(lv),
})
}
sort.Sort(labelPairSorter(out.Label))
return nil
}
func wrapDesc(desc *Desc, prefix string, labels Labels) *Desc {
constLabels := Labels{}
for _, lp := range desc.constLabelPairs {
constLabels[*lp.Name] = *lp.Value
}
for ln, lv := range labels {
if _, alreadyUsed := constLabels[ln]; alreadyUsed {
return &Desc{
fqName: desc.fqName,
help: desc.help,
variableLabels: desc.variableLabels,
constLabelPairs: desc.constLabelPairs,
err: fmt.Errorf("attempted wrapping with already existing label name %q", ln),
}
}
constLabels[ln] = lv
}
// NewDesc will do remaining validations.
newDesc := NewDesc(prefix+desc.fqName, desc.help, desc.variableLabels, constLabels)
// Propagate errors if there was any. This will override any errer
// created by NewDesc above, i.e. earlier errors get precedence.
if desc.err != nil {
newDesc.err = desc.err
}
return newDesc
}

201
vendor/github.com/prometheus/client_model/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5
vendor/github.com/prometheus/client_model/NOTICE generated vendored Normal file
View file

@ -0,0 +1,5 @@
Data model artifacts for Prometheus.
Copyright 2012-2015 The Prometheus Authors
This product includes software developed at
SoundCloud Ltd. (http://soundcloud.com/).

View file

@ -0,0 +1,629 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: metrics.proto
package io_prometheus_client // import "github.com/prometheus/client_model/go"
import proto "github.com/golang/protobuf/proto"
import fmt "fmt"
import math "math"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion2 // please upgrade the proto package
type MetricType int32
const (
MetricType_COUNTER MetricType = 0
MetricType_GAUGE MetricType = 1
MetricType_SUMMARY MetricType = 2
MetricType_UNTYPED MetricType = 3
MetricType_HISTOGRAM MetricType = 4
)
var MetricType_name = map[int32]string{
0: "COUNTER",
1: "GAUGE",
2: "SUMMARY",
3: "UNTYPED",
4: "HISTOGRAM",
}
var MetricType_value = map[string]int32{
"COUNTER": 0,
"GAUGE": 1,
"SUMMARY": 2,
"UNTYPED": 3,
"HISTOGRAM": 4,
}
func (x MetricType) Enum() *MetricType {
p := new(MetricType)
*p = x
return p
}
func (x MetricType) String() string {
return proto.EnumName(MetricType_name, int32(x))
}
func (x *MetricType) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(MetricType_value, data, "MetricType")
if err != nil {
return err
}
*x = MetricType(value)
return nil
}
func (MetricType) EnumDescriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{0}
}
type LabelPair struct {
Name *string `protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
Value *string `protobuf:"bytes,2,opt,name=value" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *LabelPair) Reset() { *m = LabelPair{} }
func (m *LabelPair) String() string { return proto.CompactTextString(m) }
func (*LabelPair) ProtoMessage() {}
func (*LabelPair) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{0}
}
func (m *LabelPair) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_LabelPair.Unmarshal(m, b)
}
func (m *LabelPair) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_LabelPair.Marshal(b, m, deterministic)
}
func (dst *LabelPair) XXX_Merge(src proto.Message) {
xxx_messageInfo_LabelPair.Merge(dst, src)
}
func (m *LabelPair) XXX_Size() int {
return xxx_messageInfo_LabelPair.Size(m)
}
func (m *LabelPair) XXX_DiscardUnknown() {
xxx_messageInfo_LabelPair.DiscardUnknown(m)
}
var xxx_messageInfo_LabelPair proto.InternalMessageInfo
func (m *LabelPair) GetName() string {
if m != nil && m.Name != nil {
return *m.Name
}
return ""
}
func (m *LabelPair) GetValue() string {
if m != nil && m.Value != nil {
return *m.Value
}
return ""
}
type Gauge struct {
Value *float64 `protobuf:"fixed64,1,opt,name=value" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Gauge) Reset() { *m = Gauge{} }
func (m *Gauge) String() string { return proto.CompactTextString(m) }
func (*Gauge) ProtoMessage() {}
func (*Gauge) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{1}
}
func (m *Gauge) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Gauge.Unmarshal(m, b)
}
func (m *Gauge) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Gauge.Marshal(b, m, deterministic)
}
func (dst *Gauge) XXX_Merge(src proto.Message) {
xxx_messageInfo_Gauge.Merge(dst, src)
}
func (m *Gauge) XXX_Size() int {
return xxx_messageInfo_Gauge.Size(m)
}
func (m *Gauge) XXX_DiscardUnknown() {
xxx_messageInfo_Gauge.DiscardUnknown(m)
}
var xxx_messageInfo_Gauge proto.InternalMessageInfo
func (m *Gauge) GetValue() float64 {
if m != nil && m.Value != nil {
return *m.Value
}
return 0
}
type Counter struct {
Value *float64 `protobuf:"fixed64,1,opt,name=value" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Counter) Reset() { *m = Counter{} }
func (m *Counter) String() string { return proto.CompactTextString(m) }
func (*Counter) ProtoMessage() {}
func (*Counter) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{2}
}
func (m *Counter) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Counter.Unmarshal(m, b)
}
func (m *Counter) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Counter.Marshal(b, m, deterministic)
}
func (dst *Counter) XXX_Merge(src proto.Message) {
xxx_messageInfo_Counter.Merge(dst, src)
}
func (m *Counter) XXX_Size() int {
return xxx_messageInfo_Counter.Size(m)
}
func (m *Counter) XXX_DiscardUnknown() {
xxx_messageInfo_Counter.DiscardUnknown(m)
}
var xxx_messageInfo_Counter proto.InternalMessageInfo
func (m *Counter) GetValue() float64 {
if m != nil && m.Value != nil {
return *m.Value
}
return 0
}
type Quantile struct {
Quantile *float64 `protobuf:"fixed64,1,opt,name=quantile" json:"quantile,omitempty"`
Value *float64 `protobuf:"fixed64,2,opt,name=value" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Quantile) Reset() { *m = Quantile{} }
func (m *Quantile) String() string { return proto.CompactTextString(m) }
func (*Quantile) ProtoMessage() {}
func (*Quantile) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{3}
}
func (m *Quantile) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Quantile.Unmarshal(m, b)
}
func (m *Quantile) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Quantile.Marshal(b, m, deterministic)
}
func (dst *Quantile) XXX_Merge(src proto.Message) {
xxx_messageInfo_Quantile.Merge(dst, src)
}
func (m *Quantile) XXX_Size() int {
return xxx_messageInfo_Quantile.Size(m)
}
func (m *Quantile) XXX_DiscardUnknown() {
xxx_messageInfo_Quantile.DiscardUnknown(m)
}
var xxx_messageInfo_Quantile proto.InternalMessageInfo
func (m *Quantile) GetQuantile() float64 {
if m != nil && m.Quantile != nil {
return *m.Quantile
}
return 0
}
func (m *Quantile) GetValue() float64 {
if m != nil && m.Value != nil {
return *m.Value
}
return 0
}
type Summary struct {
SampleCount *uint64 `protobuf:"varint,1,opt,name=sample_count,json=sampleCount" json:"sample_count,omitempty"`
SampleSum *float64 `protobuf:"fixed64,2,opt,name=sample_sum,json=sampleSum" json:"sample_sum,omitempty"`
Quantile []*Quantile `protobuf:"bytes,3,rep,name=quantile" json:"quantile,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Summary) Reset() { *m = Summary{} }
func (m *Summary) String() string { return proto.CompactTextString(m) }
func (*Summary) ProtoMessage() {}
func (*Summary) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{4}
}
func (m *Summary) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Summary.Unmarshal(m, b)
}
func (m *Summary) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Summary.Marshal(b, m, deterministic)
}
func (dst *Summary) XXX_Merge(src proto.Message) {
xxx_messageInfo_Summary.Merge(dst, src)
}
func (m *Summary) XXX_Size() int {
return xxx_messageInfo_Summary.Size(m)
}
func (m *Summary) XXX_DiscardUnknown() {
xxx_messageInfo_Summary.DiscardUnknown(m)
}
var xxx_messageInfo_Summary proto.InternalMessageInfo
func (m *Summary) GetSampleCount() uint64 {
if m != nil && m.SampleCount != nil {
return *m.SampleCount
}
return 0
}
func (m *Summary) GetSampleSum() float64 {
if m != nil && m.SampleSum != nil {
return *m.SampleSum
}
return 0
}
func (m *Summary) GetQuantile() []*Quantile {
if m != nil {
return m.Quantile
}
return nil
}
type Untyped struct {
Value *float64 `protobuf:"fixed64,1,opt,name=value" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Untyped) Reset() { *m = Untyped{} }
func (m *Untyped) String() string { return proto.CompactTextString(m) }
func (*Untyped) ProtoMessage() {}
func (*Untyped) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{5}
}
func (m *Untyped) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Untyped.Unmarshal(m, b)
}
func (m *Untyped) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Untyped.Marshal(b, m, deterministic)
}
func (dst *Untyped) XXX_Merge(src proto.Message) {
xxx_messageInfo_Untyped.Merge(dst, src)
}
func (m *Untyped) XXX_Size() int {
return xxx_messageInfo_Untyped.Size(m)
}
func (m *Untyped) XXX_DiscardUnknown() {
xxx_messageInfo_Untyped.DiscardUnknown(m)
}
var xxx_messageInfo_Untyped proto.InternalMessageInfo
func (m *Untyped) GetValue() float64 {
if m != nil && m.Value != nil {
return *m.Value
}
return 0
}
type Histogram struct {
SampleCount *uint64 `protobuf:"varint,1,opt,name=sample_count,json=sampleCount" json:"sample_count,omitempty"`
SampleSum *float64 `protobuf:"fixed64,2,opt,name=sample_sum,json=sampleSum" json:"sample_sum,omitempty"`
Bucket []*Bucket `protobuf:"bytes,3,rep,name=bucket" json:"bucket,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Histogram) Reset() { *m = Histogram{} }
func (m *Histogram) String() string { return proto.CompactTextString(m) }
func (*Histogram) ProtoMessage() {}
func (*Histogram) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{6}
}
func (m *Histogram) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Histogram.Unmarshal(m, b)
}
func (m *Histogram) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Histogram.Marshal(b, m, deterministic)
}
func (dst *Histogram) XXX_Merge(src proto.Message) {
xxx_messageInfo_Histogram.Merge(dst, src)
}
func (m *Histogram) XXX_Size() int {
return xxx_messageInfo_Histogram.Size(m)
}
func (m *Histogram) XXX_DiscardUnknown() {
xxx_messageInfo_Histogram.DiscardUnknown(m)
}
var xxx_messageInfo_Histogram proto.InternalMessageInfo
func (m *Histogram) GetSampleCount() uint64 {
if m != nil && m.SampleCount != nil {
return *m.SampleCount
}
return 0
}
func (m *Histogram) GetSampleSum() float64 {
if m != nil && m.SampleSum != nil {
return *m.SampleSum
}
return 0
}
func (m *Histogram) GetBucket() []*Bucket {
if m != nil {
return m.Bucket
}
return nil
}
type Bucket struct {
CumulativeCount *uint64 `protobuf:"varint,1,opt,name=cumulative_count,json=cumulativeCount" json:"cumulative_count,omitempty"`
UpperBound *float64 `protobuf:"fixed64,2,opt,name=upper_bound,json=upperBound" json:"upper_bound,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Bucket) Reset() { *m = Bucket{} }
func (m *Bucket) String() string { return proto.CompactTextString(m) }
func (*Bucket) ProtoMessage() {}
func (*Bucket) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{7}
}
func (m *Bucket) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Bucket.Unmarshal(m, b)
}
func (m *Bucket) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Bucket.Marshal(b, m, deterministic)
}
func (dst *Bucket) XXX_Merge(src proto.Message) {
xxx_messageInfo_Bucket.Merge(dst, src)
}
func (m *Bucket) XXX_Size() int {
return xxx_messageInfo_Bucket.Size(m)
}
func (m *Bucket) XXX_DiscardUnknown() {
xxx_messageInfo_Bucket.DiscardUnknown(m)
}
var xxx_messageInfo_Bucket proto.InternalMessageInfo
func (m *Bucket) GetCumulativeCount() uint64 {
if m != nil && m.CumulativeCount != nil {
return *m.CumulativeCount
}
return 0
}
func (m *Bucket) GetUpperBound() float64 {
if m != nil && m.UpperBound != nil {
return *m.UpperBound
}
return 0
}
type Metric struct {
Label []*LabelPair `protobuf:"bytes,1,rep,name=label" json:"label,omitempty"`
Gauge *Gauge `protobuf:"bytes,2,opt,name=gauge" json:"gauge,omitempty"`
Counter *Counter `protobuf:"bytes,3,opt,name=counter" json:"counter,omitempty"`
Summary *Summary `protobuf:"bytes,4,opt,name=summary" json:"summary,omitempty"`
Untyped *Untyped `protobuf:"bytes,5,opt,name=untyped" json:"untyped,omitempty"`
Histogram *Histogram `protobuf:"bytes,7,opt,name=histogram" json:"histogram,omitempty"`
TimestampMs *int64 `protobuf:"varint,6,opt,name=timestamp_ms,json=timestampMs" json:"timestamp_ms,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Metric) Reset() { *m = Metric{} }
func (m *Metric) String() string { return proto.CompactTextString(m) }
func (*Metric) ProtoMessage() {}
func (*Metric) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{8}
}
func (m *Metric) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Metric.Unmarshal(m, b)
}
func (m *Metric) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Metric.Marshal(b, m, deterministic)
}
func (dst *Metric) XXX_Merge(src proto.Message) {
xxx_messageInfo_Metric.Merge(dst, src)
}
func (m *Metric) XXX_Size() int {
return xxx_messageInfo_Metric.Size(m)
}
func (m *Metric) XXX_DiscardUnknown() {
xxx_messageInfo_Metric.DiscardUnknown(m)
}
var xxx_messageInfo_Metric proto.InternalMessageInfo
func (m *Metric) GetLabel() []*LabelPair {
if m != nil {
return m.Label
}
return nil
}
func (m *Metric) GetGauge() *Gauge {
if m != nil {
return m.Gauge
}
return nil
}
func (m *Metric) GetCounter() *Counter {
if m != nil {
return m.Counter
}
return nil
}
func (m *Metric) GetSummary() *Summary {
if m != nil {
return m.Summary
}
return nil
}
func (m *Metric) GetUntyped() *Untyped {
if m != nil {
return m.Untyped
}
return nil
}
func (m *Metric) GetHistogram() *Histogram {
if m != nil {
return m.Histogram
}
return nil
}
func (m *Metric) GetTimestampMs() int64 {
if m != nil && m.TimestampMs != nil {
return *m.TimestampMs
}
return 0
}
type MetricFamily struct {
Name *string `protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
Help *string `protobuf:"bytes,2,opt,name=help" json:"help,omitempty"`
Type *MetricType `protobuf:"varint,3,opt,name=type,enum=io.prometheus.client.MetricType" json:"type,omitempty"`
Metric []*Metric `protobuf:"bytes,4,rep,name=metric" json:"metric,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *MetricFamily) Reset() { *m = MetricFamily{} }
func (m *MetricFamily) String() string { return proto.CompactTextString(m) }
func (*MetricFamily) ProtoMessage() {}
func (*MetricFamily) Descriptor() ([]byte, []int) {
return fileDescriptor_metrics_c97c9a2b9560cb8f, []int{9}
}
func (m *MetricFamily) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_MetricFamily.Unmarshal(m, b)
}
func (m *MetricFamily) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_MetricFamily.Marshal(b, m, deterministic)
}
func (dst *MetricFamily) XXX_Merge(src proto.Message) {
xxx_messageInfo_MetricFamily.Merge(dst, src)
}
func (m *MetricFamily) XXX_Size() int {
return xxx_messageInfo_MetricFamily.Size(m)
}
func (m *MetricFamily) XXX_DiscardUnknown() {
xxx_messageInfo_MetricFamily.DiscardUnknown(m)
}
var xxx_messageInfo_MetricFamily proto.InternalMessageInfo
func (m *MetricFamily) GetName() string {
if m != nil && m.Name != nil {
return *m.Name
}
return ""
}
func (m *MetricFamily) GetHelp() string {
if m != nil && m.Help != nil {
return *m.Help
}
return ""
}
func (m *MetricFamily) GetType() MetricType {
if m != nil && m.Type != nil {
return *m.Type
}
return MetricType_COUNTER
}
func (m *MetricFamily) GetMetric() []*Metric {
if m != nil {
return m.Metric
}
return nil
}
func init() {
proto.RegisterType((*LabelPair)(nil), "io.prometheus.client.LabelPair")
proto.RegisterType((*Gauge)(nil), "io.prometheus.client.Gauge")
proto.RegisterType((*Counter)(nil), "io.prometheus.client.Counter")
proto.RegisterType((*Quantile)(nil), "io.prometheus.client.Quantile")
proto.RegisterType((*Summary)(nil), "io.prometheus.client.Summary")
proto.RegisterType((*Untyped)(nil), "io.prometheus.client.Untyped")
proto.RegisterType((*Histogram)(nil), "io.prometheus.client.Histogram")
proto.RegisterType((*Bucket)(nil), "io.prometheus.client.Bucket")
proto.RegisterType((*Metric)(nil), "io.prometheus.client.Metric")
proto.RegisterType((*MetricFamily)(nil), "io.prometheus.client.MetricFamily")
proto.RegisterEnum("io.prometheus.client.MetricType", MetricType_name, MetricType_value)
}
func init() { proto.RegisterFile("metrics.proto", fileDescriptor_metrics_c97c9a2b9560cb8f) }
var fileDescriptor_metrics_c97c9a2b9560cb8f = []byte{
// 591 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xac, 0x54, 0x4f, 0x4f, 0xdb, 0x4e,
0x14, 0xfc, 0x99, 0xd8, 0x09, 0x7e, 0x86, 0x5f, 0xad, 0x15, 0x07, 0xab, 0x2d, 0x25, 0xcd, 0x89,
0xf6, 0x10, 0x54, 0x04, 0xaa, 0x44, 0xdb, 0x03, 0x50, 0x1a, 0x2a, 0xd5, 0x40, 0x37, 0xc9, 0x81,
0x5e, 0xac, 0x8d, 0x59, 0x25, 0x56, 0xbd, 0xb6, 0x6b, 0xef, 0x22, 0xe5, 0xdc, 0x43, 0xbf, 0x47,
0xbf, 0x68, 0xab, 0xfd, 0xe3, 0x18, 0x24, 0xc3, 0xa9, 0xb7, 0xb7, 0xf3, 0x66, 0xde, 0x8e, 0x77,
0xc7, 0x0b, 0x9b, 0x8c, 0xf2, 0x32, 0x89, 0xab, 0x61, 0x51, 0xe6, 0x3c, 0x47, 0x5b, 0x49, 0x2e,
0x2b, 0x46, 0xf9, 0x82, 0x8a, 0x6a, 0x18, 0xa7, 0x09, 0xcd, 0xf8, 0xe0, 0x10, 0xdc, 0x2f, 0x64,
0x46, 0xd3, 0x2b, 0x92, 0x94, 0x08, 0x81, 0x9d, 0x11, 0x46, 0x03, 0xab, 0x6f, 0xed, 0xba, 0x58,
0xd5, 0x68, 0x0b, 0x9c, 0x5b, 0x92, 0x0a, 0x1a, 0xac, 0x29, 0x50, 0x2f, 0x06, 0xdb, 0xe0, 0x8c,
0x88, 0x98, 0xdf, 0x69, 0x4b, 0x8d, 0x55, 0xb7, 0x77, 0xa0, 0x77, 0x9a, 0x8b, 0x8c, 0xd3, 0xf2,
0x01, 0xc2, 0x7b, 0x58, 0xff, 0x2a, 0x48, 0xc6, 0x93, 0x94, 0xa2, 0xa7, 0xb0, 0xfe, 0xc3, 0xd4,
0x86, 0xb4, 0x5a, 0xdf, 0xdf, 0x7d, 0xa5, 0xfe, 0x65, 0x41, 0x6f, 0x2c, 0x18, 0x23, 0xe5, 0x12,
0xbd, 0x84, 0x8d, 0x8a, 0xb0, 0x22, 0xa5, 0x51, 0x2c, 0x77, 0x54, 0x13, 0x6c, 0xec, 0x69, 0x4c,
0x99, 0x40, 0xdb, 0x00, 0x86, 0x52, 0x09, 0x66, 0x26, 0xb9, 0x1a, 0x19, 0x0b, 0x86, 0x8e, 0xee,
0xec, 0xdf, 0xe9, 0x77, 0x76, 0xbd, 0xfd, 0x17, 0xc3, 0xb6, 0xb3, 0x1a, 0xd6, 0x8e, 0x1b, 0x7f,
0xf2, 0x43, 0xa7, 0x19, 0x5f, 0x16, 0xf4, 0xe6, 0x81, 0x0f, 0xfd, 0x69, 0x81, 0x7b, 0x9e, 0x54,
0x3c, 0x9f, 0x97, 0x84, 0xfd, 0x03, 0xb3, 0x07, 0xd0, 0x9d, 0x89, 0xf8, 0x3b, 0xe5, 0xc6, 0xea,
0xf3, 0x76, 0xab, 0x27, 0x8a, 0x83, 0x0d, 0x77, 0x30, 0x81, 0xae, 0x46, 0xd0, 0x2b, 0xf0, 0x63,
0xc1, 0x44, 0x4a, 0x78, 0x72, 0x7b, 0xdf, 0xc5, 0x93, 0x06, 0xd7, 0x4e, 0x76, 0xc0, 0x13, 0x45,
0x41, 0xcb, 0x68, 0x96, 0x8b, 0xec, 0xc6, 0x58, 0x01, 0x05, 0x9d, 0x48, 0x64, 0xf0, 0x67, 0x0d,
0xba, 0xa1, 0xca, 0x18, 0x3a, 0x04, 0x27, 0x95, 0x31, 0x0a, 0x2c, 0xe5, 0x6a, 0xa7, 0xdd, 0xd5,
0x2a, 0x69, 0x58, 0xb3, 0xd1, 0x1b, 0x70, 0xe6, 0x32, 0x46, 0x6a, 0xb8, 0xb7, 0xff, 0xac, 0x5d,
0xa6, 0x92, 0x86, 0x35, 0x13, 0xbd, 0x85, 0x5e, 0xac, 0xa3, 0x15, 0x74, 0x94, 0x68, 0xbb, 0x5d,
0x64, 0xf2, 0x87, 0x6b, 0xb6, 0x14, 0x56, 0x3a, 0x33, 0x81, 0xfd, 0x98, 0xd0, 0x04, 0x0b, 0xd7,
0x6c, 0x29, 0x14, 0xfa, 0x8e, 0x03, 0xe7, 0x31, 0xa1, 0x09, 0x02, 0xae, 0xd9, 0xe8, 0x03, 0xb8,
0x8b, 0xfa, 0xea, 0x83, 0x9e, 0x92, 0x3e, 0x70, 0x30, 0xab, 0x84, 0xe0, 0x46, 0x21, 0xc3, 0xc2,
0x13, 0x46, 0x2b, 0x4e, 0x58, 0x11, 0xb1, 0x2a, 0xe8, 0xf6, 0xad, 0xdd, 0x0e, 0xf6, 0x56, 0x58,
0x58, 0x0d, 0x7e, 0x5b, 0xb0, 0xa1, 0x6f, 0xe0, 0x13, 0x61, 0x49, 0xba, 0x6c, 0xfd, 0x83, 0x11,
0xd8, 0x0b, 0x9a, 0x16, 0xe6, 0x07, 0x56, 0x35, 0x3a, 0x00, 0x5b, 0x7a, 0x54, 0x47, 0xf8, 0xff,
0x7e, 0xbf, 0xdd, 0x95, 0x9e, 0x3c, 0x59, 0x16, 0x14, 0x2b, 0xb6, 0x0c, 0x9f, 0x7e, 0x53, 0x02,
0xfb, 0xb1, 0xf0, 0x69, 0x1d, 0x36, 0xdc, 0xd7, 0x21, 0x40, 0x33, 0x09, 0x79, 0xd0, 0x3b, 0xbd,
0x9c, 0x5e, 0x4c, 0xce, 0xb0, 0xff, 0x1f, 0x72, 0xc1, 0x19, 0x1d, 0x4f, 0x47, 0x67, 0xbe, 0x25,
0xf1, 0xf1, 0x34, 0x0c, 0x8f, 0xf1, 0xb5, 0xbf, 0x26, 0x17, 0xd3, 0x8b, 0xc9, 0xf5, 0xd5, 0xd9,
0x47, 0xbf, 0x83, 0x36, 0xc1, 0x3d, 0xff, 0x3c, 0x9e, 0x5c, 0x8e, 0xf0, 0x71, 0xe8, 0xdb, 0x27,
0x18, 0x5a, 0x5f, 0xb2, 0x6f, 0x47, 0xf3, 0x84, 0x2f, 0xc4, 0x6c, 0x18, 0xe7, 0x6c, 0xaf, 0xe9,
0xee, 0xe9, 0x6e, 0xc4, 0xf2, 0x1b, 0x9a, 0xee, 0xcd, 0xf3, 0x77, 0x49, 0x1e, 0x35, 0xdd, 0x48,
0x77, 0xff, 0x06, 0x00, 0x00, 0xff, 0xff, 0x45, 0x21, 0x7f, 0x64, 0x2b, 0x05, 0x00, 0x00,
}

201
vendor/github.com/prometheus/client_model/ruby/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

201
vendor/github.com/prometheus/common/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5
vendor/github.com/prometheus/common/NOTICE generated vendored Normal file
View file

@ -0,0 +1,5 @@
Common libraries shared by Prometheus Go components.
Copyright 2015 The Prometheus Authors
This product includes software developed at
SoundCloud Ltd. (http://soundcloud.com/).

429
vendor/github.com/prometheus/common/expfmt/decode.go generated vendored Normal file
View file

@ -0,0 +1,429 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expfmt
import (
"fmt"
"io"
"math"
"mime"
"net/http"
dto "github.com/prometheus/client_model/go"
"github.com/matttproud/golang_protobuf_extensions/pbutil"
"github.com/prometheus/common/model"
)
// Decoder types decode an input stream into metric families.
type Decoder interface {
Decode(*dto.MetricFamily) error
}
// DecodeOptions contains options used by the Decoder and in sample extraction.
type DecodeOptions struct {
// Timestamp is added to each value from the stream that has no explicit timestamp set.
Timestamp model.Time
}
// ResponseFormat extracts the correct format from a HTTP response header.
// If no matching format can be found FormatUnknown is returned.
func ResponseFormat(h http.Header) Format {
ct := h.Get(hdrContentType)
mediatype, params, err := mime.ParseMediaType(ct)
if err != nil {
return FmtUnknown
}
const textType = "text/plain"
switch mediatype {
case ProtoType:
if p, ok := params["proto"]; ok && p != ProtoProtocol {
return FmtUnknown
}
if e, ok := params["encoding"]; ok && e != "delimited" {
return FmtUnknown
}
return FmtProtoDelim
case textType:
if v, ok := params["version"]; ok && v != TextVersion {
return FmtUnknown
}
return FmtText
}
return FmtUnknown
}
// NewDecoder returns a new decoder based on the given input format.
// If the input format does not imply otherwise, a text format decoder is returned.
func NewDecoder(r io.Reader, format Format) Decoder {
switch format {
case FmtProtoDelim:
return &protoDecoder{r: r}
}
return &textDecoder{r: r}
}
// protoDecoder implements the Decoder interface for protocol buffers.
type protoDecoder struct {
r io.Reader
}
// Decode implements the Decoder interface.
func (d *protoDecoder) Decode(v *dto.MetricFamily) error {
_, err := pbutil.ReadDelimited(d.r, v)
if err != nil {
return err
}
if !model.IsValidMetricName(model.LabelValue(v.GetName())) {
return fmt.Errorf("invalid metric name %q", v.GetName())
}
for _, m := range v.GetMetric() {
if m == nil {
continue
}
for _, l := range m.GetLabel() {
if l == nil {
continue
}
if !model.LabelValue(l.GetValue()).IsValid() {
return fmt.Errorf("invalid label value %q", l.GetValue())
}
if !model.LabelName(l.GetName()).IsValid() {
return fmt.Errorf("invalid label name %q", l.GetName())
}
}
}
return nil
}
// textDecoder implements the Decoder interface for the text protocol.
type textDecoder struct {
r io.Reader
p TextParser
fams []*dto.MetricFamily
}
// Decode implements the Decoder interface.
func (d *textDecoder) Decode(v *dto.MetricFamily) error {
// TODO(fabxc): Wrap this as a line reader to make streaming safer.
if len(d.fams) == 0 {
// No cached metric families, read everything and parse metrics.
fams, err := d.p.TextToMetricFamilies(d.r)
if err != nil {
return err
}
if len(fams) == 0 {
return io.EOF
}
d.fams = make([]*dto.MetricFamily, 0, len(fams))
for _, f := range fams {
d.fams = append(d.fams, f)
}
}
*v = *d.fams[0]
d.fams = d.fams[1:]
return nil
}
// SampleDecoder wraps a Decoder to extract samples from the metric families
// decoded by the wrapped Decoder.
type SampleDecoder struct {
Dec Decoder
Opts *DecodeOptions
f dto.MetricFamily
}
// Decode calls the Decode method of the wrapped Decoder and then extracts the
// samples from the decoded MetricFamily into the provided model.Vector.
func (sd *SampleDecoder) Decode(s *model.Vector) error {
err := sd.Dec.Decode(&sd.f)
if err != nil {
return err
}
*s, err = extractSamples(&sd.f, sd.Opts)
return err
}
// ExtractSamples builds a slice of samples from the provided metric
// families. If an error occurrs during sample extraction, it continues to
// extract from the remaining metric families. The returned error is the last
// error that has occurred.
func ExtractSamples(o *DecodeOptions, fams ...*dto.MetricFamily) (model.Vector, error) {
var (
all model.Vector
lastErr error
)
for _, f := range fams {
some, err := extractSamples(f, o)
if err != nil {
lastErr = err
continue
}
all = append(all, some...)
}
return all, lastErr
}
func extractSamples(f *dto.MetricFamily, o *DecodeOptions) (model.Vector, error) {
switch f.GetType() {
case dto.MetricType_COUNTER:
return extractCounter(o, f), nil
case dto.MetricType_GAUGE:
return extractGauge(o, f), nil
case dto.MetricType_SUMMARY:
return extractSummary(o, f), nil
case dto.MetricType_UNTYPED:
return extractUntyped(o, f), nil
case dto.MetricType_HISTOGRAM:
return extractHistogram(o, f), nil
}
return nil, fmt.Errorf("expfmt.extractSamples: unknown metric family type %v", f.GetType())
}
func extractCounter(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
samples := make(model.Vector, 0, len(f.Metric))
for _, m := range f.Metric {
if m.Counter == nil {
continue
}
lset := make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName())
smpl := &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Counter.GetValue()),
}
if m.TimestampMs != nil {
smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
} else {
smpl.Timestamp = o.Timestamp
}
samples = append(samples, smpl)
}
return samples
}
func extractGauge(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
samples := make(model.Vector, 0, len(f.Metric))
for _, m := range f.Metric {
if m.Gauge == nil {
continue
}
lset := make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName())
smpl := &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Gauge.GetValue()),
}
if m.TimestampMs != nil {
smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
} else {
smpl.Timestamp = o.Timestamp
}
samples = append(samples, smpl)
}
return samples
}
func extractUntyped(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
samples := make(model.Vector, 0, len(f.Metric))
for _, m := range f.Metric {
if m.Untyped == nil {
continue
}
lset := make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName())
smpl := &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Untyped.GetValue()),
}
if m.TimestampMs != nil {
smpl.Timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
} else {
smpl.Timestamp = o.Timestamp
}
samples = append(samples, smpl)
}
return samples
}
func extractSummary(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
samples := make(model.Vector, 0, len(f.Metric))
for _, m := range f.Metric {
if m.Summary == nil {
continue
}
timestamp := o.Timestamp
if m.TimestampMs != nil {
timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
}
for _, q := range m.Summary.Quantile {
lset := make(model.LabelSet, len(m.Label)+2)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
// BUG(matt): Update other names to "quantile".
lset[model.LabelName(model.QuantileLabel)] = model.LabelValue(fmt.Sprint(q.GetQuantile()))
lset[model.MetricNameLabel] = model.LabelValue(f.GetName())
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(q.GetValue()),
Timestamp: timestamp,
})
}
lset := make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum")
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Summary.GetSampleSum()),
Timestamp: timestamp,
})
lset = make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count")
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Summary.GetSampleCount()),
Timestamp: timestamp,
})
}
return samples
}
func extractHistogram(o *DecodeOptions, f *dto.MetricFamily) model.Vector {
samples := make(model.Vector, 0, len(f.Metric))
for _, m := range f.Metric {
if m.Histogram == nil {
continue
}
timestamp := o.Timestamp
if m.TimestampMs != nil {
timestamp = model.TimeFromUnixNano(*m.TimestampMs * 1000000)
}
infSeen := false
for _, q := range m.Histogram.Bucket {
lset := make(model.LabelSet, len(m.Label)+2)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.LabelName(model.BucketLabel)] = model.LabelValue(fmt.Sprint(q.GetUpperBound()))
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket")
if math.IsInf(q.GetUpperBound(), +1) {
infSeen = true
}
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(q.GetCumulativeCount()),
Timestamp: timestamp,
})
}
lset := make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_sum")
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Histogram.GetSampleSum()),
Timestamp: timestamp,
})
lset = make(model.LabelSet, len(m.Label)+1)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_count")
count := &model.Sample{
Metric: model.Metric(lset),
Value: model.SampleValue(m.Histogram.GetSampleCount()),
Timestamp: timestamp,
}
samples = append(samples, count)
if !infSeen {
// Append an infinity bucket sample.
lset := make(model.LabelSet, len(m.Label)+2)
for _, p := range m.Label {
lset[model.LabelName(p.GetName())] = model.LabelValue(p.GetValue())
}
lset[model.LabelName(model.BucketLabel)] = model.LabelValue("+Inf")
lset[model.MetricNameLabel] = model.LabelValue(f.GetName() + "_bucket")
samples = append(samples, &model.Sample{
Metric: model.Metric(lset),
Value: count.Value,
Timestamp: timestamp,
})
}
}
return samples
}

88
vendor/github.com/prometheus/common/expfmt/encode.go generated vendored Normal file
View file

@ -0,0 +1,88 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expfmt
import (
"fmt"
"io"
"net/http"
"github.com/golang/protobuf/proto"
"github.com/matttproud/golang_protobuf_extensions/pbutil"
"github.com/prometheus/common/internal/bitbucket.org/ww/goautoneg"
dto "github.com/prometheus/client_model/go"
)
// Encoder types encode metric families into an underlying wire protocol.
type Encoder interface {
Encode(*dto.MetricFamily) error
}
type encoder func(*dto.MetricFamily) error
func (e encoder) Encode(v *dto.MetricFamily) error {
return e(v)
}
// Negotiate returns the Content-Type based on the given Accept header.
// If no appropriate accepted type is found, FmtText is returned.
func Negotiate(h http.Header) Format {
for _, ac := range goautoneg.ParseAccept(h.Get(hdrAccept)) {
// Check for protocol buffer
if ac.Type+"/"+ac.SubType == ProtoType && ac.Params["proto"] == ProtoProtocol {
switch ac.Params["encoding"] {
case "delimited":
return FmtProtoDelim
case "text":
return FmtProtoText
case "compact-text":
return FmtProtoCompact
}
}
// Check for text format.
ver := ac.Params["version"]
if ac.Type == "text" && ac.SubType == "plain" && (ver == TextVersion || ver == "") {
return FmtText
}
}
return FmtText
}
// NewEncoder returns a new encoder based on content type negotiation.
func NewEncoder(w io.Writer, format Format) Encoder {
switch format {
case FmtProtoDelim:
return encoder(func(v *dto.MetricFamily) error {
_, err := pbutil.WriteDelimited(w, v)
return err
})
case FmtProtoCompact:
return encoder(func(v *dto.MetricFamily) error {
_, err := fmt.Fprintln(w, v.String())
return err
})
case FmtProtoText:
return encoder(func(v *dto.MetricFamily) error {
_, err := fmt.Fprintln(w, proto.MarshalTextString(v))
return err
})
case FmtText:
return encoder(func(v *dto.MetricFamily) error {
_, err := MetricFamilyToText(w, v)
return err
})
}
panic("expfmt.NewEncoder: unknown format")
}

38
vendor/github.com/prometheus/common/expfmt/expfmt.go generated vendored Normal file
View file

@ -0,0 +1,38 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package expfmt contains tools for reading and writing Prometheus metrics.
package expfmt
// Format specifies the HTTP content type of the different wire protocols.
type Format string
// Constants to assemble the Content-Type values for the different wire protocols.
const (
TextVersion = "0.0.4"
ProtoType = `application/vnd.google.protobuf`
ProtoProtocol = `io.prometheus.client.MetricFamily`
ProtoFmt = ProtoType + "; proto=" + ProtoProtocol + ";"
// The Content-Type values for the different wire protocols.
FmtUnknown Format = `<unknown>`
FmtText Format = `text/plain; version=` + TextVersion + `; charset=utf-8`
FmtProtoDelim Format = ProtoFmt + ` encoding=delimited`
FmtProtoText Format = ProtoFmt + ` encoding=text`
FmtProtoCompact Format = ProtoFmt + ` encoding=compact-text`
)
const (
hdrContentType = "Content-Type"
hdrAccept = "Accept"
)

36
vendor/github.com/prometheus/common/expfmt/fuzz.go generated vendored Normal file
View file

@ -0,0 +1,36 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Build only when actually fuzzing
// +build gofuzz
package expfmt
import "bytes"
// Fuzz text metric parser with with github.com/dvyukov/go-fuzz:
//
// go-fuzz-build github.com/prometheus/common/expfmt
// go-fuzz -bin expfmt-fuzz.zip -workdir fuzz
//
// Further input samples should go in the folder fuzz/corpus.
func Fuzz(in []byte) int {
parser := TextParser{}
_, err := parser.TextToMetricFamilies(bytes.NewReader(in))
if err != nil {
return 0
}
return 1
}

View file

@ -0,0 +1,468 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expfmt
import (
"bytes"
"fmt"
"io"
"math"
"strconv"
"strings"
"sync"
"github.com/prometheus/common/model"
dto "github.com/prometheus/client_model/go"
)
// enhancedWriter has all the enhanced write functions needed here. bytes.Buffer
// implements it.
type enhancedWriter interface {
io.Writer
WriteRune(r rune) (n int, err error)
WriteString(s string) (n int, err error)
WriteByte(c byte) error
}
const (
initialBufSize = 512
initialNumBufSize = 24
)
var (
bufPool = sync.Pool{
New: func() interface{} {
return bytes.NewBuffer(make([]byte, 0, initialBufSize))
},
}
numBufPool = sync.Pool{
New: func() interface{} {
b := make([]byte, 0, initialNumBufSize)
return &b
},
}
)
// MetricFamilyToText converts a MetricFamily proto message into text format and
// writes the resulting lines to 'out'. It returns the number of bytes written
// and any error encountered. The output will have the same order as the input,
// no further sorting is performed. Furthermore, this function assumes the input
// is already sanitized and does not perform any sanity checks. If the input
// contains duplicate metrics or invalid metric or label names, the conversion
// will result in invalid text format output.
//
// This method fulfills the type 'prometheus.encoder'.
func MetricFamilyToText(out io.Writer, in *dto.MetricFamily) (written int, err error) {
// Fail-fast checks.
if len(in.Metric) == 0 {
return 0, fmt.Errorf("MetricFamily has no metrics: %s", in)
}
name := in.GetName()
if name == "" {
return 0, fmt.Errorf("MetricFamily has no name: %s", in)
}
// Try the interface upgrade. If it doesn't work, we'll use a
// bytes.Buffer from the sync.Pool and write out its content to out in a
// single go in the end.
w, ok := out.(enhancedWriter)
if !ok {
b := bufPool.Get().(*bytes.Buffer)
b.Reset()
w = b
defer func() {
bWritten, bErr := out.Write(b.Bytes())
written = bWritten
if err == nil {
err = bErr
}
bufPool.Put(b)
}()
}
var n int
// Comments, first HELP, then TYPE.
if in.Help != nil {
n, err = w.WriteString("# HELP ")
written += n
if err != nil {
return
}
n, err = w.WriteString(name)
written += n
if err != nil {
return
}
err = w.WriteByte(' ')
written++
if err != nil {
return
}
n, err = writeEscapedString(w, *in.Help, false)
written += n
if err != nil {
return
}
err = w.WriteByte('\n')
written++
if err != nil {
return
}
}
n, err = w.WriteString("# TYPE ")
written += n
if err != nil {
return
}
n, err = w.WriteString(name)
written += n
if err != nil {
return
}
metricType := in.GetType()
switch metricType {
case dto.MetricType_COUNTER:
n, err = w.WriteString(" counter\n")
case dto.MetricType_GAUGE:
n, err = w.WriteString(" gauge\n")
case dto.MetricType_SUMMARY:
n, err = w.WriteString(" summary\n")
case dto.MetricType_UNTYPED:
n, err = w.WriteString(" untyped\n")
case dto.MetricType_HISTOGRAM:
n, err = w.WriteString(" histogram\n")
default:
return written, fmt.Errorf("unknown metric type %s", metricType.String())
}
written += n
if err != nil {
return
}
// Finally the samples, one line for each.
for _, metric := range in.Metric {
switch metricType {
case dto.MetricType_COUNTER:
if metric.Counter == nil {
return written, fmt.Errorf(
"expected counter in metric %s %s", name, metric,
)
}
n, err = writeSample(
w, name, "", metric, "", 0,
metric.Counter.GetValue(),
)
case dto.MetricType_GAUGE:
if metric.Gauge == nil {
return written, fmt.Errorf(
"expected gauge in metric %s %s", name, metric,
)
}
n, err = writeSample(
w, name, "", metric, "", 0,
metric.Gauge.GetValue(),
)
case dto.MetricType_UNTYPED:
if metric.Untyped == nil {
return written, fmt.Errorf(
"expected untyped in metric %s %s", name, metric,
)
}
n, err = writeSample(
w, name, "", metric, "", 0,
metric.Untyped.GetValue(),
)
case dto.MetricType_SUMMARY:
if metric.Summary == nil {
return written, fmt.Errorf(
"expected summary in metric %s %s", name, metric,
)
}
for _, q := range metric.Summary.Quantile {
n, err = writeSample(
w, name, "", metric,
model.QuantileLabel, q.GetQuantile(),
q.GetValue(),
)
written += n
if err != nil {
return
}
}
n, err = writeSample(
w, name, "_sum", metric, "", 0,
metric.Summary.GetSampleSum(),
)
written += n
if err != nil {
return
}
n, err = writeSample(
w, name, "_count", metric, "", 0,
float64(metric.Summary.GetSampleCount()),
)
case dto.MetricType_HISTOGRAM:
if metric.Histogram == nil {
return written, fmt.Errorf(
"expected histogram in metric %s %s", name, metric,
)
}
infSeen := false
for _, b := range metric.Histogram.Bucket {
n, err = writeSample(
w, name, "_bucket", metric,
model.BucketLabel, b.GetUpperBound(),
float64(b.GetCumulativeCount()),
)
written += n
if err != nil {
return
}
if math.IsInf(b.GetUpperBound(), +1) {
infSeen = true
}
}
if !infSeen {
n, err = writeSample(
w, name, "_bucket", metric,
model.BucketLabel, math.Inf(+1),
float64(metric.Histogram.GetSampleCount()),
)
written += n
if err != nil {
return
}
}
n, err = writeSample(
w, name, "_sum", metric, "", 0,
metric.Histogram.GetSampleSum(),
)
written += n
if err != nil {
return
}
n, err = writeSample(
w, name, "_count", metric, "", 0,
float64(metric.Histogram.GetSampleCount()),
)
default:
return written, fmt.Errorf(
"unexpected type in metric %s %s", name, metric,
)
}
written += n
if err != nil {
return
}
}
return
}
// writeSample writes a single sample in text format to w, given the metric
// name, the metric proto message itself, optionally an additional label name
// with a float64 value (use empty string as label name if not required), and
// the value. The function returns the number of bytes written and any error
// encountered.
func writeSample(
w enhancedWriter,
name, suffix string,
metric *dto.Metric,
additionalLabelName string, additionalLabelValue float64,
value float64,
) (int, error) {
var written int
n, err := w.WriteString(name)
written += n
if err != nil {
return written, err
}
if suffix != "" {
n, err = w.WriteString(suffix)
written += n
if err != nil {
return written, err
}
}
n, err = writeLabelPairs(
w, metric.Label, additionalLabelName, additionalLabelValue,
)
written += n
if err != nil {
return written, err
}
err = w.WriteByte(' ')
written++
if err != nil {
return written, err
}
n, err = writeFloat(w, value)
written += n
if err != nil {
return written, err
}
if metric.TimestampMs != nil {
err = w.WriteByte(' ')
written++
if err != nil {
return written, err
}
n, err = writeInt(w, *metric.TimestampMs)
written += n
if err != nil {
return written, err
}
}
err = w.WriteByte('\n')
written++
if err != nil {
return written, err
}
return written, nil
}
// writeLabelPairs converts a slice of LabelPair proto messages plus the
// explicitly given additional label pair into text formatted as required by the
// text format and writes it to 'w'. An empty slice in combination with an empty
// string 'additionalLabelName' results in nothing being written. Otherwise, the
// label pairs are written, escaped as required by the text format, and enclosed
// in '{...}'. The function returns the number of bytes written and any error
// encountered.
func writeLabelPairs(
w enhancedWriter,
in []*dto.LabelPair,
additionalLabelName string, additionalLabelValue float64,
) (int, error) {
if len(in) == 0 && additionalLabelName == "" {
return 0, nil
}
var (
written int
separator byte = '{'
)
for _, lp := range in {
err := w.WriteByte(separator)
written++
if err != nil {
return written, err
}
n, err := w.WriteString(lp.GetName())
written += n
if err != nil {
return written, err
}
n, err = w.WriteString(`="`)
written += n
if err != nil {
return written, err
}
n, err = writeEscapedString(w, lp.GetValue(), true)
written += n
if err != nil {
return written, err
}
err = w.WriteByte('"')
written++
if err != nil {
return written, err
}
separator = ','
}
if additionalLabelName != "" {
err := w.WriteByte(separator)
written++
if err != nil {
return written, err
}
n, err := w.WriteString(additionalLabelName)
written += n
if err != nil {
return written, err
}
n, err = w.WriteString(`="`)
written += n
if err != nil {
return written, err
}
n, err = writeFloat(w, additionalLabelValue)
written += n
if err != nil {
return written, err
}
err = w.WriteByte('"')
written++
if err != nil {
return written, err
}
}
err := w.WriteByte('}')
written++
if err != nil {
return written, err
}
return written, nil
}
// writeEscapedString replaces '\' by '\\', new line character by '\n', and - if
// includeDoubleQuote is true - '"' by '\"'.
var (
escaper = strings.NewReplacer("\\", `\\`, "\n", `\n`)
quotedEscaper = strings.NewReplacer("\\", `\\`, "\n", `\n`, "\"", `\"`)
)
func writeEscapedString(w enhancedWriter, v string, includeDoubleQuote bool) (int, error) {
if includeDoubleQuote {
return quotedEscaper.WriteString(w, v)
} else {
return escaper.WriteString(w, v)
}
}
// writeFloat is equivalent to fmt.Fprint with a float64 argument but hardcodes
// a few common cases for increased efficiency. For non-hardcoded cases, it uses
// strconv.AppendFloat to avoid allocations, similar to writeInt.
func writeFloat(w enhancedWriter, f float64) (int, error) {
switch {
case f == 1:
return 1, w.WriteByte('1')
case f == 0:
return 1, w.WriteByte('0')
case f == -1:
return w.WriteString("-1")
case math.IsNaN(f):
return w.WriteString("NaN")
case math.IsInf(f, +1):
return w.WriteString("+Inf")
case math.IsInf(f, -1):
return w.WriteString("-Inf")
default:
bp := numBufPool.Get().(*[]byte)
*bp = strconv.AppendFloat((*bp)[:0], f, 'g', -1, 64)
written, err := w.Write(*bp)
numBufPool.Put(bp)
return written, err
}
}
// writeInt is equivalent to fmt.Fprint with an int64 argument but uses
// strconv.AppendInt with a byte slice taken from a sync.Pool to avoid
// allocations.
func writeInt(w enhancedWriter, i int64) (int, error) {
bp := numBufPool.Get().(*[]byte)
*bp = strconv.AppendInt((*bp)[:0], i, 10)
written, err := w.Write(*bp)
numBufPool.Put(bp)
return written, err
}

View file

@ -0,0 +1,757 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package expfmt
import (
"bufio"
"bytes"
"fmt"
"io"
"math"
"strconv"
"strings"
dto "github.com/prometheus/client_model/go"
"github.com/golang/protobuf/proto"
"github.com/prometheus/common/model"
)
// A stateFn is a function that represents a state in a state machine. By
// executing it, the state is progressed to the next state. The stateFn returns
// another stateFn, which represents the new state. The end state is represented
// by nil.
type stateFn func() stateFn
// ParseError signals errors while parsing the simple and flat text-based
// exchange format.
type ParseError struct {
Line int
Msg string
}
// Error implements the error interface.
func (e ParseError) Error() string {
return fmt.Sprintf("text format parsing error in line %d: %s", e.Line, e.Msg)
}
// TextParser is used to parse the simple and flat text-based exchange format. Its
// zero value is ready to use.
type TextParser struct {
metricFamiliesByName map[string]*dto.MetricFamily
buf *bufio.Reader // Where the parsed input is read through.
err error // Most recent error.
lineCount int // Tracks the line count for error messages.
currentByte byte // The most recent byte read.
currentToken bytes.Buffer // Re-used each time a token has to be gathered from multiple bytes.
currentMF *dto.MetricFamily
currentMetric *dto.Metric
currentLabelPair *dto.LabelPair
// The remaining member variables are only used for summaries/histograms.
currentLabels map[string]string // All labels including '__name__' but excluding 'quantile'/'le'
// Summary specific.
summaries map[uint64]*dto.Metric // Key is created with LabelsToSignature.
currentQuantile float64
// Histogram specific.
histograms map[uint64]*dto.Metric // Key is created with LabelsToSignature.
currentBucket float64
// These tell us if the currently processed line ends on '_count' or
// '_sum' respectively and belong to a summary/histogram, representing the sample
// count and sum of that summary/histogram.
currentIsSummaryCount, currentIsSummarySum bool
currentIsHistogramCount, currentIsHistogramSum bool
}
// TextToMetricFamilies reads 'in' as the simple and flat text-based exchange
// format and creates MetricFamily proto messages. It returns the MetricFamily
// proto messages in a map where the metric names are the keys, along with any
// error encountered.
//
// If the input contains duplicate metrics (i.e. lines with the same metric name
// and exactly the same label set), the resulting MetricFamily will contain
// duplicate Metric proto messages. Similar is true for duplicate label
// names. Checks for duplicates have to be performed separately, if required.
// Also note that neither the metrics within each MetricFamily are sorted nor
// the label pairs within each Metric. Sorting is not required for the most
// frequent use of this method, which is sample ingestion in the Prometheus
// server. However, for presentation purposes, you might want to sort the
// metrics, and in some cases, you must sort the labels, e.g. for consumption by
// the metric family injection hook of the Prometheus registry.
//
// Summaries and histograms are rather special beasts. You would probably not
// use them in the simple text format anyway. This method can deal with
// summaries and histograms if they are presented in exactly the way the
// text.Create function creates them.
//
// This method must not be called concurrently. If you want to parse different
// input concurrently, instantiate a separate Parser for each goroutine.
func (p *TextParser) TextToMetricFamilies(in io.Reader) (map[string]*dto.MetricFamily, error) {
p.reset(in)
for nextState := p.startOfLine; nextState != nil; nextState = nextState() {
// Magic happens here...
}
// Get rid of empty metric families.
for k, mf := range p.metricFamiliesByName {
if len(mf.GetMetric()) == 0 {
delete(p.metricFamiliesByName, k)
}
}
// If p.err is io.EOF now, we have run into a premature end of the input
// stream. Turn this error into something nicer and more
// meaningful. (io.EOF is often used as a signal for the legitimate end
// of an input stream.)
if p.err == io.EOF {
p.parseError("unexpected end of input stream")
}
return p.metricFamiliesByName, p.err
}
func (p *TextParser) reset(in io.Reader) {
p.metricFamiliesByName = map[string]*dto.MetricFamily{}
if p.buf == nil {
p.buf = bufio.NewReader(in)
} else {
p.buf.Reset(in)
}
p.err = nil
p.lineCount = 0
if p.summaries == nil || len(p.summaries) > 0 {
p.summaries = map[uint64]*dto.Metric{}
}
if p.histograms == nil || len(p.histograms) > 0 {
p.histograms = map[uint64]*dto.Metric{}
}
p.currentQuantile = math.NaN()
p.currentBucket = math.NaN()
}
// startOfLine represents the state where the next byte read from p.buf is the
// start of a line (or whitespace leading up to it).
func (p *TextParser) startOfLine() stateFn {
p.lineCount++
if p.skipBlankTab(); p.err != nil {
// End of input reached. This is the only case where
// that is not an error but a signal that we are done.
p.err = nil
return nil
}
switch p.currentByte {
case '#':
return p.startComment
case '\n':
return p.startOfLine // Empty line, start the next one.
}
return p.readingMetricName
}
// startComment represents the state where the next byte read from p.buf is the
// start of a comment (or whitespace leading up to it).
func (p *TextParser) startComment() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
return p.startOfLine
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
// If we have hit the end of line already, there is nothing left
// to do. This is not considered a syntax error.
if p.currentByte == '\n' {
return p.startOfLine
}
keyword := p.currentToken.String()
if keyword != "HELP" && keyword != "TYPE" {
// Generic comment, ignore by fast forwarding to end of line.
for p.currentByte != '\n' {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil {
return nil // Unexpected end of input.
}
}
return p.startOfLine
}
// There is something. Next has to be a metric name.
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.readTokenAsMetricName(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
// At the end of the line already.
// Again, this is not considered a syntax error.
return p.startOfLine
}
if !isBlankOrTab(p.currentByte) {
p.parseError("invalid metric name in comment")
return nil
}
p.setOrCreateCurrentMF()
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
// At the end of the line already.
// Again, this is not considered a syntax error.
return p.startOfLine
}
switch keyword {
case "HELP":
return p.readingHelp
case "TYPE":
return p.readingType
}
panic(fmt.Sprintf("code error: unexpected keyword %q", keyword))
}
// readingMetricName represents the state where the last byte read (now in
// p.currentByte) is the first byte of a metric name.
func (p *TextParser) readingMetricName() stateFn {
if p.readTokenAsMetricName(); p.err != nil {
return nil
}
if p.currentToken.Len() == 0 {
p.parseError("invalid metric name")
return nil
}
p.setOrCreateCurrentMF()
// Now is the time to fix the type if it hasn't happened yet.
if p.currentMF.Type == nil {
p.currentMF.Type = dto.MetricType_UNTYPED.Enum()
}
p.currentMetric = &dto.Metric{}
// Do not append the newly created currentMetric to
// currentMF.Metric right now. First wait if this is a summary,
// and the metric exists already, which we can only know after
// having read all the labels.
if p.skipBlankTabIfCurrentBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingLabels
}
// readingLabels represents the state where the last byte read (now in
// p.currentByte) is either the first byte of the label set (i.e. a '{'), or the
// first byte of the value (otherwise).
func (p *TextParser) readingLabels() stateFn {
// Summaries/histograms are special. We have to reset the
// currentLabels map, currentQuantile and currentBucket before starting to
// read labels.
if p.currentMF.GetType() == dto.MetricType_SUMMARY || p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
p.currentLabels = map[string]string{}
p.currentLabels[string(model.MetricNameLabel)] = p.currentMF.GetName()
p.currentQuantile = math.NaN()
p.currentBucket = math.NaN()
}
if p.currentByte != '{' {
return p.readingValue
}
return p.startLabelName
}
// startLabelName represents the state where the next byte read from p.buf is
// the start of a label name (or whitespace leading up to it).
func (p *TextParser) startLabelName() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '}' {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingValue
}
if p.readTokenAsLabelName(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentToken.Len() == 0 {
p.parseError(fmt.Sprintf("invalid label name for metric %q", p.currentMF.GetName()))
return nil
}
p.currentLabelPair = &dto.LabelPair{Name: proto.String(p.currentToken.String())}
if p.currentLabelPair.GetName() == string(model.MetricNameLabel) {
p.parseError(fmt.Sprintf("label name %q is reserved", model.MetricNameLabel))
return nil
}
// Special summary/histogram treatment. Don't add 'quantile' and 'le'
// labels to 'real' labels.
if !(p.currentMF.GetType() == dto.MetricType_SUMMARY && p.currentLabelPair.GetName() == model.QuantileLabel) &&
!(p.currentMF.GetType() == dto.MetricType_HISTOGRAM && p.currentLabelPair.GetName() == model.BucketLabel) {
p.currentMetric.Label = append(p.currentMetric.Label, p.currentLabelPair)
}
if p.skipBlankTabIfCurrentBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte != '=' {
p.parseError(fmt.Sprintf("expected '=' after label name, found %q", p.currentByte))
return nil
}
return p.startLabelValue
}
// startLabelValue represents the state where the next byte read from p.buf is
// the start of a (quoted) label value (or whitespace leading up to it).
func (p *TextParser) startLabelValue() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte != '"' {
p.parseError(fmt.Sprintf("expected '\"' at start of label value, found %q", p.currentByte))
return nil
}
if p.readTokenAsLabelValue(); p.err != nil {
return nil
}
if !model.LabelValue(p.currentToken.String()).IsValid() {
p.parseError(fmt.Sprintf("invalid label value %q", p.currentToken.String()))
return nil
}
p.currentLabelPair.Value = proto.String(p.currentToken.String())
// Special treatment of summaries:
// - Quantile labels are special, will result in dto.Quantile later.
// - Other labels have to be added to currentLabels for signature calculation.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if p.currentLabelPair.GetName() == model.QuantileLabel {
if p.currentQuantile, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value for 'quantile' label, got %q", p.currentLabelPair.GetValue()))
return nil
}
} else {
p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue()
}
}
// Similar special treatment of histograms.
if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
if p.currentLabelPair.GetName() == model.BucketLabel {
if p.currentBucket, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value for 'le' label, got %q", p.currentLabelPair.GetValue()))
return nil
}
} else {
p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue()
}
}
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
switch p.currentByte {
case ',':
return p.startLabelName
case '}':
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingValue
default:
p.parseError(fmt.Sprintf("unexpected end of label value %q", p.currentLabelPair.GetValue()))
return nil
}
}
// readingValue represents the state where the last byte read (now in
// p.currentByte) is the first byte of the sample value (i.e. a float).
func (p *TextParser) readingValue() stateFn {
// When we are here, we have read all the labels, so for the
// special case of a summary/histogram, we can finally find out
// if the metric already exists.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
signature := model.LabelsToSignature(p.currentLabels)
if summary := p.summaries[signature]; summary != nil {
p.currentMetric = summary
} else {
p.summaries[signature] = p.currentMetric
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
} else if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
signature := model.LabelsToSignature(p.currentLabels)
if histogram := p.histograms[signature]; histogram != nil {
p.currentMetric = histogram
} else {
p.histograms[signature] = p.currentMetric
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
} else {
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
value, err := strconv.ParseFloat(p.currentToken.String(), 64)
if err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value, got %q", p.currentToken.String()))
return nil
}
switch p.currentMF.GetType() {
case dto.MetricType_COUNTER:
p.currentMetric.Counter = &dto.Counter{Value: proto.Float64(value)}
case dto.MetricType_GAUGE:
p.currentMetric.Gauge = &dto.Gauge{Value: proto.Float64(value)}
case dto.MetricType_UNTYPED:
p.currentMetric.Untyped = &dto.Untyped{Value: proto.Float64(value)}
case dto.MetricType_SUMMARY:
// *sigh*
if p.currentMetric.Summary == nil {
p.currentMetric.Summary = &dto.Summary{}
}
switch {
case p.currentIsSummaryCount:
p.currentMetric.Summary.SampleCount = proto.Uint64(uint64(value))
case p.currentIsSummarySum:
p.currentMetric.Summary.SampleSum = proto.Float64(value)
case !math.IsNaN(p.currentQuantile):
p.currentMetric.Summary.Quantile = append(
p.currentMetric.Summary.Quantile,
&dto.Quantile{
Quantile: proto.Float64(p.currentQuantile),
Value: proto.Float64(value),
},
)
}
case dto.MetricType_HISTOGRAM:
// *sigh*
if p.currentMetric.Histogram == nil {
p.currentMetric.Histogram = &dto.Histogram{}
}
switch {
case p.currentIsHistogramCount:
p.currentMetric.Histogram.SampleCount = proto.Uint64(uint64(value))
case p.currentIsHistogramSum:
p.currentMetric.Histogram.SampleSum = proto.Float64(value)
case !math.IsNaN(p.currentBucket):
p.currentMetric.Histogram.Bucket = append(
p.currentMetric.Histogram.Bucket,
&dto.Bucket{
UpperBound: proto.Float64(p.currentBucket),
CumulativeCount: proto.Uint64(uint64(value)),
},
)
}
default:
p.err = fmt.Errorf("unexpected type for metric name %q", p.currentMF.GetName())
}
if p.currentByte == '\n' {
return p.startOfLine
}
return p.startTimestamp
}
// startTimestamp represents the state where the next byte read from p.buf is
// the start of the timestamp (or whitespace leading up to it).
func (p *TextParser) startTimestamp() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
timestamp, err := strconv.ParseInt(p.currentToken.String(), 10, 64)
if err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected integer as timestamp, got %q", p.currentToken.String()))
return nil
}
p.currentMetric.TimestampMs = proto.Int64(timestamp)
if p.readTokenUntilNewline(false); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentToken.Len() > 0 {
p.parseError(fmt.Sprintf("spurious string after timestamp: %q", p.currentToken.String()))
return nil
}
return p.startOfLine
}
// readingHelp represents the state where the last byte read (now in
// p.currentByte) is the first byte of the docstring after 'HELP'.
func (p *TextParser) readingHelp() stateFn {
if p.currentMF.Help != nil {
p.parseError(fmt.Sprintf("second HELP line for metric name %q", p.currentMF.GetName()))
return nil
}
// Rest of line is the docstring.
if p.readTokenUntilNewline(true); p.err != nil {
return nil // Unexpected end of input.
}
p.currentMF.Help = proto.String(p.currentToken.String())
return p.startOfLine
}
// readingType represents the state where the last byte read (now in
// p.currentByte) is the first byte of the type hint after 'HELP'.
func (p *TextParser) readingType() stateFn {
if p.currentMF.Type != nil {
p.parseError(fmt.Sprintf("second TYPE line for metric name %q, or TYPE reported after samples", p.currentMF.GetName()))
return nil
}
// Rest of line is the type.
if p.readTokenUntilNewline(false); p.err != nil {
return nil // Unexpected end of input.
}
metricType, ok := dto.MetricType_value[strings.ToUpper(p.currentToken.String())]
if !ok {
p.parseError(fmt.Sprintf("unknown metric type %q", p.currentToken.String()))
return nil
}
p.currentMF.Type = dto.MetricType(metricType).Enum()
return p.startOfLine
}
// parseError sets p.err to a ParseError at the current line with the given
// message.
func (p *TextParser) parseError(msg string) {
p.err = ParseError{
Line: p.lineCount,
Msg: msg,
}
}
// skipBlankTab reads (and discards) bytes from p.buf until it encounters a byte
// that is neither ' ' nor '\t'. That byte is left in p.currentByte.
func (p *TextParser) skipBlankTab() {
for {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil || !isBlankOrTab(p.currentByte) {
return
}
}
}
// skipBlankTabIfCurrentBlankTab works exactly as skipBlankTab but doesn't do
// anything if p.currentByte is neither ' ' nor '\t'.
func (p *TextParser) skipBlankTabIfCurrentBlankTab() {
if isBlankOrTab(p.currentByte) {
p.skipBlankTab()
}
}
// readTokenUntilWhitespace copies bytes from p.buf into p.currentToken. The
// first byte considered is the byte already read (now in p.currentByte). The
// first whitespace byte encountered is still copied into p.currentByte, but not
// into p.currentToken.
func (p *TextParser) readTokenUntilWhitespace() {
p.currentToken.Reset()
for p.err == nil && !isBlankOrTab(p.currentByte) && p.currentByte != '\n' {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
}
}
// readTokenUntilNewline copies bytes from p.buf into p.currentToken. The first
// byte considered is the byte already read (now in p.currentByte). The first
// newline byte encountered is still copied into p.currentByte, but not into
// p.currentToken. If recognizeEscapeSequence is true, two escape sequences are
// recognized: '\\' translates into '\', and '\n' into a line-feed character.
// All other escape sequences are invalid and cause an error.
func (p *TextParser) readTokenUntilNewline(recognizeEscapeSequence bool) {
p.currentToken.Reset()
escaped := false
for p.err == nil {
if recognizeEscapeSequence && escaped {
switch p.currentByte {
case '\\':
p.currentToken.WriteByte(p.currentByte)
case 'n':
p.currentToken.WriteByte('\n')
default:
p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte))
return
}
escaped = false
} else {
switch p.currentByte {
case '\n':
return
case '\\':
escaped = true
default:
p.currentToken.WriteByte(p.currentByte)
}
}
p.currentByte, p.err = p.buf.ReadByte()
}
}
// readTokenAsMetricName copies a metric name from p.buf into p.currentToken.
// The first byte considered is the byte already read (now in p.currentByte).
// The first byte not part of a metric name is still copied into p.currentByte,
// but not into p.currentToken.
func (p *TextParser) readTokenAsMetricName() {
p.currentToken.Reset()
if !isValidMetricNameStart(p.currentByte) {
return
}
for {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
if p.err != nil || !isValidMetricNameContinuation(p.currentByte) {
return
}
}
}
// readTokenAsLabelName copies a label name from p.buf into p.currentToken.
// The first byte considered is the byte already read (now in p.currentByte).
// The first byte not part of a label name is still copied into p.currentByte,
// but not into p.currentToken.
func (p *TextParser) readTokenAsLabelName() {
p.currentToken.Reset()
if !isValidLabelNameStart(p.currentByte) {
return
}
for {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
if p.err != nil || !isValidLabelNameContinuation(p.currentByte) {
return
}
}
}
// readTokenAsLabelValue copies a label value from p.buf into p.currentToken.
// In contrast to the other 'readTokenAs...' functions, which start with the
// last read byte in p.currentByte, this method ignores p.currentByte and starts
// with reading a new byte from p.buf. The first byte not part of a label value
// is still copied into p.currentByte, but not into p.currentToken.
func (p *TextParser) readTokenAsLabelValue() {
p.currentToken.Reset()
escaped := false
for {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil {
return
}
if escaped {
switch p.currentByte {
case '"', '\\':
p.currentToken.WriteByte(p.currentByte)
case 'n':
p.currentToken.WriteByte('\n')
default:
p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte))
return
}
escaped = false
continue
}
switch p.currentByte {
case '"':
return
case '\n':
p.parseError(fmt.Sprintf("label value %q contains unescaped new-line", p.currentToken.String()))
return
case '\\':
escaped = true
default:
p.currentToken.WriteByte(p.currentByte)
}
}
}
func (p *TextParser) setOrCreateCurrentMF() {
p.currentIsSummaryCount = false
p.currentIsSummarySum = false
p.currentIsHistogramCount = false
p.currentIsHistogramSum = false
name := p.currentToken.String()
if p.currentMF = p.metricFamiliesByName[name]; p.currentMF != nil {
return
}
// Try out if this is a _sum or _count for a summary/histogram.
summaryName := summaryMetricName(name)
if p.currentMF = p.metricFamiliesByName[summaryName]; p.currentMF != nil {
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if isCount(name) {
p.currentIsSummaryCount = true
}
if isSum(name) {
p.currentIsSummarySum = true
}
return
}
}
histogramName := histogramMetricName(name)
if p.currentMF = p.metricFamiliesByName[histogramName]; p.currentMF != nil {
if p.currentMF.GetType() == dto.MetricType_HISTOGRAM {
if isCount(name) {
p.currentIsHistogramCount = true
}
if isSum(name) {
p.currentIsHistogramSum = true
}
return
}
}
p.currentMF = &dto.MetricFamily{Name: proto.String(name)}
p.metricFamiliesByName[name] = p.currentMF
}
func isValidLabelNameStart(b byte) bool {
return (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') || b == '_'
}
func isValidLabelNameContinuation(b byte) bool {
return isValidLabelNameStart(b) || (b >= '0' && b <= '9')
}
func isValidMetricNameStart(b byte) bool {
return isValidLabelNameStart(b) || b == ':'
}
func isValidMetricNameContinuation(b byte) bool {
return isValidLabelNameContinuation(b) || b == ':'
}
func isBlankOrTab(b byte) bool {
return b == ' ' || b == '\t'
}
func isCount(name string) bool {
return len(name) > 6 && name[len(name)-6:] == "_count"
}
func isSum(name string) bool {
return len(name) > 4 && name[len(name)-4:] == "_sum"
}
func isBucket(name string) bool {
return len(name) > 7 && name[len(name)-7:] == "_bucket"
}
func summaryMetricName(name string) string {
switch {
case isCount(name):
return name[:len(name)-6]
case isSum(name):
return name[:len(name)-4]
default:
return name
}
}
func histogramMetricName(name string) string {
switch {
case isCount(name):
return name[:len(name)-6]
case isSum(name):
return name[:len(name)-4]
case isBucket(name):
return name[:len(name)-7]
default:
return name
}
}

View file

@ -0,0 +1,162 @@
/*
HTTP Content-Type Autonegotiation.
The functions in this package implement the behaviour specified in
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Copyright (c) 2011, Open Knowledge Foundation Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
Neither the name of the Open Knowledge Foundation Ltd. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package goautoneg
import (
"sort"
"strconv"
"strings"
)
// Structure to represent a clause in an HTTP Accept Header
type Accept struct {
Type, SubType string
Q float64
Params map[string]string
}
// For internal use, so that we can use the sort interface
type accept_slice []Accept
func (accept accept_slice) Len() int {
slice := []Accept(accept)
return len(slice)
}
func (accept accept_slice) Less(i, j int) bool {
slice := []Accept(accept)
ai, aj := slice[i], slice[j]
if ai.Q > aj.Q {
return true
}
if ai.Type != "*" && aj.Type == "*" {
return true
}
if ai.SubType != "*" && aj.SubType == "*" {
return true
}
return false
}
func (accept accept_slice) Swap(i, j int) {
slice := []Accept(accept)
slice[i], slice[j] = slice[j], slice[i]
}
// Parse an Accept Header string returning a sorted list
// of clauses
func ParseAccept(header string) (accept []Accept) {
parts := strings.Split(header, ",")
accept = make([]Accept, 0, len(parts))
for _, part := range parts {
part := strings.Trim(part, " ")
a := Accept{}
a.Params = make(map[string]string)
a.Q = 1.0
mrp := strings.Split(part, ";")
media_range := mrp[0]
sp := strings.Split(media_range, "/")
a.Type = strings.Trim(sp[0], " ")
switch {
case len(sp) == 1 && a.Type == "*":
a.SubType = "*"
case len(sp) == 2:
a.SubType = strings.Trim(sp[1], " ")
default:
continue
}
if len(mrp) == 1 {
accept = append(accept, a)
continue
}
for _, param := range mrp[1:] {
sp := strings.SplitN(param, "=", 2)
if len(sp) != 2 {
continue
}
token := strings.Trim(sp[0], " ")
if token == "q" {
a.Q, _ = strconv.ParseFloat(sp[1], 32)
} else {
a.Params[token] = strings.Trim(sp[1], " ")
}
}
accept = append(accept, a)
}
slice := accept_slice(accept)
sort.Sort(slice)
return
}
// Negotiate the most appropriate content_type given the accept header
// and a list of alternatives.
func Negotiate(header string, alternatives []string) (content_type string) {
asp := make([][]string, 0, len(alternatives))
for _, ctype := range alternatives {
asp = append(asp, strings.SplitN(ctype, "/", 2))
}
for _, clause := range ParseAccept(header) {
for i, ctsp := range asp {
if clause.Type == ctsp[0] && clause.SubType == ctsp[1] {
content_type = alternatives[i]
return
}
if clause.Type == ctsp[0] && clause.SubType == "*" {
content_type = alternatives[i]
return
}
if clause.Type == "*" && clause.SubType == "*" {
content_type = alternatives[i]
return
}
}
}
return
}

136
vendor/github.com/prometheus/common/model/alert.go generated vendored Normal file
View file

@ -0,0 +1,136 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"time"
)
type AlertStatus string
const (
AlertFiring AlertStatus = "firing"
AlertResolved AlertStatus = "resolved"
)
// Alert is a generic representation of an alert in the Prometheus eco-system.
type Alert struct {
// Label value pairs for purpose of aggregation, matching, and disposition
// dispatching. This must minimally include an "alertname" label.
Labels LabelSet `json:"labels"`
// Extra key/value information which does not define alert identity.
Annotations LabelSet `json:"annotations"`
// The known time range for this alert. Both ends are optional.
StartsAt time.Time `json:"startsAt,omitempty"`
EndsAt time.Time `json:"endsAt,omitempty"`
GeneratorURL string `json:"generatorURL"`
}
// Name returns the name of the alert. It is equivalent to the "alertname" label.
func (a *Alert) Name() string {
return string(a.Labels[AlertNameLabel])
}
// Fingerprint returns a unique hash for the alert. It is equivalent to
// the fingerprint of the alert's label set.
func (a *Alert) Fingerprint() Fingerprint {
return a.Labels.Fingerprint()
}
func (a *Alert) String() string {
s := fmt.Sprintf("%s[%s]", a.Name(), a.Fingerprint().String()[:7])
if a.Resolved() {
return s + "[resolved]"
}
return s + "[active]"
}
// Resolved returns true iff the activity interval ended in the past.
func (a *Alert) Resolved() bool {
return a.ResolvedAt(time.Now())
}
// ResolvedAt returns true off the activity interval ended before
// the given timestamp.
func (a *Alert) ResolvedAt(ts time.Time) bool {
if a.EndsAt.IsZero() {
return false
}
return !a.EndsAt.After(ts)
}
// Status returns the status of the alert.
func (a *Alert) Status() AlertStatus {
if a.Resolved() {
return AlertResolved
}
return AlertFiring
}
// Validate checks whether the alert data is inconsistent.
func (a *Alert) Validate() error {
if a.StartsAt.IsZero() {
return fmt.Errorf("start time missing")
}
if !a.EndsAt.IsZero() && a.EndsAt.Before(a.StartsAt) {
return fmt.Errorf("start time must be before end time")
}
if err := a.Labels.Validate(); err != nil {
return fmt.Errorf("invalid label set: %s", err)
}
if len(a.Labels) == 0 {
return fmt.Errorf("at least one label pair required")
}
if err := a.Annotations.Validate(); err != nil {
return fmt.Errorf("invalid annotations: %s", err)
}
return nil
}
// Alert is a list of alerts that can be sorted in chronological order.
type Alerts []*Alert
func (as Alerts) Len() int { return len(as) }
func (as Alerts) Swap(i, j int) { as[i], as[j] = as[j], as[i] }
func (as Alerts) Less(i, j int) bool {
if as[i].StartsAt.Before(as[j].StartsAt) {
return true
}
if as[i].EndsAt.Before(as[j].EndsAt) {
return true
}
return as[i].Fingerprint() < as[j].Fingerprint()
}
// HasFiring returns true iff one of the alerts is not resolved.
func (as Alerts) HasFiring() bool {
for _, a := range as {
if !a.Resolved() {
return true
}
}
return false
}
// Status returns StatusFiring iff at least one of the alerts is firing.
func (as Alerts) Status() AlertStatus {
if as.HasFiring() {
return AlertFiring
}
return AlertResolved
}

View file

@ -0,0 +1,105 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"strconv"
)
// Fingerprint provides a hash-capable representation of a Metric.
// For our purposes, FNV-1A 64-bit is used.
type Fingerprint uint64
// FingerprintFromString transforms a string representation into a Fingerprint.
func FingerprintFromString(s string) (Fingerprint, error) {
num, err := strconv.ParseUint(s, 16, 64)
return Fingerprint(num), err
}
// ParseFingerprint parses the input string into a fingerprint.
func ParseFingerprint(s string) (Fingerprint, error) {
num, err := strconv.ParseUint(s, 16, 64)
if err != nil {
return 0, err
}
return Fingerprint(num), nil
}
func (f Fingerprint) String() string {
return fmt.Sprintf("%016x", uint64(f))
}
// Fingerprints represents a collection of Fingerprint subject to a given
// natural sorting scheme. It implements sort.Interface.
type Fingerprints []Fingerprint
// Len implements sort.Interface.
func (f Fingerprints) Len() int {
return len(f)
}
// Less implements sort.Interface.
func (f Fingerprints) Less(i, j int) bool {
return f[i] < f[j]
}
// Swap implements sort.Interface.
func (f Fingerprints) Swap(i, j int) {
f[i], f[j] = f[j], f[i]
}
// FingerprintSet is a set of Fingerprints.
type FingerprintSet map[Fingerprint]struct{}
// Equal returns true if both sets contain the same elements (and not more).
func (s FingerprintSet) Equal(o FingerprintSet) bool {
if len(s) != len(o) {
return false
}
for k := range s {
if _, ok := o[k]; !ok {
return false
}
}
return true
}
// Intersection returns the elements contained in both sets.
func (s FingerprintSet) Intersection(o FingerprintSet) FingerprintSet {
myLength, otherLength := len(s), len(o)
if myLength == 0 || otherLength == 0 {
return FingerprintSet{}
}
subSet := s
superSet := o
if otherLength < myLength {
subSet = o
superSet = s
}
out := FingerprintSet{}
for k := range subSet {
if _, ok := superSet[k]; ok {
out[k] = struct{}{}
}
}
return out
}

42
vendor/github.com/prometheus/common/model/fnv.go generated vendored Normal file
View file

@ -0,0 +1,42 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
// Inline and byte-free variant of hash/fnv's fnv64a.
const (
offset64 = 14695981039346656037
prime64 = 1099511628211
)
// hashNew initializies a new fnv64a hash value.
func hashNew() uint64 {
return offset64
}
// hashAdd adds a string to a fnv64a hash value, returning the updated hash.
func hashAdd(h uint64, s string) uint64 {
for i := 0; i < len(s); i++ {
h ^= uint64(s[i])
h *= prime64
}
return h
}
// hashAddByte adds a byte to a fnv64a hash value, returning the updated hash.
func hashAddByte(h uint64, b byte) uint64 {
h ^= uint64(b)
h *= prime64
return h
}

210
vendor/github.com/prometheus/common/model/labels.go generated vendored Normal file
View file

@ -0,0 +1,210 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"encoding/json"
"fmt"
"regexp"
"strings"
"unicode/utf8"
)
const (
// AlertNameLabel is the name of the label containing the an alert's name.
AlertNameLabel = "alertname"
// ExportedLabelPrefix is the prefix to prepend to the label names present in
// exported metrics if a label of the same name is added by the server.
ExportedLabelPrefix = "exported_"
// MetricNameLabel is the label name indicating the metric name of a
// timeseries.
MetricNameLabel = "__name__"
// SchemeLabel is the name of the label that holds the scheme on which to
// scrape a target.
SchemeLabel = "__scheme__"
// AddressLabel is the name of the label that holds the address of
// a scrape target.
AddressLabel = "__address__"
// MetricsPathLabel is the name of the label that holds the path on which to
// scrape a target.
MetricsPathLabel = "__metrics_path__"
// ReservedLabelPrefix is a prefix which is not legal in user-supplied
// label names.
ReservedLabelPrefix = "__"
// MetaLabelPrefix is a prefix for labels that provide meta information.
// Labels with this prefix are used for intermediate label processing and
// will not be attached to time series.
MetaLabelPrefix = "__meta_"
// TmpLabelPrefix is a prefix for temporary labels as part of relabelling.
// Labels with this prefix are used for intermediate label processing and
// will not be attached to time series. This is reserved for use in
// Prometheus configuration files by users.
TmpLabelPrefix = "__tmp_"
// ParamLabelPrefix is a prefix for labels that provide URL parameters
// used to scrape a target.
ParamLabelPrefix = "__param_"
// JobLabel is the label name indicating the job from which a timeseries
// was scraped.
JobLabel = "job"
// InstanceLabel is the label name used for the instance label.
InstanceLabel = "instance"
// BucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
BucketLabel = "le"
// QuantileLabel is used for the label that defines the quantile in a
// summary.
QuantileLabel = "quantile"
)
// LabelNameRE is a regular expression matching valid label names. Note that the
// IsValid method of LabelName performs the same check but faster than a match
// with this regular expression.
var LabelNameRE = regexp.MustCompile("^[a-zA-Z_][a-zA-Z0-9_]*$")
// A LabelName is a key for a LabelSet or Metric. It has a value associated
// therewith.
type LabelName string
// IsValid is true iff the label name matches the pattern of LabelNameRE. This
// method, however, does not use LabelNameRE for the check but a much faster
// hardcoded implementation.
func (ln LabelName) IsValid() bool {
if len(ln) == 0 {
return false
}
for i, b := range ln {
if !((b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') || b == '_' || (b >= '0' && b <= '9' && i > 0)) {
return false
}
}
return true
}
// UnmarshalYAML implements the yaml.Unmarshaler interface.
func (ln *LabelName) UnmarshalYAML(unmarshal func(interface{}) error) error {
var s string
if err := unmarshal(&s); err != nil {
return err
}
if !LabelName(s).IsValid() {
return fmt.Errorf("%q is not a valid label name", s)
}
*ln = LabelName(s)
return nil
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (ln *LabelName) UnmarshalJSON(b []byte) error {
var s string
if err := json.Unmarshal(b, &s); err != nil {
return err
}
if !LabelName(s).IsValid() {
return fmt.Errorf("%q is not a valid label name", s)
}
*ln = LabelName(s)
return nil
}
// LabelNames is a sortable LabelName slice. In implements sort.Interface.
type LabelNames []LabelName
func (l LabelNames) Len() int {
return len(l)
}
func (l LabelNames) Less(i, j int) bool {
return l[i] < l[j]
}
func (l LabelNames) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
func (l LabelNames) String() string {
labelStrings := make([]string, 0, len(l))
for _, label := range l {
labelStrings = append(labelStrings, string(label))
}
return strings.Join(labelStrings, ", ")
}
// A LabelValue is an associated value for a LabelName.
type LabelValue string
// IsValid returns true iff the string is a valid UTF8.
func (lv LabelValue) IsValid() bool {
return utf8.ValidString(string(lv))
}
// LabelValues is a sortable LabelValue slice. It implements sort.Interface.
type LabelValues []LabelValue
func (l LabelValues) Len() int {
return len(l)
}
func (l LabelValues) Less(i, j int) bool {
return string(l[i]) < string(l[j])
}
func (l LabelValues) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
// LabelPair pairs a name with a value.
type LabelPair struct {
Name LabelName
Value LabelValue
}
// LabelPairs is a sortable slice of LabelPair pointers. It implements
// sort.Interface.
type LabelPairs []*LabelPair
func (l LabelPairs) Len() int {
return len(l)
}
func (l LabelPairs) Less(i, j int) bool {
switch {
case l[i].Name > l[j].Name:
return false
case l[i].Name < l[j].Name:
return true
case l[i].Value > l[j].Value:
return false
case l[i].Value < l[j].Value:
return true
default:
return false
}
}
func (l LabelPairs) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}

169
vendor/github.com/prometheus/common/model/labelset.go generated vendored Normal file
View file

@ -0,0 +1,169 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"encoding/json"
"fmt"
"sort"
"strings"
)
// A LabelSet is a collection of LabelName and LabelValue pairs. The LabelSet
// may be fully-qualified down to the point where it may resolve to a single
// Metric in the data store or not. All operations that occur within the realm
// of a LabelSet can emit a vector of Metric entities to which the LabelSet may
// match.
type LabelSet map[LabelName]LabelValue
// Validate checks whether all names and values in the label set
// are valid.
func (ls LabelSet) Validate() error {
for ln, lv := range ls {
if !ln.IsValid() {
return fmt.Errorf("invalid name %q", ln)
}
if !lv.IsValid() {
return fmt.Errorf("invalid value %q", lv)
}
}
return nil
}
// Equal returns true iff both label sets have exactly the same key/value pairs.
func (ls LabelSet) Equal(o LabelSet) bool {
if len(ls) != len(o) {
return false
}
for ln, lv := range ls {
olv, ok := o[ln]
if !ok {
return false
}
if olv != lv {
return false
}
}
return true
}
// Before compares the metrics, using the following criteria:
//
// If m has fewer labels than o, it is before o. If it has more, it is not.
//
// If the number of labels is the same, the superset of all label names is
// sorted alphanumerically. The first differing label pair found in that order
// determines the outcome: If the label does not exist at all in m, then m is
// before o, and vice versa. Otherwise the label value is compared
// alphanumerically.
//
// If m and o are equal, the method returns false.
func (ls LabelSet) Before(o LabelSet) bool {
if len(ls) < len(o) {
return true
}
if len(ls) > len(o) {
return false
}
lns := make(LabelNames, 0, len(ls)+len(o))
for ln := range ls {
lns = append(lns, ln)
}
for ln := range o {
lns = append(lns, ln)
}
// It's probably not worth it to de-dup lns.
sort.Sort(lns)
for _, ln := range lns {
mlv, ok := ls[ln]
if !ok {
return true
}
olv, ok := o[ln]
if !ok {
return false
}
if mlv < olv {
return true
}
if mlv > olv {
return false
}
}
return false
}
// Clone returns a copy of the label set.
func (ls LabelSet) Clone() LabelSet {
lsn := make(LabelSet, len(ls))
for ln, lv := range ls {
lsn[ln] = lv
}
return lsn
}
// Merge is a helper function to non-destructively merge two label sets.
func (l LabelSet) Merge(other LabelSet) LabelSet {
result := make(LabelSet, len(l))
for k, v := range l {
result[k] = v
}
for k, v := range other {
result[k] = v
}
return result
}
func (l LabelSet) String() string {
lstrs := make([]string, 0, len(l))
for l, v := range l {
lstrs = append(lstrs, fmt.Sprintf("%s=%q", l, v))
}
sort.Strings(lstrs)
return fmt.Sprintf("{%s}", strings.Join(lstrs, ", "))
}
// Fingerprint returns the LabelSet's fingerprint.
func (ls LabelSet) Fingerprint() Fingerprint {
return labelSetToFingerprint(ls)
}
// FastFingerprint returns the LabelSet's Fingerprint calculated by a faster hashing
// algorithm, which is, however, more susceptible to hash collisions.
func (ls LabelSet) FastFingerprint() Fingerprint {
return labelSetToFastFingerprint(ls)
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (l *LabelSet) UnmarshalJSON(b []byte) error {
var m map[LabelName]LabelValue
if err := json.Unmarshal(b, &m); err != nil {
return err
}
// encoding/json only unmarshals maps of the form map[string]T. It treats
// LabelName as a string and does not call its UnmarshalJSON method.
// Thus, we have to replicate the behavior here.
for ln := range m {
if !ln.IsValid() {
return fmt.Errorf("%q is not a valid label name", ln)
}
}
*l = LabelSet(m)
return nil
}

103
vendor/github.com/prometheus/common/model/metric.go generated vendored Normal file
View file

@ -0,0 +1,103 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"regexp"
"sort"
"strings"
)
var (
separator = []byte{0}
// MetricNameRE is a regular expression matching valid metric
// names. Note that the IsValidMetricName function performs the same
// check but faster than a match with this regular expression.
MetricNameRE = regexp.MustCompile(`^[a-zA-Z_:][a-zA-Z0-9_:]*$`)
)
// A Metric is similar to a LabelSet, but the key difference is that a Metric is
// a singleton and refers to one and only one stream of samples.
type Metric LabelSet
// Equal compares the metrics.
func (m Metric) Equal(o Metric) bool {
return LabelSet(m).Equal(LabelSet(o))
}
// Before compares the metrics' underlying label sets.
func (m Metric) Before(o Metric) bool {
return LabelSet(m).Before(LabelSet(o))
}
// Clone returns a copy of the Metric.
func (m Metric) Clone() Metric {
clone := make(Metric, len(m))
for k, v := range m {
clone[k] = v
}
return clone
}
func (m Metric) String() string {
metricName, hasName := m[MetricNameLabel]
numLabels := len(m) - 1
if !hasName {
numLabels = len(m)
}
labelStrings := make([]string, 0, numLabels)
for label, value := range m {
if label != MetricNameLabel {
labelStrings = append(labelStrings, fmt.Sprintf("%s=%q", label, value))
}
}
switch numLabels {
case 0:
if hasName {
return string(metricName)
}
return "{}"
default:
sort.Strings(labelStrings)
return fmt.Sprintf("%s{%s}", metricName, strings.Join(labelStrings, ", "))
}
}
// Fingerprint returns a Metric's Fingerprint.
func (m Metric) Fingerprint() Fingerprint {
return LabelSet(m).Fingerprint()
}
// FastFingerprint returns a Metric's Fingerprint calculated by a faster hashing
// algorithm, which is, however, more susceptible to hash collisions.
func (m Metric) FastFingerprint() Fingerprint {
return LabelSet(m).FastFingerprint()
}
// IsValidMetricName returns true iff name matches the pattern of MetricNameRE.
// This function, however, does not use MetricNameRE for the check but a much
// faster hardcoded implementation.
func IsValidMetricName(n LabelValue) bool {
if len(n) == 0 {
return false
}
for i, b := range n {
if !((b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') || b == '_' || b == ':' || (b >= '0' && b <= '9' && i > 0)) {
return false
}
}
return true
}

16
vendor/github.com/prometheus/common/model/model.go generated vendored Normal file
View file

@ -0,0 +1,16 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package model contains common data structures that are shared across
// Prometheus components and libraries.
package model

144
vendor/github.com/prometheus/common/model/signature.go generated vendored Normal file
View file

@ -0,0 +1,144 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"sort"
)
// SeparatorByte is a byte that cannot occur in valid UTF-8 sequences and is
// used to separate label names, label values, and other strings from each other
// when calculating their combined hash value (aka signature aka fingerprint).
const SeparatorByte byte = 255
var (
// cache the signature of an empty label set.
emptyLabelSignature = hashNew()
)
// LabelsToSignature returns a quasi-unique signature (i.e., fingerprint) for a
// given label set. (Collisions are possible but unlikely if the number of label
// sets the function is applied to is small.)
func LabelsToSignature(labels map[string]string) uint64 {
if len(labels) == 0 {
return emptyLabelSignature
}
labelNames := make([]string, 0, len(labels))
for labelName := range labels {
labelNames = append(labelNames, labelName)
}
sort.Strings(labelNames)
sum := hashNew()
for _, labelName := range labelNames {
sum = hashAdd(sum, labelName)
sum = hashAddByte(sum, SeparatorByte)
sum = hashAdd(sum, labels[labelName])
sum = hashAddByte(sum, SeparatorByte)
}
return sum
}
// labelSetToFingerprint works exactly as LabelsToSignature but takes a LabelSet as
// parameter (rather than a label map) and returns a Fingerprint.
func labelSetToFingerprint(ls LabelSet) Fingerprint {
if len(ls) == 0 {
return Fingerprint(emptyLabelSignature)
}
labelNames := make(LabelNames, 0, len(ls))
for labelName := range ls {
labelNames = append(labelNames, labelName)
}
sort.Sort(labelNames)
sum := hashNew()
for _, labelName := range labelNames {
sum = hashAdd(sum, string(labelName))
sum = hashAddByte(sum, SeparatorByte)
sum = hashAdd(sum, string(ls[labelName]))
sum = hashAddByte(sum, SeparatorByte)
}
return Fingerprint(sum)
}
// labelSetToFastFingerprint works similar to labelSetToFingerprint but uses a
// faster and less allocation-heavy hash function, which is more susceptible to
// create hash collisions. Therefore, collision detection should be applied.
func labelSetToFastFingerprint(ls LabelSet) Fingerprint {
if len(ls) == 0 {
return Fingerprint(emptyLabelSignature)
}
var result uint64
for labelName, labelValue := range ls {
sum := hashNew()
sum = hashAdd(sum, string(labelName))
sum = hashAddByte(sum, SeparatorByte)
sum = hashAdd(sum, string(labelValue))
result ^= sum
}
return Fingerprint(result)
}
// SignatureForLabels works like LabelsToSignature but takes a Metric as
// parameter (rather than a label map) and only includes the labels with the
// specified LabelNames into the signature calculation. The labels passed in
// will be sorted by this function.
func SignatureForLabels(m Metric, labels ...LabelName) uint64 {
if len(labels) == 0 {
return emptyLabelSignature
}
sort.Sort(LabelNames(labels))
sum := hashNew()
for _, label := range labels {
sum = hashAdd(sum, string(label))
sum = hashAddByte(sum, SeparatorByte)
sum = hashAdd(sum, string(m[label]))
sum = hashAddByte(sum, SeparatorByte)
}
return sum
}
// SignatureWithoutLabels works like LabelsToSignature but takes a Metric as
// parameter (rather than a label map) and excludes the labels with any of the
// specified LabelNames from the signature calculation.
func SignatureWithoutLabels(m Metric, labels map[LabelName]struct{}) uint64 {
if len(m) == 0 {
return emptyLabelSignature
}
labelNames := make(LabelNames, 0, len(m))
for labelName := range m {
if _, exclude := labels[labelName]; !exclude {
labelNames = append(labelNames, labelName)
}
}
if len(labelNames) == 0 {
return emptyLabelSignature
}
sort.Sort(labelNames)
sum := hashNew()
for _, labelName := range labelNames {
sum = hashAdd(sum, string(labelName))
sum = hashAddByte(sum, SeparatorByte)
sum = hashAdd(sum, string(m[labelName]))
sum = hashAddByte(sum, SeparatorByte)
}
return sum
}

106
vendor/github.com/prometheus/common/model/silence.go generated vendored Normal file
View file

@ -0,0 +1,106 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"encoding/json"
"fmt"
"regexp"
"time"
)
// Matcher describes a matches the value of a given label.
type Matcher struct {
Name LabelName `json:"name"`
Value string `json:"value"`
IsRegex bool `json:"isRegex"`
}
func (m *Matcher) UnmarshalJSON(b []byte) error {
type plain Matcher
if err := json.Unmarshal(b, (*plain)(m)); err != nil {
return err
}
if len(m.Name) == 0 {
return fmt.Errorf("label name in matcher must not be empty")
}
if m.IsRegex {
if _, err := regexp.Compile(m.Value); err != nil {
return err
}
}
return nil
}
// Validate returns true iff all fields of the matcher have valid values.
func (m *Matcher) Validate() error {
if !m.Name.IsValid() {
return fmt.Errorf("invalid name %q", m.Name)
}
if m.IsRegex {
if _, err := regexp.Compile(m.Value); err != nil {
return fmt.Errorf("invalid regular expression %q", m.Value)
}
} else if !LabelValue(m.Value).IsValid() || len(m.Value) == 0 {
return fmt.Errorf("invalid value %q", m.Value)
}
return nil
}
// Silence defines the representation of a silence definition in the Prometheus
// eco-system.
type Silence struct {
ID uint64 `json:"id,omitempty"`
Matchers []*Matcher `json:"matchers"`
StartsAt time.Time `json:"startsAt"`
EndsAt time.Time `json:"endsAt"`
CreatedAt time.Time `json:"createdAt,omitempty"`
CreatedBy string `json:"createdBy"`
Comment string `json:"comment,omitempty"`
}
// Validate returns true iff all fields of the silence have valid values.
func (s *Silence) Validate() error {
if len(s.Matchers) == 0 {
return fmt.Errorf("at least one matcher required")
}
for _, m := range s.Matchers {
if err := m.Validate(); err != nil {
return fmt.Errorf("invalid matcher: %s", err)
}
}
if s.StartsAt.IsZero() {
return fmt.Errorf("start time missing")
}
if s.EndsAt.IsZero() {
return fmt.Errorf("end time missing")
}
if s.EndsAt.Before(s.StartsAt) {
return fmt.Errorf("start time must be before end time")
}
if s.CreatedBy == "" {
return fmt.Errorf("creator information missing")
}
if s.Comment == "" {
return fmt.Errorf("comment missing")
}
if s.CreatedAt.IsZero() {
return fmt.Errorf("creation timestamp missing")
}
return nil
}

264
vendor/github.com/prometheus/common/model/time.go generated vendored Normal file
View file

@ -0,0 +1,264 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"math"
"regexp"
"strconv"
"strings"
"time"
)
const (
// MinimumTick is the minimum supported time resolution. This has to be
// at least time.Second in order for the code below to work.
minimumTick = time.Millisecond
// second is the Time duration equivalent to one second.
second = int64(time.Second / minimumTick)
// The number of nanoseconds per minimum tick.
nanosPerTick = int64(minimumTick / time.Nanosecond)
// Earliest is the earliest Time representable. Handy for
// initializing a high watermark.
Earliest = Time(math.MinInt64)
// Latest is the latest Time representable. Handy for initializing
// a low watermark.
Latest = Time(math.MaxInt64)
)
// Time is the number of milliseconds since the epoch
// (1970-01-01 00:00 UTC) excluding leap seconds.
type Time int64
// Interval describes an interval between two timestamps.
type Interval struct {
Start, End Time
}
// Now returns the current time as a Time.
func Now() Time {
return TimeFromUnixNano(time.Now().UnixNano())
}
// TimeFromUnix returns the Time equivalent to the Unix Time t
// provided in seconds.
func TimeFromUnix(t int64) Time {
return Time(t * second)
}
// TimeFromUnixNano returns the Time equivalent to the Unix Time
// t provided in nanoseconds.
func TimeFromUnixNano(t int64) Time {
return Time(t / nanosPerTick)
}
// Equal reports whether two Times represent the same instant.
func (t Time) Equal(o Time) bool {
return t == o
}
// Before reports whether the Time t is before o.
func (t Time) Before(o Time) bool {
return t < o
}
// After reports whether the Time t is after o.
func (t Time) After(o Time) bool {
return t > o
}
// Add returns the Time t + d.
func (t Time) Add(d time.Duration) Time {
return t + Time(d/minimumTick)
}
// Sub returns the Duration t - o.
func (t Time) Sub(o Time) time.Duration {
return time.Duration(t-o) * minimumTick
}
// Time returns the time.Time representation of t.
func (t Time) Time() time.Time {
return time.Unix(int64(t)/second, (int64(t)%second)*nanosPerTick)
}
// Unix returns t as a Unix time, the number of seconds elapsed
// since January 1, 1970 UTC.
func (t Time) Unix() int64 {
return int64(t) / second
}
// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
// since January 1, 1970 UTC.
func (t Time) UnixNano() int64 {
return int64(t) * nanosPerTick
}
// The number of digits after the dot.
var dotPrecision = int(math.Log10(float64(second)))
// String returns a string representation of the Time.
func (t Time) String() string {
return strconv.FormatFloat(float64(t)/float64(second), 'f', -1, 64)
}
// MarshalJSON implements the json.Marshaler interface.
func (t Time) MarshalJSON() ([]byte, error) {
return []byte(t.String()), nil
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (t *Time) UnmarshalJSON(b []byte) error {
p := strings.Split(string(b), ".")
switch len(p) {
case 1:
v, err := strconv.ParseInt(string(p[0]), 10, 64)
if err != nil {
return err
}
*t = Time(v * second)
case 2:
v, err := strconv.ParseInt(string(p[0]), 10, 64)
if err != nil {
return err
}
v *= second
prec := dotPrecision - len(p[1])
if prec < 0 {
p[1] = p[1][:dotPrecision]
} else if prec > 0 {
p[1] = p[1] + strings.Repeat("0", prec)
}
va, err := strconv.ParseInt(p[1], 10, 32)
if err != nil {
return err
}
*t = Time(v + va)
default:
return fmt.Errorf("invalid time %q", string(b))
}
return nil
}
// Duration wraps time.Duration. It is used to parse the custom duration format
// from YAML.
// This type should not propagate beyond the scope of input/output processing.
type Duration time.Duration
// Set implements pflag/flag.Value
func (d *Duration) Set(s string) error {
var err error
*d, err = ParseDuration(s)
return err
}
// Type implements pflag.Value
func (d *Duration) Type() string {
return "duration"
}
var durationRE = regexp.MustCompile("^([0-9]+)(y|w|d|h|m|s|ms)$")
// ParseDuration parses a string into a time.Duration, assuming that a year
// always has 365d, a week always has 7d, and a day always has 24h.
func ParseDuration(durationStr string) (Duration, error) {
matches := durationRE.FindStringSubmatch(durationStr)
if len(matches) != 3 {
return 0, fmt.Errorf("not a valid duration string: %q", durationStr)
}
var (
n, _ = strconv.Atoi(matches[1])
dur = time.Duration(n) * time.Millisecond
)
switch unit := matches[2]; unit {
case "y":
dur *= 1000 * 60 * 60 * 24 * 365
case "w":
dur *= 1000 * 60 * 60 * 24 * 7
case "d":
dur *= 1000 * 60 * 60 * 24
case "h":
dur *= 1000 * 60 * 60
case "m":
dur *= 1000 * 60
case "s":
dur *= 1000
case "ms":
// Value already correct
default:
return 0, fmt.Errorf("invalid time unit in duration string: %q", unit)
}
return Duration(dur), nil
}
func (d Duration) String() string {
var (
ms = int64(time.Duration(d) / time.Millisecond)
unit = "ms"
)
if ms == 0 {
return "0s"
}
factors := map[string]int64{
"y": 1000 * 60 * 60 * 24 * 365,
"w": 1000 * 60 * 60 * 24 * 7,
"d": 1000 * 60 * 60 * 24,
"h": 1000 * 60 * 60,
"m": 1000 * 60,
"s": 1000,
"ms": 1,
}
switch int64(0) {
case ms % factors["y"]:
unit = "y"
case ms % factors["w"]:
unit = "w"
case ms % factors["d"]:
unit = "d"
case ms % factors["h"]:
unit = "h"
case ms % factors["m"]:
unit = "m"
case ms % factors["s"]:
unit = "s"
}
return fmt.Sprintf("%v%v", ms/factors[unit], unit)
}
// MarshalYAML implements the yaml.Marshaler interface.
func (d Duration) MarshalYAML() (interface{}, error) {
return d.String(), nil
}
// UnmarshalYAML implements the yaml.Unmarshaler interface.
func (d *Duration) UnmarshalYAML(unmarshal func(interface{}) error) error {
var s string
if err := unmarshal(&s); err != nil {
return err
}
dur, err := ParseDuration(s)
if err != nil {
return err
}
*d = dur
return nil
}

416
vendor/github.com/prometheus/common/model/value.go generated vendored Normal file
View file

@ -0,0 +1,416 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"encoding/json"
"fmt"
"math"
"sort"
"strconv"
"strings"
)
var (
// ZeroSamplePair is the pseudo zero-value of SamplePair used to signal a
// non-existing sample pair. It is a SamplePair with timestamp Earliest and
// value 0.0. Note that the natural zero value of SamplePair has a timestamp
// of 0, which is possible to appear in a real SamplePair and thus not
// suitable to signal a non-existing SamplePair.
ZeroSamplePair = SamplePair{Timestamp: Earliest}
// ZeroSample is the pseudo zero-value of Sample used to signal a
// non-existing sample. It is a Sample with timestamp Earliest, value 0.0,
// and metric nil. Note that the natural zero value of Sample has a timestamp
// of 0, which is possible to appear in a real Sample and thus not suitable
// to signal a non-existing Sample.
ZeroSample = Sample{Timestamp: Earliest}
)
// A SampleValue is a representation of a value for a given sample at a given
// time.
type SampleValue float64
// MarshalJSON implements json.Marshaler.
func (v SampleValue) MarshalJSON() ([]byte, error) {
return json.Marshal(v.String())
}
// UnmarshalJSON implements json.Unmarshaler.
func (v *SampleValue) UnmarshalJSON(b []byte) error {
if len(b) < 2 || b[0] != '"' || b[len(b)-1] != '"' {
return fmt.Errorf("sample value must be a quoted string")
}
f, err := strconv.ParseFloat(string(b[1:len(b)-1]), 64)
if err != nil {
return err
}
*v = SampleValue(f)
return nil
}
// Equal returns true if the value of v and o is equal or if both are NaN. Note
// that v==o is false if both are NaN. If you want the conventional float
// behavior, use == to compare two SampleValues.
func (v SampleValue) Equal(o SampleValue) bool {
if v == o {
return true
}
return math.IsNaN(float64(v)) && math.IsNaN(float64(o))
}
func (v SampleValue) String() string {
return strconv.FormatFloat(float64(v), 'f', -1, 64)
}
// SamplePair pairs a SampleValue with a Timestamp.
type SamplePair struct {
Timestamp Time
Value SampleValue
}
// MarshalJSON implements json.Marshaler.
func (s SamplePair) MarshalJSON() ([]byte, error) {
t, err := json.Marshal(s.Timestamp)
if err != nil {
return nil, err
}
v, err := json.Marshal(s.Value)
if err != nil {
return nil, err
}
return []byte(fmt.Sprintf("[%s,%s]", t, v)), nil
}
// UnmarshalJSON implements json.Unmarshaler.
func (s *SamplePair) UnmarshalJSON(b []byte) error {
v := [...]json.Unmarshaler{&s.Timestamp, &s.Value}
return json.Unmarshal(b, &v)
}
// Equal returns true if this SamplePair and o have equal Values and equal
// Timestamps. The semantics of Value equality is defined by SampleValue.Equal.
func (s *SamplePair) Equal(o *SamplePair) bool {
return s == o || (s.Value.Equal(o.Value) && s.Timestamp.Equal(o.Timestamp))
}
func (s SamplePair) String() string {
return fmt.Sprintf("%s @[%s]", s.Value, s.Timestamp)
}
// Sample is a sample pair associated with a metric.
type Sample struct {
Metric Metric `json:"metric"`
Value SampleValue `json:"value"`
Timestamp Time `json:"timestamp"`
}
// Equal compares first the metrics, then the timestamp, then the value. The
// semantics of value equality is defined by SampleValue.Equal.
func (s *Sample) Equal(o *Sample) bool {
if s == o {
return true
}
if !s.Metric.Equal(o.Metric) {
return false
}
if !s.Timestamp.Equal(o.Timestamp) {
return false
}
return s.Value.Equal(o.Value)
}
func (s Sample) String() string {
return fmt.Sprintf("%s => %s", s.Metric, SamplePair{
Timestamp: s.Timestamp,
Value: s.Value,
})
}
// MarshalJSON implements json.Marshaler.
func (s Sample) MarshalJSON() ([]byte, error) {
v := struct {
Metric Metric `json:"metric"`
Value SamplePair `json:"value"`
}{
Metric: s.Metric,
Value: SamplePair{
Timestamp: s.Timestamp,
Value: s.Value,
},
}
return json.Marshal(&v)
}
// UnmarshalJSON implements json.Unmarshaler.
func (s *Sample) UnmarshalJSON(b []byte) error {
v := struct {
Metric Metric `json:"metric"`
Value SamplePair `json:"value"`
}{
Metric: s.Metric,
Value: SamplePair{
Timestamp: s.Timestamp,
Value: s.Value,
},
}
if err := json.Unmarshal(b, &v); err != nil {
return err
}
s.Metric = v.Metric
s.Timestamp = v.Value.Timestamp
s.Value = v.Value.Value
return nil
}
// Samples is a sortable Sample slice. It implements sort.Interface.
type Samples []*Sample
func (s Samples) Len() int {
return len(s)
}
// Less compares first the metrics, then the timestamp.
func (s Samples) Less(i, j int) bool {
switch {
case s[i].Metric.Before(s[j].Metric):
return true
case s[j].Metric.Before(s[i].Metric):
return false
case s[i].Timestamp.Before(s[j].Timestamp):
return true
default:
return false
}
}
func (s Samples) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Equal compares two sets of samples and returns true if they are equal.
func (s Samples) Equal(o Samples) bool {
if len(s) != len(o) {
return false
}
for i, sample := range s {
if !sample.Equal(o[i]) {
return false
}
}
return true
}
// SampleStream is a stream of Values belonging to an attached COWMetric.
type SampleStream struct {
Metric Metric `json:"metric"`
Values []SamplePair `json:"values"`
}
func (ss SampleStream) String() string {
vals := make([]string, len(ss.Values))
for i, v := range ss.Values {
vals[i] = v.String()
}
return fmt.Sprintf("%s =>\n%s", ss.Metric, strings.Join(vals, "\n"))
}
// Value is a generic interface for values resulting from a query evaluation.
type Value interface {
Type() ValueType
String() string
}
func (Matrix) Type() ValueType { return ValMatrix }
func (Vector) Type() ValueType { return ValVector }
func (*Scalar) Type() ValueType { return ValScalar }
func (*String) Type() ValueType { return ValString }
type ValueType int
const (
ValNone ValueType = iota
ValScalar
ValVector
ValMatrix
ValString
)
// MarshalJSON implements json.Marshaler.
func (et ValueType) MarshalJSON() ([]byte, error) {
return json.Marshal(et.String())
}
func (et *ValueType) UnmarshalJSON(b []byte) error {
var s string
if err := json.Unmarshal(b, &s); err != nil {
return err
}
switch s {
case "<ValNone>":
*et = ValNone
case "scalar":
*et = ValScalar
case "vector":
*et = ValVector
case "matrix":
*et = ValMatrix
case "string":
*et = ValString
default:
return fmt.Errorf("unknown value type %q", s)
}
return nil
}
func (e ValueType) String() string {
switch e {
case ValNone:
return "<ValNone>"
case ValScalar:
return "scalar"
case ValVector:
return "vector"
case ValMatrix:
return "matrix"
case ValString:
return "string"
}
panic("ValueType.String: unhandled value type")
}
// Scalar is a scalar value evaluated at the set timestamp.
type Scalar struct {
Value SampleValue `json:"value"`
Timestamp Time `json:"timestamp"`
}
func (s Scalar) String() string {
return fmt.Sprintf("scalar: %v @[%v]", s.Value, s.Timestamp)
}
// MarshalJSON implements json.Marshaler.
func (s Scalar) MarshalJSON() ([]byte, error) {
v := strconv.FormatFloat(float64(s.Value), 'f', -1, 64)
return json.Marshal([...]interface{}{s.Timestamp, string(v)})
}
// UnmarshalJSON implements json.Unmarshaler.
func (s *Scalar) UnmarshalJSON(b []byte) error {
var f string
v := [...]interface{}{&s.Timestamp, &f}
if err := json.Unmarshal(b, &v); err != nil {
return err
}
value, err := strconv.ParseFloat(f, 64)
if err != nil {
return fmt.Errorf("error parsing sample value: %s", err)
}
s.Value = SampleValue(value)
return nil
}
// String is a string value evaluated at the set timestamp.
type String struct {
Value string `json:"value"`
Timestamp Time `json:"timestamp"`
}
func (s *String) String() string {
return s.Value
}
// MarshalJSON implements json.Marshaler.
func (s String) MarshalJSON() ([]byte, error) {
return json.Marshal([]interface{}{s.Timestamp, s.Value})
}
// UnmarshalJSON implements json.Unmarshaler.
func (s *String) UnmarshalJSON(b []byte) error {
v := [...]interface{}{&s.Timestamp, &s.Value}
return json.Unmarshal(b, &v)
}
// Vector is basically only an alias for Samples, but the
// contract is that in a Vector, all Samples have the same timestamp.
type Vector []*Sample
func (vec Vector) String() string {
entries := make([]string, len(vec))
for i, s := range vec {
entries[i] = s.String()
}
return strings.Join(entries, "\n")
}
func (vec Vector) Len() int { return len(vec) }
func (vec Vector) Swap(i, j int) { vec[i], vec[j] = vec[j], vec[i] }
// Less compares first the metrics, then the timestamp.
func (vec Vector) Less(i, j int) bool {
switch {
case vec[i].Metric.Before(vec[j].Metric):
return true
case vec[j].Metric.Before(vec[i].Metric):
return false
case vec[i].Timestamp.Before(vec[j].Timestamp):
return true
default:
return false
}
}
// Equal compares two sets of samples and returns true if they are equal.
func (vec Vector) Equal(o Vector) bool {
if len(vec) != len(o) {
return false
}
for i, sample := range vec {
if !sample.Equal(o[i]) {
return false
}
}
return true
}
// Matrix is a list of time series.
type Matrix []*SampleStream
func (m Matrix) Len() int { return len(m) }
func (m Matrix) Less(i, j int) bool { return m[i].Metric.Before(m[j].Metric) }
func (m Matrix) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
func (mat Matrix) String() string {
matCp := make(Matrix, len(mat))
copy(matCp, mat)
sort.Sort(matCp)
strs := make([]string, len(matCp))
for i, ss := range matCp {
strs[i] = ss.String()
}
return strings.Join(strs, "\n")
}

201
vendor/github.com/prometheus/procfs/LICENSE generated vendored Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

7
vendor/github.com/prometheus/procfs/NOTICE generated vendored Normal file
View file

@ -0,0 +1,7 @@
procfs provides functions to retrieve system, kernel and process
metrics from the pseudo-filesystem proc.
Copyright 2014-2015 The Prometheus Authors
This product includes software developed at
SoundCloud Ltd. (http://soundcloud.com/).

95
vendor/github.com/prometheus/procfs/buddyinfo.go generated vendored Normal file
View file

@ -0,0 +1,95 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"bufio"
"fmt"
"io"
"os"
"strconv"
"strings"
)
// A BuddyInfo is the details parsed from /proc/buddyinfo.
// The data is comprised of an array of free fragments of each size.
// The sizes are 2^n*PAGE_SIZE, where n is the array index.
type BuddyInfo struct {
Node string
Zone string
Sizes []float64
}
// NewBuddyInfo reads the buddyinfo statistics.
func NewBuddyInfo() ([]BuddyInfo, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return nil, err
}
return fs.NewBuddyInfo()
}
// NewBuddyInfo reads the buddyinfo statistics from the specified `proc` filesystem.
func (fs FS) NewBuddyInfo() ([]BuddyInfo, error) {
file, err := os.Open(fs.Path("buddyinfo"))
if err != nil {
return nil, err
}
defer file.Close()
return parseBuddyInfo(file)
}
func parseBuddyInfo(r io.Reader) ([]BuddyInfo, error) {
var (
buddyInfo = []BuddyInfo{}
scanner = bufio.NewScanner(r)
bucketCount = -1
)
for scanner.Scan() {
var err error
line := scanner.Text()
parts := strings.Fields(line)
if len(parts) < 4 {
return nil, fmt.Errorf("invalid number of fields when parsing buddyinfo")
}
node := strings.TrimRight(parts[1], ",")
zone := strings.TrimRight(parts[3], ",")
arraySize := len(parts[4:])
if bucketCount == -1 {
bucketCount = arraySize
} else {
if bucketCount != arraySize {
return nil, fmt.Errorf("mismatch in number of buddyinfo buckets, previous count %d, new count %d", bucketCount, arraySize)
}
}
sizes := make([]float64, arraySize)
for i := 0; i < arraySize; i++ {
sizes[i], err = strconv.ParseFloat(parts[i+4], 64)
if err != nil {
return nil, fmt.Errorf("invalid value in buddyinfo: %s", err)
}
}
buddyInfo = append(buddyInfo, BuddyInfo{node, zone, sizes})
}
return buddyInfo, scanner.Err()
}

45
vendor/github.com/prometheus/procfs/doc.go generated vendored Normal file
View file

@ -0,0 +1,45 @@
// Copyright 2014 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package procfs provides functions to retrieve system, kernel and process
// metrics from the pseudo-filesystem proc.
//
// Example:
//
// package main
//
// import (
// "fmt"
// "log"
//
// "github.com/prometheus/procfs"
// )
//
// func main() {
// p, err := procfs.Self()
// if err != nil {
// log.Fatalf("could not get process: %s", err)
// }
//
// stat, err := p.NewStat()
// if err != nil {
// log.Fatalf("could not get process stat: %s", err)
// }
//
// fmt.Printf("command: %s\n", stat.Comm)
// fmt.Printf("cpu time: %fs\n", stat.CPUTime())
// fmt.Printf("vsize: %dB\n", stat.VirtualMemory())
// fmt.Printf("rss: %dB\n", stat.ResidentMemory())
// }
//
package procfs

82
vendor/github.com/prometheus/procfs/fs.go generated vendored Normal file
View file

@ -0,0 +1,82 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"fmt"
"os"
"path"
"github.com/prometheus/procfs/nfs"
"github.com/prometheus/procfs/xfs"
)
// FS represents the pseudo-filesystem proc, which provides an interface to
// kernel data structures.
type FS string
// DefaultMountPoint is the common mount point of the proc filesystem.
const DefaultMountPoint = "/proc"
// NewFS returns a new FS mounted under the given mountPoint. It will error
// if the mount point can't be read.
func NewFS(mountPoint string) (FS, error) {
info, err := os.Stat(mountPoint)
if err != nil {
return "", fmt.Errorf("could not read %s: %s", mountPoint, err)
}
if !info.IsDir() {
return "", fmt.Errorf("mount point %s is not a directory", mountPoint)
}
return FS(mountPoint), nil
}
// Path returns the path of the given subsystem relative to the procfs root.
func (fs FS) Path(p ...string) string {
return path.Join(append([]string{string(fs)}, p...)...)
}
// XFSStats retrieves XFS filesystem runtime statistics.
func (fs FS) XFSStats() (*xfs.Stats, error) {
f, err := os.Open(fs.Path("fs/xfs/stat"))
if err != nil {
return nil, err
}
defer f.Close()
return xfs.ParseStats(f)
}
// NFSClientRPCStats retrieves NFS client RPC statistics.
func (fs FS) NFSClientRPCStats() (*nfs.ClientRPCStats, error) {
f, err := os.Open(fs.Path("net/rpc/nfs"))
if err != nil {
return nil, err
}
defer f.Close()
return nfs.ParseClientRPCStats(f)
}
// NFSdServerRPCStats retrieves NFS daemon RPC statistics.
func (fs FS) NFSdServerRPCStats() (*nfs.ServerRPCStats, error) {
f, err := os.Open(fs.Path("net/rpc/nfsd"))
if err != nil {
return nil, err
}
defer f.Close()
return nfs.ParseServerRPCStats(f)
}

View file

@ -0,0 +1,59 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package util
import (
"io/ioutil"
"strconv"
"strings"
)
// ParseUint32s parses a slice of strings into a slice of uint32s.
func ParseUint32s(ss []string) ([]uint32, error) {
us := make([]uint32, 0, len(ss))
for _, s := range ss {
u, err := strconv.ParseUint(s, 10, 32)
if err != nil {
return nil, err
}
us = append(us, uint32(u))
}
return us, nil
}
// ParseUint64s parses a slice of strings into a slice of uint64s.
func ParseUint64s(ss []string) ([]uint64, error) {
us := make([]uint64, 0, len(ss))
for _, s := range ss {
u, err := strconv.ParseUint(s, 10, 64)
if err != nil {
return nil, err
}
us = append(us, u)
}
return us, nil
}
// ReadUintFromFile reads a file and attempts to parse a uint64 from it.
func ReadUintFromFile(path string) (uint64, error) {
data, err := ioutil.ReadFile(path)
if err != nil {
return 0, err
}
return strconv.ParseUint(strings.TrimSpace(string(data)), 10, 64)
}

View file

@ -0,0 +1,45 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !windows
package util
import (
"bytes"
"os"
"syscall"
)
// SysReadFile is a simplified ioutil.ReadFile that invokes syscall.Read directly.
// https://github.com/prometheus/node_exporter/pull/728/files
func SysReadFile(file string) (string, error) {
f, err := os.Open(file)
if err != nil {
return "", err
}
defer f.Close()
// On some machines, hwmon drivers are broken and return EAGAIN. This causes
// Go's ioutil.ReadFile implementation to poll forever.
//
// Since we either want to read data or bail immediately, do the simplest
// possible read using syscall directly.
b := make([]byte, 128)
n, err := syscall.Read(int(f.Fd()), b)
if err != nil {
return "", err
}
return string(bytes.TrimSpace(b[:n])), nil
}

259
vendor/github.com/prometheus/procfs/ipvs.go generated vendored Normal file
View file

@ -0,0 +1,259 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"bufio"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"net"
"os"
"strconv"
"strings"
)
// IPVSStats holds IPVS statistics, as exposed by the kernel in `/proc/net/ip_vs_stats`.
type IPVSStats struct {
// Total count of connections.
Connections uint64
// Total incoming packages processed.
IncomingPackets uint64
// Total outgoing packages processed.
OutgoingPackets uint64
// Total incoming traffic.
IncomingBytes uint64
// Total outgoing traffic.
OutgoingBytes uint64
}
// IPVSBackendStatus holds current metrics of one virtual / real address pair.
type IPVSBackendStatus struct {
// The local (virtual) IP address.
LocalAddress net.IP
// The remote (real) IP address.
RemoteAddress net.IP
// The local (virtual) port.
LocalPort uint16
// The remote (real) port.
RemotePort uint16
// The local firewall mark
LocalMark string
// The transport protocol (TCP, UDP).
Proto string
// The current number of active connections for this virtual/real address pair.
ActiveConn uint64
// The current number of inactive connections for this virtual/real address pair.
InactConn uint64
// The current weight of this virtual/real address pair.
Weight uint64
}
// NewIPVSStats reads the IPVS statistics.
func NewIPVSStats() (IPVSStats, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return IPVSStats{}, err
}
return fs.NewIPVSStats()
}
// NewIPVSStats reads the IPVS statistics from the specified `proc` filesystem.
func (fs FS) NewIPVSStats() (IPVSStats, error) {
file, err := os.Open(fs.Path("net/ip_vs_stats"))
if err != nil {
return IPVSStats{}, err
}
defer file.Close()
return parseIPVSStats(file)
}
// parseIPVSStats performs the actual parsing of `ip_vs_stats`.
func parseIPVSStats(file io.Reader) (IPVSStats, error) {
var (
statContent []byte
statLines []string
statFields []string
stats IPVSStats
)
statContent, err := ioutil.ReadAll(file)
if err != nil {
return IPVSStats{}, err
}
statLines = strings.SplitN(string(statContent), "\n", 4)
if len(statLines) != 4 {
return IPVSStats{}, errors.New("ip_vs_stats corrupt: too short")
}
statFields = strings.Fields(statLines[2])
if len(statFields) != 5 {
return IPVSStats{}, errors.New("ip_vs_stats corrupt: unexpected number of fields")
}
stats.Connections, err = strconv.ParseUint(statFields[0], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.IncomingPackets, err = strconv.ParseUint(statFields[1], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.OutgoingPackets, err = strconv.ParseUint(statFields[2], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.IncomingBytes, err = strconv.ParseUint(statFields[3], 16, 64)
if err != nil {
return IPVSStats{}, err
}
stats.OutgoingBytes, err = strconv.ParseUint(statFields[4], 16, 64)
if err != nil {
return IPVSStats{}, err
}
return stats, nil
}
// NewIPVSBackendStatus reads and returns the status of all (virtual,real) server pairs.
func NewIPVSBackendStatus() ([]IPVSBackendStatus, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return []IPVSBackendStatus{}, err
}
return fs.NewIPVSBackendStatus()
}
// NewIPVSBackendStatus reads and returns the status of all (virtual,real) server pairs from the specified `proc` filesystem.
func (fs FS) NewIPVSBackendStatus() ([]IPVSBackendStatus, error) {
file, err := os.Open(fs.Path("net/ip_vs"))
if err != nil {
return nil, err
}
defer file.Close()
return parseIPVSBackendStatus(file)
}
func parseIPVSBackendStatus(file io.Reader) ([]IPVSBackendStatus, error) {
var (
status []IPVSBackendStatus
scanner = bufio.NewScanner(file)
proto string
localMark string
localAddress net.IP
localPort uint16
err error
)
for scanner.Scan() {
fields := strings.Fields(scanner.Text())
if len(fields) == 0 {
continue
}
switch {
case fields[0] == "IP" || fields[0] == "Prot" || fields[1] == "RemoteAddress:Port":
continue
case fields[0] == "TCP" || fields[0] == "UDP":
if len(fields) < 2 {
continue
}
proto = fields[0]
localMark = ""
localAddress, localPort, err = parseIPPort(fields[1])
if err != nil {
return nil, err
}
case fields[0] == "FWM":
if len(fields) < 2 {
continue
}
proto = fields[0]
localMark = fields[1]
localAddress = nil
localPort = 0
case fields[0] == "->":
if len(fields) < 6 {
continue
}
remoteAddress, remotePort, err := parseIPPort(fields[1])
if err != nil {
return nil, err
}
weight, err := strconv.ParseUint(fields[3], 10, 64)
if err != nil {
return nil, err
}
activeConn, err := strconv.ParseUint(fields[4], 10, 64)
if err != nil {
return nil, err
}
inactConn, err := strconv.ParseUint(fields[5], 10, 64)
if err != nil {
return nil, err
}
status = append(status, IPVSBackendStatus{
LocalAddress: localAddress,
LocalPort: localPort,
LocalMark: localMark,
RemoteAddress: remoteAddress,
RemotePort: remotePort,
Proto: proto,
Weight: weight,
ActiveConn: activeConn,
InactConn: inactConn,
})
}
}
return status, nil
}
func parseIPPort(s string) (net.IP, uint16, error) {
var (
ip net.IP
err error
)
switch len(s) {
case 13:
ip, err = hex.DecodeString(s[0:8])
if err != nil {
return nil, 0, err
}
case 46:
ip = net.ParseIP(s[1:40])
if ip == nil {
return nil, 0, fmt.Errorf("invalid IPv6 address: %s", s[1:40])
}
default:
return nil, 0, fmt.Errorf("unexpected IP:Port: %s", s)
}
portString := s[len(s)-4:]
if len(portString) != 4 {
return nil, 0, fmt.Errorf("unexpected port string format: %s", portString)
}
port, err := strconv.ParseUint(portString, 16, 16)
if err != nil {
return nil, 0, err
}
return ip, uint16(port), nil
}

151
vendor/github.com/prometheus/procfs/mdstat.go generated vendored Normal file
View file

@ -0,0 +1,151 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"fmt"
"io/ioutil"
"regexp"
"strconv"
"strings"
)
var (
statuslineRE = regexp.MustCompile(`(\d+) blocks .*\[(\d+)/(\d+)\] \[[U_]+\]`)
buildlineRE = regexp.MustCompile(`\((\d+)/\d+\)`)
)
// MDStat holds info parsed from /proc/mdstat.
type MDStat struct {
// Name of the device.
Name string
// activity-state of the device.
ActivityState string
// Number of active disks.
DisksActive int64
// Total number of disks the device consists of.
DisksTotal int64
// Number of blocks the device holds.
BlocksTotal int64
// Number of blocks on the device that are in sync.
BlocksSynced int64
}
// ParseMDStat parses an mdstat-file and returns a struct with the relevant infos.
func (fs FS) ParseMDStat() (mdstates []MDStat, err error) {
mdStatusFilePath := fs.Path("mdstat")
content, err := ioutil.ReadFile(mdStatusFilePath)
if err != nil {
return []MDStat{}, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
mdStates := []MDStat{}
lines := strings.Split(string(content), "\n")
for i, l := range lines {
if l == "" {
continue
}
if l[0] == ' ' {
continue
}
if strings.HasPrefix(l, "Personalities") || strings.HasPrefix(l, "unused") {
continue
}
mainLine := strings.Split(l, " ")
if len(mainLine) < 3 {
return mdStates, fmt.Errorf("error parsing mdline: %s", l)
}
mdName := mainLine[0]
activityState := mainLine[2]
if len(lines) <= i+3 {
return mdStates, fmt.Errorf(
"error parsing %s: too few lines for md device %s",
mdStatusFilePath,
mdName,
)
}
active, total, size, err := evalStatusline(lines[i+1])
if err != nil {
return mdStates, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
// j is the line number of the syncing-line.
j := i + 2
if strings.Contains(lines[i+2], "bitmap") { // skip bitmap line
j = i + 3
}
// If device is syncing at the moment, get the number of currently
// synced bytes, otherwise that number equals the size of the device.
syncedBlocks := size
if strings.Contains(lines[j], "recovery") || strings.Contains(lines[j], "resync") {
syncedBlocks, err = evalBuildline(lines[j])
if err != nil {
return mdStates, fmt.Errorf("error parsing %s: %s", mdStatusFilePath, err)
}
}
mdStates = append(mdStates, MDStat{
Name: mdName,
ActivityState: activityState,
DisksActive: active,
DisksTotal: total,
BlocksTotal: size,
BlocksSynced: syncedBlocks,
})
}
return mdStates, nil
}
func evalStatusline(statusline string) (active, total, size int64, err error) {
matches := statuslineRE.FindStringSubmatch(statusline)
if len(matches) != 4 {
return 0, 0, 0, fmt.Errorf("unexpected statusline: %s", statusline)
}
size, err = strconv.ParseInt(matches[1], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
total, err = strconv.ParseInt(matches[2], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
active, err = strconv.ParseInt(matches[3], 10, 64)
if err != nil {
return 0, 0, 0, fmt.Errorf("unexpected statusline %s: %s", statusline, err)
}
return active, total, size, nil
}
func evalBuildline(buildline string) (syncedBlocks int64, err error) {
matches := buildlineRE.FindStringSubmatch(buildline)
if len(matches) != 2 {
return 0, fmt.Errorf("unexpected buildline: %s", buildline)
}
syncedBlocks, err = strconv.ParseInt(matches[1], 10, 64)
if err != nil {
return 0, fmt.Errorf("%s in buildline: %s", err, buildline)
}
return syncedBlocks, nil
}

606
vendor/github.com/prometheus/procfs/mountstats.go generated vendored Normal file
View file

@ -0,0 +1,606 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
// While implementing parsing of /proc/[pid]/mountstats, this blog was used
// heavily as a reference:
// https://utcc.utoronto.ca/~cks/space/blog/linux/NFSMountstatsIndex
//
// Special thanks to Chris Siebenmann for all of his posts explaining the
// various statistics available for NFS.
import (
"bufio"
"fmt"
"io"
"strconv"
"strings"
"time"
)
// Constants shared between multiple functions.
const (
deviceEntryLen = 8
fieldBytesLen = 8
fieldEventsLen = 27
statVersion10 = "1.0"
statVersion11 = "1.1"
fieldTransport10TCPLen = 10
fieldTransport10UDPLen = 7
fieldTransport11TCPLen = 13
fieldTransport11UDPLen = 10
)
// A Mount is a device mount parsed from /proc/[pid]/mountstats.
type Mount struct {
// Name of the device.
Device string
// The mount point of the device.
Mount string
// The filesystem type used by the device.
Type string
// If available additional statistics related to this Mount.
// Use a type assertion to determine if additional statistics are available.
Stats MountStats
}
// A MountStats is a type which contains detailed statistics for a specific
// type of Mount.
type MountStats interface {
mountStats()
}
// A MountStatsNFS is a MountStats implementation for NFSv3 and v4 mounts.
type MountStatsNFS struct {
// The version of statistics provided.
StatVersion string
// The age of the NFS mount.
Age time.Duration
// Statistics related to byte counters for various operations.
Bytes NFSBytesStats
// Statistics related to various NFS event occurrences.
Events NFSEventsStats
// Statistics broken down by filesystem operation.
Operations []NFSOperationStats
// Statistics about the NFS RPC transport.
Transport NFSTransportStats
}
// mountStats implements MountStats.
func (m MountStatsNFS) mountStats() {}
// A NFSBytesStats contains statistics about the number of bytes read and written
// by an NFS client to and from an NFS server.
type NFSBytesStats struct {
// Number of bytes read using the read() syscall.
Read uint64
// Number of bytes written using the write() syscall.
Write uint64
// Number of bytes read using the read() syscall in O_DIRECT mode.
DirectRead uint64
// Number of bytes written using the write() syscall in O_DIRECT mode.
DirectWrite uint64
// Number of bytes read from the NFS server, in total.
ReadTotal uint64
// Number of bytes written to the NFS server, in total.
WriteTotal uint64
// Number of pages read directly via mmap()'d files.
ReadPages uint64
// Number of pages written directly via mmap()'d files.
WritePages uint64
}
// A NFSEventsStats contains statistics about NFS event occurrences.
type NFSEventsStats struct {
// Number of times cached inode attributes are re-validated from the server.
InodeRevalidate uint64
// Number of times cached dentry nodes are re-validated from the server.
DnodeRevalidate uint64
// Number of times an inode cache is cleared.
DataInvalidate uint64
// Number of times cached inode attributes are invalidated.
AttributeInvalidate uint64
// Number of times files or directories have been open()'d.
VFSOpen uint64
// Number of times a directory lookup has occurred.
VFSLookup uint64
// Number of times permissions have been checked.
VFSAccess uint64
// Number of updates (and potential writes) to pages.
VFSUpdatePage uint64
// Number of pages read directly via mmap()'d files.
VFSReadPage uint64
// Number of times a group of pages have been read.
VFSReadPages uint64
// Number of pages written directly via mmap()'d files.
VFSWritePage uint64
// Number of times a group of pages have been written.
VFSWritePages uint64
// Number of times directory entries have been read with getdents().
VFSGetdents uint64
// Number of times attributes have been set on inodes.
VFSSetattr uint64
// Number of pending writes that have been forcefully flushed to the server.
VFSFlush uint64
// Number of times fsync() has been called on directories and files.
VFSFsync uint64
// Number of times locking has been attempted on a file.
VFSLock uint64
// Number of times files have been closed and released.
VFSFileRelease uint64
// Unknown. Possibly unused.
CongestionWait uint64
// Number of times files have been truncated.
Truncation uint64
// Number of times a file has been grown due to writes beyond its existing end.
WriteExtension uint64
// Number of times a file was removed while still open by another process.
SillyRename uint64
// Number of times the NFS server gave less data than expected while reading.
ShortRead uint64
// Number of times the NFS server wrote less data than expected while writing.
ShortWrite uint64
// Number of times the NFS server indicated EJUKEBOX; retrieving data from
// offline storage.
JukeboxDelay uint64
// Number of NFS v4.1+ pNFS reads.
PNFSRead uint64
// Number of NFS v4.1+ pNFS writes.
PNFSWrite uint64
}
// A NFSOperationStats contains statistics for a single operation.
type NFSOperationStats struct {
// The name of the operation.
Operation string
// Number of requests performed for this operation.
Requests uint64
// Number of times an actual RPC request has been transmitted for this operation.
Transmissions uint64
// Number of times a request has had a major timeout.
MajorTimeouts uint64
// Number of bytes sent for this operation, including RPC headers and payload.
BytesSent uint64
// Number of bytes received for this operation, including RPC headers and payload.
BytesReceived uint64
// Duration all requests spent queued for transmission before they were sent.
CumulativeQueueTime time.Duration
// Duration it took to get a reply back after the request was transmitted.
CumulativeTotalResponseTime time.Duration
// Duration from when a request was enqueued to when it was completely handled.
CumulativeTotalRequestTime time.Duration
}
// A NFSTransportStats contains statistics for the NFS mount RPC requests and
// responses.
type NFSTransportStats struct {
// The transport protocol used for the NFS mount.
Protocol string
// The local port used for the NFS mount.
Port uint64
// Number of times the client has had to establish a connection from scratch
// to the NFS server.
Bind uint64
// Number of times the client has made a TCP connection to the NFS server.
Connect uint64
// Duration (in jiffies, a kernel internal unit of time) the NFS mount has
// spent waiting for connections to the server to be established.
ConnectIdleTime uint64
// Duration since the NFS mount last saw any RPC traffic.
IdleTime time.Duration
// Number of RPC requests for this mount sent to the NFS server.
Sends uint64
// Number of RPC responses for this mount received from the NFS server.
Receives uint64
// Number of times the NFS server sent a response with a transaction ID
// unknown to this client.
BadTransactionIDs uint64
// A running counter, incremented on each request as the current difference
// ebetween sends and receives.
CumulativeActiveRequests uint64
// A running counter, incremented on each request by the current backlog
// queue size.
CumulativeBacklog uint64
// Stats below only available with stat version 1.1.
// Maximum number of simultaneously active RPC requests ever used.
MaximumRPCSlotsUsed uint64
// A running counter, incremented on each request as the current size of the
// sending queue.
CumulativeSendingQueue uint64
// A running counter, incremented on each request as the current size of the
// pending queue.
CumulativePendingQueue uint64
}
// parseMountStats parses a /proc/[pid]/mountstats file and returns a slice
// of Mount structures containing detailed information about each mount.
// If available, statistics for each mount are parsed as well.
func parseMountStats(r io.Reader) ([]*Mount, error) {
const (
device = "device"
statVersionPrefix = "statvers="
nfs3Type = "nfs"
nfs4Type = "nfs4"
)
var mounts []*Mount
s := bufio.NewScanner(r)
for s.Scan() {
// Only look for device entries in this function
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 || ss[0] != device {
continue
}
m, err := parseMount(ss)
if err != nil {
return nil, err
}
// Does this mount also possess statistics information?
if len(ss) > deviceEntryLen {
// Only NFSv3 and v4 are supported for parsing statistics
if m.Type != nfs3Type && m.Type != nfs4Type {
return nil, fmt.Errorf("cannot parse MountStats for fstype %q", m.Type)
}
statVersion := strings.TrimPrefix(ss[8], statVersionPrefix)
stats, err := parseMountStatsNFS(s, statVersion)
if err != nil {
return nil, err
}
m.Stats = stats
}
mounts = append(mounts, m)
}
return mounts, s.Err()
}
// parseMount parses an entry in /proc/[pid]/mountstats in the format:
// device [device] mounted on [mount] with fstype [type]
func parseMount(ss []string) (*Mount, error) {
if len(ss) < deviceEntryLen {
return nil, fmt.Errorf("invalid device entry: %v", ss)
}
// Check for specific words appearing at specific indices to ensure
// the format is consistent with what we expect
format := []struct {
i int
s string
}{
{i: 0, s: "device"},
{i: 2, s: "mounted"},
{i: 3, s: "on"},
{i: 5, s: "with"},
{i: 6, s: "fstype"},
}
for _, f := range format {
if ss[f.i] != f.s {
return nil, fmt.Errorf("invalid device entry: %v", ss)
}
}
return &Mount{
Device: ss[1],
Mount: ss[4],
Type: ss[7],
}, nil
}
// parseMountStatsNFS parses a MountStatsNFS by scanning additional information
// related to NFS statistics.
func parseMountStatsNFS(s *bufio.Scanner, statVersion string) (*MountStatsNFS, error) {
// Field indicators for parsing specific types of data
const (
fieldAge = "age:"
fieldBytes = "bytes:"
fieldEvents = "events:"
fieldPerOpStats = "per-op"
fieldTransport = "xprt:"
)
stats := &MountStatsNFS{
StatVersion: statVersion,
}
for s.Scan() {
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 {
break
}
if len(ss) < 2 {
return nil, fmt.Errorf("not enough information for NFS stats: %v", ss)
}
switch ss[0] {
case fieldAge:
// Age integer is in seconds
d, err := time.ParseDuration(ss[1] + "s")
if err != nil {
return nil, err
}
stats.Age = d
case fieldBytes:
bstats, err := parseNFSBytesStats(ss[1:])
if err != nil {
return nil, err
}
stats.Bytes = *bstats
case fieldEvents:
estats, err := parseNFSEventsStats(ss[1:])
if err != nil {
return nil, err
}
stats.Events = *estats
case fieldTransport:
if len(ss) < 3 {
return nil, fmt.Errorf("not enough information for NFS transport stats: %v", ss)
}
tstats, err := parseNFSTransportStats(ss[1:], statVersion)
if err != nil {
return nil, err
}
stats.Transport = *tstats
}
// When encountering "per-operation statistics", we must break this
// loop and parse them separately to ensure we can terminate parsing
// before reaching another device entry; hence why this 'if' statement
// is not just another switch case
if ss[0] == fieldPerOpStats {
break
}
}
if err := s.Err(); err != nil {
return nil, err
}
// NFS per-operation stats appear last before the next device entry
perOpStats, err := parseNFSOperationStats(s)
if err != nil {
return nil, err
}
stats.Operations = perOpStats
return stats, nil
}
// parseNFSBytesStats parses a NFSBytesStats line using an input set of
// integer fields.
func parseNFSBytesStats(ss []string) (*NFSBytesStats, error) {
if len(ss) != fieldBytesLen {
return nil, fmt.Errorf("invalid NFS bytes stats: %v", ss)
}
ns := make([]uint64, 0, fieldBytesLen)
for _, s := range ss {
n, err := strconv.ParseUint(s, 10, 64)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
return &NFSBytesStats{
Read: ns[0],
Write: ns[1],
DirectRead: ns[2],
DirectWrite: ns[3],
ReadTotal: ns[4],
WriteTotal: ns[5],
ReadPages: ns[6],
WritePages: ns[7],
}, nil
}
// parseNFSEventsStats parses a NFSEventsStats line using an input set of
// integer fields.
func parseNFSEventsStats(ss []string) (*NFSEventsStats, error) {
if len(ss) != fieldEventsLen {
return nil, fmt.Errorf("invalid NFS events stats: %v", ss)
}
ns := make([]uint64, 0, fieldEventsLen)
for _, s := range ss {
n, err := strconv.ParseUint(s, 10, 64)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
return &NFSEventsStats{
InodeRevalidate: ns[0],
DnodeRevalidate: ns[1],
DataInvalidate: ns[2],
AttributeInvalidate: ns[3],
VFSOpen: ns[4],
VFSLookup: ns[5],
VFSAccess: ns[6],
VFSUpdatePage: ns[7],
VFSReadPage: ns[8],
VFSReadPages: ns[9],
VFSWritePage: ns[10],
VFSWritePages: ns[11],
VFSGetdents: ns[12],
VFSSetattr: ns[13],
VFSFlush: ns[14],
VFSFsync: ns[15],
VFSLock: ns[16],
VFSFileRelease: ns[17],
CongestionWait: ns[18],
Truncation: ns[19],
WriteExtension: ns[20],
SillyRename: ns[21],
ShortRead: ns[22],
ShortWrite: ns[23],
JukeboxDelay: ns[24],
PNFSRead: ns[25],
PNFSWrite: ns[26],
}, nil
}
// parseNFSOperationStats parses a slice of NFSOperationStats by scanning
// additional information about per-operation statistics until an empty
// line is reached.
func parseNFSOperationStats(s *bufio.Scanner) ([]NFSOperationStats, error) {
const (
// Number of expected fields in each per-operation statistics set
numFields = 9
)
var ops []NFSOperationStats
for s.Scan() {
ss := strings.Fields(string(s.Bytes()))
if len(ss) == 0 {
// Must break when reading a blank line after per-operation stats to
// enable top-level function to parse the next device entry
break
}
if len(ss) != numFields {
return nil, fmt.Errorf("invalid NFS per-operations stats: %v", ss)
}
// Skip string operation name for integers
ns := make([]uint64, 0, numFields-1)
for _, st := range ss[1:] {
n, err := strconv.ParseUint(st, 10, 64)
if err != nil {
return nil, err
}
ns = append(ns, n)
}
ops = append(ops, NFSOperationStats{
Operation: strings.TrimSuffix(ss[0], ":"),
Requests: ns[0],
Transmissions: ns[1],
MajorTimeouts: ns[2],
BytesSent: ns[3],
BytesReceived: ns[4],
CumulativeQueueTime: time.Duration(ns[5]) * time.Millisecond,
CumulativeTotalResponseTime: time.Duration(ns[6]) * time.Millisecond,
CumulativeTotalRequestTime: time.Duration(ns[7]) * time.Millisecond,
})
}
return ops, s.Err()
}
// parseNFSTransportStats parses a NFSTransportStats line using an input set of
// integer fields matched to a specific stats version.
func parseNFSTransportStats(ss []string, statVersion string) (*NFSTransportStats, error) {
// Extract the protocol field. It is the only string value in the line
protocol := ss[0]
ss = ss[1:]
switch statVersion {
case statVersion10:
var expectedLength int
if protocol == "tcp" {
expectedLength = fieldTransport10TCPLen
} else if protocol == "udp" {
expectedLength = fieldTransport10UDPLen
} else {
return nil, fmt.Errorf("invalid NFS protocol \"%s\" in stats 1.0 statement: %v", protocol, ss)
}
if len(ss) != expectedLength {
return nil, fmt.Errorf("invalid NFS transport stats 1.0 statement: %v", ss)
}
case statVersion11:
var expectedLength int
if protocol == "tcp" {
expectedLength = fieldTransport11TCPLen
} else if protocol == "udp" {
expectedLength = fieldTransport11UDPLen
} else {
return nil, fmt.Errorf("invalid NFS protocol \"%s\" in stats 1.1 statement: %v", protocol, ss)
}
if len(ss) != expectedLength {
return nil, fmt.Errorf("invalid NFS transport stats 1.1 statement: %v", ss)
}
default:
return nil, fmt.Errorf("unrecognized NFS transport stats version: %q", statVersion)
}
// Allocate enough for v1.1 stats since zero value for v1.1 stats will be okay
// in a v1.0 response. Since the stat length is bigger for TCP stats, we use
// the TCP length here.
//
// Note: slice length must be set to length of v1.1 stats to avoid a panic when
// only v1.0 stats are present.
// See: https://github.com/prometheus/node_exporter/issues/571.
ns := make([]uint64, fieldTransport11TCPLen)
for i, s := range ss {
n, err := strconv.ParseUint(s, 10, 64)
if err != nil {
return nil, err
}
ns[i] = n
}
// The fields differ depending on the transport protocol (TCP or UDP)
// From https://utcc.utoronto.ca/%7Ecks/space/blog/linux/NFSMountstatsXprt
//
// For the udp RPC transport there is no connection count, connect idle time,
// or idle time (fields #3, #4, and #5); all other fields are the same. So
// we set them to 0 here.
if protocol == "udp" {
ns = append(ns[:2], append(make([]uint64, 3), ns[2:]...)...)
}
return &NFSTransportStats{
Protocol: protocol,
Port: ns[0],
Bind: ns[1],
Connect: ns[2],
ConnectIdleTime: ns[3],
IdleTime: time.Duration(ns[4]) * time.Second,
Sends: ns[5],
Receives: ns[6],
BadTransactionIDs: ns[7],
CumulativeActiveRequests: ns[8],
CumulativeBacklog: ns[9],
MaximumRPCSlotsUsed: ns[10],
CumulativeSendingQueue: ns[11],
CumulativePendingQueue: ns[12],
}, nil
}

216
vendor/github.com/prometheus/procfs/net_dev.go generated vendored Normal file
View file

@ -0,0 +1,216 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package procfs
import (
"bufio"
"errors"
"os"
"sort"
"strconv"
"strings"
)
// NetDevLine is single line parsed from /proc/net/dev or /proc/[pid]/net/dev.
type NetDevLine struct {
Name string `json:"name"` // The name of the interface.
RxBytes uint64 `json:"rx_bytes"` // Cumulative count of bytes received.
RxPackets uint64 `json:"rx_packets"` // Cumulative count of packets received.
RxErrors uint64 `json:"rx_errors"` // Cumulative count of receive errors encountered.
RxDropped uint64 `json:"rx_dropped"` // Cumulative count of packets dropped while receiving.
RxFIFO uint64 `json:"rx_fifo"` // Cumulative count of FIFO buffer errors.
RxFrame uint64 `json:"rx_frame"` // Cumulative count of packet framing errors.
RxCompressed uint64 `json:"rx_compressed"` // Cumulative count of compressed packets received by the device driver.
RxMulticast uint64 `json:"rx_multicast"` // Cumulative count of multicast frames received by the device driver.
TxBytes uint64 `json:"tx_bytes"` // Cumulative count of bytes transmitted.
TxPackets uint64 `json:"tx_packets"` // Cumulative count of packets transmitted.
TxErrors uint64 `json:"tx_errors"` // Cumulative count of transmit errors encountered.
TxDropped uint64 `json:"tx_dropped"` // Cumulative count of packets dropped while transmitting.
TxFIFO uint64 `json:"tx_fifo"` // Cumulative count of FIFO buffer errors.
TxCollisions uint64 `json:"tx_collisions"` // Cumulative count of collisions detected on the interface.
TxCarrier uint64 `json:"tx_carrier"` // Cumulative count of carrier losses detected by the device driver.
TxCompressed uint64 `json:"tx_compressed"` // Cumulative count of compressed packets transmitted by the device driver.
}
// NetDev is parsed from /proc/net/dev or /proc/[pid]/net/dev. The map keys
// are interface names.
type NetDev map[string]NetDevLine
// NewNetDev returns kernel/system statistics read from /proc/net/dev.
func NewNetDev() (NetDev, error) {
fs, err := NewFS(DefaultMountPoint)
if err != nil {
return nil, err
}
return fs.NewNetDev()
}
// NewNetDev returns kernel/system statistics read from /proc/net/dev.
func (fs FS) NewNetDev() (NetDev, error) {
return newNetDev(fs.Path("net/dev"))
}
// NewNetDev returns kernel/system statistics read from /proc/[pid]/net/dev.
func (p Proc) NewNetDev() (NetDev, error) {
return newNetDev(p.path("net/dev"))
}
// newNetDev creates a new NetDev from the contents of the given file.
func newNetDev(file string) (NetDev, error) {
f, err := os.Open(file)
if err != nil {
return NetDev{}, err
}
defer f.Close()
nd := NetDev{}
s := bufio.NewScanner(f)
for n := 0; s.Scan(); n++ {
// Skip the 2 header lines.
if n < 2 {
continue
}
line, err := nd.parseLine(s.Text())
if err != nil {
return nd, err
}
nd[line.Name] = *line
}
return nd, s.Err()
}
// parseLine parses a single line from the /proc/net/dev file. Header lines
// must be filtered prior to calling this method.
func (nd NetDev) parseLine(rawLine string) (*NetDevLine, error) {
parts := strings.SplitN(rawLine, ":", 2)
if len(parts) != 2 {
return nil, errors.New("invalid net/dev line, missing colon")
}
fields := strings.Fields(strings.TrimSpace(parts[1]))
var err error
line := &NetDevLine{}
// Interface Name
line.Name = strings.TrimSpace(parts[0])
if line.Name == "" {
return nil, errors.New("invalid net/dev line, empty interface name")
}
// RX
line.RxBytes, err = strconv.ParseUint(fields[0], 10, 64)
if err != nil {
return nil, err
}
line.RxPackets, err = strconv.ParseUint(fields[1], 10, 64)
if err != nil {
return nil, err
}
line.RxErrors, err = strconv.ParseUint(fields[2], 10, 64)
if err != nil {
return nil, err
}
line.RxDropped, err = strconv.ParseUint(fields[3], 10, 64)
if err != nil {
return nil, err
}
line.RxFIFO, err = strconv.ParseUint(fields[4], 10, 64)
if err != nil {
return nil, err
}
line.RxFrame, err = strconv.ParseUint(fields[5], 10, 64)
if err != nil {
return nil, err
}
line.RxCompressed, err = strconv.ParseUint(fields[6], 10, 64)
if err != nil {
return nil, err
}
line.RxMulticast, err = strconv.ParseUint(fields[7], 10, 64)
if err != nil {
return nil, err
}
// TX
line.TxBytes, err = strconv.ParseUint(fields[8], 10, 64)
if err != nil {
return nil, err
}
line.TxPackets, err = strconv.ParseUint(fields[9], 10, 64)
if err != nil {
return nil, err
}
line.TxErrors, err = strconv.ParseUint(fields[10], 10, 64)
if err != nil {
return nil, err
}
line.TxDropped, err = strconv.ParseUint(fields[11], 10, 64)
if err != nil {
return nil, err
}
line.TxFIFO, err = strconv.ParseUint(fields[12], 10, 64)
if err != nil {
return nil, err
}
line.TxCollisions, err = strconv.ParseUint(fields[13], 10, 64)
if err != nil {
return nil, err
}
line.TxCarrier, err = strconv.ParseUint(fields[14], 10, 64)
if err != nil {
return nil, err
}
line.TxCompressed, err = strconv.ParseUint(fields[15], 10, 64)
if err != nil {
return nil, err
}
return line, nil
}
// Total aggregates the values across interfaces and returns a new NetDevLine.
// The Name field will be a sorted comma separated list of interface names.
func (nd NetDev) Total() NetDevLine {
total := NetDevLine{}
names := make([]string, 0, len(nd))
for _, ifc := range nd {
names = append(names, ifc.Name)
total.RxBytes += ifc.RxBytes
total.RxPackets += ifc.RxPackets
total.RxPackets += ifc.RxPackets
total.RxErrors += ifc.RxErrors
total.RxDropped += ifc.RxDropped
total.RxFIFO += ifc.RxFIFO
total.RxFrame += ifc.RxFrame
total.RxCompressed += ifc.RxCompressed
total.RxMulticast += ifc.RxMulticast
total.TxBytes += ifc.TxBytes
total.TxPackets += ifc.TxPackets
total.TxErrors += ifc.TxErrors
total.TxDropped += ifc.TxDropped
total.TxFIFO += ifc.TxFIFO
total.TxCollisions += ifc.TxCollisions
total.TxCarrier += ifc.TxCarrier
total.TxCompressed += ifc.TxCompressed
}
sort.Strings(names)
total.Name = strings.Join(names, ", ")
return total
}

263
vendor/github.com/prometheus/procfs/nfs/nfs.go generated vendored Normal file
View file

@ -0,0 +1,263 @@
// Copyright 2018 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package nfs implements parsing of /proc/net/rpc/nfsd.
// Fields are documented in https://www.svennd.be/nfsd-stats-explained-procnetrpcnfsd/
package nfs
// ReplyCache models the "rc" line.
type ReplyCache struct {
Hits uint64
Misses uint64
NoCache uint64
}
// FileHandles models the "fh" line.
type FileHandles struct {
Stale uint64
TotalLookups uint64
AnonLookups uint64
DirNoCache uint64
NoDirNoCache uint64
}
// InputOutput models the "io" line.
type InputOutput struct {
Read uint64
Write uint64
}
// Threads models the "th" line.
type Threads struct {
Threads uint64
FullCnt uint64
}
// ReadAheadCache models the "ra" line.
type ReadAheadCache struct {
CacheSize uint64
CacheHistogram []uint64
NotFound uint64
}
// Network models the "net" line.
type Network struct {
NetCount uint64
UDPCount uint64
TCPCount uint64
TCPConnect uint64
}
// ClientRPC models the nfs "rpc" line.
type ClientRPC struct {
RPCCount uint64
Retransmissions uint64
AuthRefreshes uint64
}
// ServerRPC models the nfsd "rpc" line.
type ServerRPC struct {
RPCCount uint64
BadCnt uint64
BadFmt uint64
BadAuth uint64
BadcInt uint64
}
// V2Stats models the "proc2" line.
type V2Stats struct {
Null uint64
GetAttr uint64
SetAttr uint64
Root uint64
Lookup uint64
ReadLink uint64
Read uint64
WrCache uint64
Write uint64
Create uint64
Remove uint64
Rename uint64
Link uint64
SymLink uint64
MkDir uint64
RmDir uint64
ReadDir uint64
FsStat uint64
}
// V3Stats models the "proc3" line.
type V3Stats struct {
Null uint64
GetAttr uint64
SetAttr uint64
Lookup uint64
Access uint64
ReadLink uint64
Read uint64
Write uint64
Create uint64
MkDir uint64
SymLink uint64
MkNod uint64
Remove uint64
RmDir uint64
Rename uint64
Link uint64
ReadDir uint64
ReadDirPlus uint64
FsStat uint64
FsInfo uint64
PathConf uint64
Commit uint64
}
// ClientV4Stats models the nfs "proc4" line.
type ClientV4Stats struct {
Null uint64
Read uint64
Write uint64
Commit uint64
Open uint64
OpenConfirm uint64
OpenNoattr uint64
OpenDowngrade uint64
Close uint64
Setattr uint64
FsInfo uint64
Renew uint64
SetClientID uint64
SetClientIDConfirm uint64
Lock uint64
Lockt uint64
Locku uint64
Access uint64
Getattr uint64
Lookup uint64
LookupRoot uint64
Remove uint64
Rename uint64
Link uint64
Symlink uint64
Create uint64
Pathconf uint64
StatFs uint64
ReadLink uint64
ReadDir uint64
ServerCaps uint64
DelegReturn uint64
GetACL uint64
SetACL uint64
FsLocations uint64
ReleaseLockowner uint64
Secinfo uint64
FsidPresent uint64
ExchangeID uint64
CreateSession uint64
DestroySession uint64
Sequence uint64
GetLeaseTime uint64
ReclaimComplete uint64
LayoutGet uint64
GetDeviceInfo uint64
LayoutCommit uint64
LayoutReturn uint64
SecinfoNoName uint64
TestStateID uint64
FreeStateID uint64
GetDeviceList uint64
BindConnToSession uint64
DestroyClientID uint64
Seek uint64
Allocate uint64
DeAllocate uint64
LayoutStats uint64
Clone uint64
}
// ServerV4Stats models the nfsd "proc4" line.
type ServerV4Stats struct {
Null uint64
Compound uint64
}
// V4Ops models the "proc4ops" line: NFSv4 operations
// Variable list, see:
// v4.0 https://tools.ietf.org/html/rfc3010 (38 operations)
// v4.1 https://tools.ietf.org/html/rfc5661 (58 operations)
// v4.2 https://tools.ietf.org/html/draft-ietf-nfsv4-minorversion2-41 (71 operations)
type V4Ops struct {
//Values uint64 // Variable depending on v4.x sub-version. TODO: Will this always at least include the fields in this struct?
Op0Unused uint64
Op1Unused uint64
Op2Future uint64
Access uint64
Close uint64
Commit uint64
Create uint64
DelegPurge uint64
DelegReturn uint64
GetAttr uint64
GetFH uint64
Link uint64
Lock uint64
Lockt uint64
Locku uint64
Lookup uint64
LookupRoot uint64
Nverify uint64
Open uint64
OpenAttr uint64
OpenConfirm uint64
OpenDgrd uint64
PutFH uint64
PutPubFH uint64
PutRootFH uint64
Read uint64
ReadDir uint64
ReadLink uint64
Remove uint64
Rename uint64
Renew uint64
RestoreFH uint64
SaveFH uint64
SecInfo uint64
SetAttr uint64
Verify uint64
Write uint64
RelLockOwner uint64
}
// ClientRPCStats models all stats from /proc/net/rpc/nfs.
type ClientRPCStats struct {
Network Network
ClientRPC ClientRPC
V2Stats V2Stats
V3Stats V3Stats
ClientV4Stats ClientV4Stats
}
// ServerRPCStats models all stats from /proc/net/rpc/nfsd.
type ServerRPCStats struct {
ReplyCache ReplyCache
FileHandles FileHandles
InputOutput InputOutput
Threads Threads
ReadAheadCache ReadAheadCache
Network Network
ServerRPC ServerRPC
V2Stats V2Stats
V3Stats V3Stats
ServerV4Stats ServerV4Stats
V4Ops V4Ops
}

Some files were not shown because too many files have changed in this diff Show more