1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2024-12-26 13:29:12 -05:00
forgejo/vendor/github.com/dsnet/compress/internal/prefix/decoder.go
PhilippHomann 684b7a999f
Dump: add output format tar and output to stdout (#10376)
* Dump: Use mholt/archive/v3 to support tar including many compressions

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: Allow dump output to stdout

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: Fixed bug present since #6677 where SessionConfig.Provider is never "file"

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: never pack RepoRootPath, LFS.ContentPath and LogRootPath when they are below AppDataPath

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: also dump LFS (fixes #10058)

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Dump: never dump CustomPath if CustomPath is a subdir of or equal to AppDataPath (fixes #10365)

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* Use log.Info instead of fmt.Fprintf

Signed-off-by: Philipp Homann <homann.philipp@googlemail.com>

* import ordering

* make fmt

Co-authored-by: zeripath <art27@cantab.net>
Co-authored-by: techknowlogick <techknowlogick@gitea.io>
Co-authored-by: Matti R <matti@mdranta.net>
2020-06-05 16:47:39 -04:00

136 lines
4.3 KiB
Go
Vendored

// Copyright 2015, Joe Tsai. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package prefix
import (
"sort"
"github.com/dsnet/compress/internal"
)
// The algorithm used to decode variable length codes is based on the lookup
// method in zlib. If the code is less-than-or-equal to maxChunkBits,
// then the symbol can be decoded using a single lookup into the chunks table.
// Otherwise, the links table will be used for a second level lookup.
//
// The chunks slice is keyed by the contents of the bit buffer ANDed with
// the chunkMask to avoid a out-of-bounds lookup. The value of chunks is a tuple
// that is decoded as follow:
//
// var length = chunks[bitBuffer&chunkMask] & countMask
// var symbol = chunks[bitBuffer&chunkMask] >> countBits
//
// If the decoded length is larger than chunkBits, then an overflow link table
// must be used for further decoding. In this case, the symbol is actually the
// index into the links tables. The second-level links table returned is
// processed in the same way as the chunks table.
//
// if length > chunkBits {
// var index = symbol // Previous symbol is index into links tables
// length = links[index][bitBuffer>>chunkBits & linkMask] & countMask
// symbol = links[index][bitBuffer>>chunkBits & linkMask] >> countBits
// }
//
// See the following:
// http://www.gzip.org/algorithm.txt
type Decoder struct {
chunks []uint32 // First-level lookup map
links [][]uint32 // Second-level lookup map
chunkMask uint32 // Mask the length of the chunks table
linkMask uint32 // Mask the length of the link table
chunkBits uint32 // Bit-length of the chunks table
MinBits uint32 // The minimum number of bits to safely make progress
NumSyms uint32 // Number of symbols
}
// Init initializes Decoder according to the codes provided.
func (pd *Decoder) Init(codes PrefixCodes) {
// Handle special case trees.
if len(codes) <= 1 {
switch {
case len(codes) == 0: // Empty tree (should error if used later)
*pd = Decoder{chunks: pd.chunks[:0], links: pd.links[:0], NumSyms: 0}
case len(codes) == 1 && codes[0].Len == 0: // Single code tree (bit-length of zero)
pd.chunks = append(pd.chunks[:0], codes[0].Sym<<countBits|0)
*pd = Decoder{chunks: pd.chunks[:1], links: pd.links[:0], NumSyms: 1}
default:
panic("invalid codes")
}
return
}
if internal.Debug && !sort.IsSorted(prefixCodesBySymbol(codes)) {
panic("input codes is not sorted")
}
if internal.Debug && !(codes.checkLengths() && codes.checkPrefixes()) {
panic("detected incomplete or overlapping codes")
}
var minBits, maxBits uint32 = valueBits, 0
for _, c := range codes {
if minBits > c.Len {
minBits = c.Len
}
if maxBits < c.Len {
maxBits = c.Len
}
}
// Allocate chunks table as needed.
const maxChunkBits = 9 // This can be tuned for better performance
pd.NumSyms = uint32(len(codes))
pd.MinBits = minBits
pd.chunkBits = maxBits
if pd.chunkBits > maxChunkBits {
pd.chunkBits = maxChunkBits
}
numChunks := 1 << pd.chunkBits
pd.chunks = allocUint32s(pd.chunks, numChunks)
pd.chunkMask = uint32(numChunks - 1)
// Allocate links tables as needed.
pd.links = pd.links[:0]
pd.linkMask = 0
if pd.chunkBits < maxBits {
numLinks := 1 << (maxBits - pd.chunkBits)
pd.linkMask = uint32(numLinks - 1)
var linkIdx uint32
for i := range pd.chunks {
pd.chunks[i] = 0 // Logic below relies on zero value as uninitialized
}
for _, c := range codes {
if c.Len > pd.chunkBits && pd.chunks[c.Val&pd.chunkMask] == 0 {
pd.chunks[c.Val&pd.chunkMask] = (linkIdx << countBits) | (pd.chunkBits + 1)
linkIdx++
}
}
pd.links = extendSliceUint32s(pd.links, int(linkIdx))
linksFlat := allocUint32s(pd.links[0], numLinks*int(linkIdx))
for i, j := 0, 0; i < len(pd.links); i, j = i+1, j+numLinks {
pd.links[i] = linksFlat[j : j+numLinks]
}
}
// Fill out chunks and links tables with values.
for _, c := range codes {
chunk := c.Sym<<countBits | c.Len
if c.Len <= pd.chunkBits {
skip := 1 << uint(c.Len)
for j := int(c.Val); j < len(pd.chunks); j += skip {
pd.chunks[j] = chunk
}
} else {
linkIdx := pd.chunks[c.Val&pd.chunkMask] >> countBits
links := pd.links[linkIdx]
skip := 1 << uint(c.Len-pd.chunkBits)
for j := int(c.Val >> pd.chunkBits); j < len(links); j += skip {
links[j] = chunk
}
}
}
}