mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2025-01-11 15:41:19 -05:00
b6a95a8cb3
* Dropped unused codekit config * Integrated dynamic and static bindata for public * Ignore public bindata * Add a general generate make task * Integrated flexible public assets into web command * Updated vendoring, added all missiong govendor deps * Made the linter happy with the bindata and dynamic code * Moved public bindata definition to modules directory * Ignoring the new bindata path now * Updated to the new public modules import path * Updated public bindata command and drop the new prefix
1272 lines
36 KiB
Go
1272 lines
36 KiB
Go
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
// Contains code shared by both encode and decode.
|
|
|
|
// Some shared ideas around encoding/decoding
|
|
// ------------------------------------------
|
|
//
|
|
// If an interface{} is passed, we first do a type assertion to see if it is
|
|
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
|
|
//
|
|
// If we start with a reflect.Value, we are already in reflect.Value land and
|
|
// will try to grab the function for the underlying Type and directly call that function.
|
|
// This is more performant than calling reflect.Value.Interface().
|
|
//
|
|
// This still helps us bypass many layers of reflection, and give best performance.
|
|
//
|
|
// Containers
|
|
// ------------
|
|
// Containers in the stream are either associative arrays (key-value pairs) or
|
|
// regular arrays (indexed by incrementing integers).
|
|
//
|
|
// Some streams support indefinite-length containers, and use a breaking
|
|
// byte-sequence to denote that the container has come to an end.
|
|
//
|
|
// Some streams also are text-based, and use explicit separators to denote the
|
|
// end/beginning of different values.
|
|
//
|
|
// During encode, we use a high-level condition to determine how to iterate through
|
|
// the container. That decision is based on whether the container is text-based (with
|
|
// separators) or binary (without separators). If binary, we do not even call the
|
|
// encoding of separators.
|
|
//
|
|
// During decode, we use a different high-level condition to determine how to iterate
|
|
// through the containers. That decision is based on whether the stream contained
|
|
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
|
|
// it has to be binary, and we do not even try to read separators.
|
|
//
|
|
// The only codec that may suffer (slightly) is cbor, and only when decoding indefinite-length.
|
|
// It may suffer because we treat it like a text-based codec, and read separators.
|
|
// However, this read is a no-op and the cost is insignificant.
|
|
//
|
|
// Philosophy
|
|
// ------------
|
|
// On decode, this codec will update containers appropriately:
|
|
// - If struct, update fields from stream into fields of struct.
|
|
// If field in stream not found in struct, handle appropriately (based on option).
|
|
// If a struct field has no corresponding value in the stream, leave it AS IS.
|
|
// If nil in stream, set value to nil/zero value.
|
|
// - If map, update map from stream.
|
|
// If the stream value is NIL, set the map to nil.
|
|
// - if slice, try to update up to length of array in stream.
|
|
// if container len is less than stream array length,
|
|
// and container cannot be expanded, handled (based on option).
|
|
// This means you can decode 4-element stream array into 1-element array.
|
|
//
|
|
// ------------------------------------
|
|
// On encode, user can specify omitEmpty. This means that the value will be omitted
|
|
// if the zero value. The problem may occur during decode, where omitted values do not affect
|
|
// the value being decoded into. This means that if decoding into a struct with an
|
|
// int field with current value=5, and the field is omitted in the stream, then after
|
|
// decoding, the value will still be 5 (not 0).
|
|
// omitEmpty only works if you guarantee that you always decode into zero-values.
|
|
//
|
|
// ------------------------------------
|
|
// We could have truncated a map to remove keys not available in the stream,
|
|
// or set values in the struct which are not in the stream to their zero values.
|
|
// We decided against it because there is no efficient way to do it.
|
|
// We may introduce it as an option later.
|
|
// However, that will require enabling it for both runtime and code generation modes.
|
|
//
|
|
// To support truncate, we need to do 2 passes over the container:
|
|
// map
|
|
// - first collect all keys (e.g. in k1)
|
|
// - for each key in stream, mark k1 that the key should not be removed
|
|
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
|
|
// struct:
|
|
// - for each field, track the *typeInfo s1
|
|
// - iterate through all s1, and for each one not marked, set value to zero
|
|
// - this involves checking the possible anonymous fields which are nil ptrs.
|
|
// too much work.
|
|
//
|
|
// ------------------------------------------
|
|
// Error Handling is done within the library using panic.
|
|
//
|
|
// This way, the code doesn't have to keep checking if an error has happened,
|
|
// and we don't have to keep sending the error value along with each call
|
|
// or storing it in the En|Decoder and checking it constantly along the way.
|
|
//
|
|
// The disadvantage is that small functions which use panics cannot be inlined.
|
|
// The code accounts for that by only using panics behind an interface;
|
|
// since interface calls cannot be inlined, this is irrelevant.
|
|
//
|
|
// We considered storing the error is En|Decoder.
|
|
// - once it has its err field set, it cannot be used again.
|
|
// - panicing will be optional, controlled by const flag.
|
|
// - code should always check error first and return early.
|
|
// We eventually decided against it as it makes the code clumsier to always
|
|
// check for these error conditions.
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
scratchByteArrayLen = 32
|
|
initCollectionCap = 32 // 32 is defensive. 16 is preferred.
|
|
|
|
// Support encoding.(Binary|Text)(Unm|M)arshaler.
|
|
// This constant flag will enable or disable it.
|
|
supportMarshalInterfaces = true
|
|
|
|
// Each Encoder or Decoder uses a cache of functions based on conditionals,
|
|
// so that the conditionals are not run every time.
|
|
//
|
|
// Either a map or a slice is used to keep track of the functions.
|
|
// The map is more natural, but has a higher cost than a slice/array.
|
|
// This flag (useMapForCodecCache) controls which is used.
|
|
//
|
|
// From benchmarks, slices with linear search perform better with < 32 entries.
|
|
// We have typically seen a high threshold of about 24 entries.
|
|
useMapForCodecCache = false
|
|
|
|
// for debugging, set this to false, to catch panic traces.
|
|
// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
|
|
recoverPanicToErr = true
|
|
|
|
// Fast path functions try to create a fast path encode or decode implementation
|
|
// for common maps and slices, by by-passing reflection altogether.
|
|
fastpathEnabled = true
|
|
|
|
// if checkStructForEmptyValue, check structs fields to see if an empty value.
|
|
// This could be an expensive call, so possibly disable it.
|
|
checkStructForEmptyValue = false
|
|
|
|
// if derefForIsEmptyValue, deref pointers and interfaces when checking isEmptyValue
|
|
derefForIsEmptyValue = false
|
|
|
|
// if resetSliceElemToZeroValue, then on decoding a slice, reset the element to a zero value first.
|
|
// Only concern is that, if the slice already contained some garbage, we will decode into that garbage.
|
|
// The chances of this are slim, so leave this "optimization".
|
|
// TODO: should this be true, to ensure that we always decode into a "zero" "empty" value?
|
|
resetSliceElemToZeroValue bool = false
|
|
)
|
|
|
|
var (
|
|
oneByteArr = [1]byte{0}
|
|
zeroByteSlice = oneByteArr[:0:0]
|
|
)
|
|
|
|
type charEncoding uint8
|
|
|
|
const (
|
|
c_RAW charEncoding = iota
|
|
c_UTF8
|
|
c_UTF16LE
|
|
c_UTF16BE
|
|
c_UTF32LE
|
|
c_UTF32BE
|
|
)
|
|
|
|
// valueType is the stream type
|
|
type valueType uint8
|
|
|
|
const (
|
|
valueTypeUnset valueType = iota
|
|
valueTypeNil
|
|
valueTypeInt
|
|
valueTypeUint
|
|
valueTypeFloat
|
|
valueTypeBool
|
|
valueTypeString
|
|
valueTypeSymbol
|
|
valueTypeBytes
|
|
valueTypeMap
|
|
valueTypeArray
|
|
valueTypeTimestamp
|
|
valueTypeExt
|
|
|
|
// valueTypeInvalid = 0xff
|
|
)
|
|
|
|
type seqType uint8
|
|
|
|
const (
|
|
_ seqType = iota
|
|
seqTypeArray
|
|
seqTypeSlice
|
|
seqTypeChan
|
|
)
|
|
|
|
// note that containerMapStart and containerArraySend are not sent.
|
|
// This is because the ReadXXXStart and EncodeXXXStart already does these.
|
|
type containerState uint8
|
|
|
|
const (
|
|
_ containerState = iota
|
|
|
|
containerMapStart // slot left open, since Driver method already covers it
|
|
containerMapKey
|
|
containerMapValue
|
|
containerMapEnd
|
|
containerArrayStart // slot left open, since Driver methods already cover it
|
|
containerArrayElem
|
|
containerArrayEnd
|
|
)
|
|
|
|
type rgetPoolT struct {
|
|
encNames [8]string
|
|
fNames [8]string
|
|
etypes [8]uintptr
|
|
sfis [8]*structFieldInfo
|
|
}
|
|
|
|
var rgetPool = sync.Pool{
|
|
New: func() interface{} { return new(rgetPoolT) },
|
|
}
|
|
|
|
type rgetT struct {
|
|
fNames []string
|
|
encNames []string
|
|
etypes []uintptr
|
|
sfis []*structFieldInfo
|
|
}
|
|
|
|
type containerStateRecv interface {
|
|
sendContainerState(containerState)
|
|
}
|
|
|
|
// mirror json.Marshaler and json.Unmarshaler here,
|
|
// so we don't import the encoding/json package
|
|
type jsonMarshaler interface {
|
|
MarshalJSON() ([]byte, error)
|
|
}
|
|
type jsonUnmarshaler interface {
|
|
UnmarshalJSON([]byte) error
|
|
}
|
|
|
|
var (
|
|
bigen = binary.BigEndian
|
|
structInfoFieldName = "_struct"
|
|
|
|
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
|
|
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
|
|
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
|
|
intfTyp = intfSliceTyp.Elem()
|
|
|
|
stringTyp = reflect.TypeOf("")
|
|
timeTyp = reflect.TypeOf(time.Time{})
|
|
rawExtTyp = reflect.TypeOf(RawExt{})
|
|
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
|
|
|
|
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
|
|
|
|
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
|
|
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
|
|
|
|
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
|
|
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
|
|
|
|
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
|
|
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
|
|
|
|
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
|
|
|
|
uint8SliceTypId = reflect.ValueOf(uint8SliceTyp).Pointer()
|
|
rawExtTypId = reflect.ValueOf(rawExtTyp).Pointer()
|
|
intfTypId = reflect.ValueOf(intfTyp).Pointer()
|
|
timeTypId = reflect.ValueOf(timeTyp).Pointer()
|
|
stringTypId = reflect.ValueOf(stringTyp).Pointer()
|
|
|
|
mapStrIntfTypId = reflect.ValueOf(mapStrIntfTyp).Pointer()
|
|
mapIntfIntfTypId = reflect.ValueOf(mapIntfIntfTyp).Pointer()
|
|
intfSliceTypId = reflect.ValueOf(intfSliceTyp).Pointer()
|
|
// mapBySliceTypId = reflect.ValueOf(mapBySliceTyp).Pointer()
|
|
|
|
intBitsize uint8 = uint8(reflect.TypeOf(int(0)).Bits())
|
|
uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits())
|
|
|
|
bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
|
|
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
|
|
|
|
chkOvf checkOverflow
|
|
|
|
noFieldNameToStructFieldInfoErr = errors.New("no field name passed to parseStructFieldInfo")
|
|
)
|
|
|
|
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
|
|
|
|
// Selfer defines methods by which a value can encode or decode itself.
|
|
//
|
|
// Any type which implements Selfer will be able to encode or decode itself.
|
|
// Consequently, during (en|de)code, this takes precedence over
|
|
// (text|binary)(M|Unm)arshal or extension support.
|
|
type Selfer interface {
|
|
CodecEncodeSelf(*Encoder)
|
|
CodecDecodeSelf(*Decoder)
|
|
}
|
|
|
|
// MapBySlice represents a slice which should be encoded as a map in the stream.
|
|
// The slice contains a sequence of key-value pairs.
|
|
// This affords storing a map in a specific sequence in the stream.
|
|
//
|
|
// The support of MapBySlice affords the following:
|
|
// - A slice type which implements MapBySlice will be encoded as a map
|
|
// - A slice can be decoded from a map in the stream
|
|
type MapBySlice interface {
|
|
MapBySlice()
|
|
}
|
|
|
|
// WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
|
|
//
|
|
// BasicHandle encapsulates the common options and extension functions.
|
|
type BasicHandle struct {
|
|
// TypeInfos is used to get the type info for any type.
|
|
//
|
|
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
|
|
TypeInfos *TypeInfos
|
|
|
|
extHandle
|
|
EncodeOptions
|
|
DecodeOptions
|
|
}
|
|
|
|
func (x *BasicHandle) getBasicHandle() *BasicHandle {
|
|
return x
|
|
}
|
|
|
|
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
|
if x.TypeInfos != nil {
|
|
return x.TypeInfos.get(rtid, rt)
|
|
}
|
|
return defTypeInfos.get(rtid, rt)
|
|
}
|
|
|
|
// Handle is the interface for a specific encoding format.
|
|
//
|
|
// Typically, a Handle is pre-configured before first time use,
|
|
// and not modified while in use. Such a pre-configured Handle
|
|
// is safe for concurrent access.
|
|
type Handle interface {
|
|
getBasicHandle() *BasicHandle
|
|
newEncDriver(w *Encoder) encDriver
|
|
newDecDriver(r *Decoder) decDriver
|
|
isBinary() bool
|
|
}
|
|
|
|
// RawExt represents raw unprocessed extension data.
|
|
// Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag.
|
|
//
|
|
// Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value.
|
|
type RawExt struct {
|
|
Tag uint64
|
|
// Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value.
|
|
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types
|
|
Data []byte
|
|
// Value represents the extension, if Data is nil.
|
|
// Value is used by codecs (e.g. cbor) which use the format to do custom serialization of the types.
|
|
Value interface{}
|
|
}
|
|
|
|
// BytesExt handles custom (de)serialization of types to/from []byte.
|
|
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
|
|
type BytesExt interface {
|
|
// WriteExt converts a value to a []byte.
|
|
//
|
|
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
|
|
WriteExt(v interface{}) []byte
|
|
|
|
// ReadExt updates a value from a []byte.
|
|
ReadExt(dst interface{}, src []byte)
|
|
}
|
|
|
|
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
|
|
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
|
|
//
|
|
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types.
|
|
type InterfaceExt interface {
|
|
// ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64.
|
|
//
|
|
// Note: v *may* be a pointer to the extension type, if the extension type was a struct or array.
|
|
ConvertExt(v interface{}) interface{}
|
|
|
|
// UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time.
|
|
UpdateExt(dst interface{}, src interface{})
|
|
}
|
|
|
|
// Ext handles custom (de)serialization of custom types / extensions.
|
|
type Ext interface {
|
|
BytesExt
|
|
InterfaceExt
|
|
}
|
|
|
|
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
|
|
type addExtWrapper struct {
|
|
encFn func(reflect.Value) ([]byte, error)
|
|
decFn func(reflect.Value, []byte) error
|
|
}
|
|
|
|
func (x addExtWrapper) WriteExt(v interface{}) []byte {
|
|
bs, err := x.encFn(reflect.ValueOf(v))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return bs
|
|
}
|
|
|
|
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
|
|
if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
|
|
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
|
|
return x.WriteExt(v)
|
|
}
|
|
|
|
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
|
|
x.ReadExt(dest, v.([]byte))
|
|
}
|
|
|
|
type setExtWrapper struct {
|
|
b BytesExt
|
|
i InterfaceExt
|
|
}
|
|
|
|
func (x *setExtWrapper) WriteExt(v interface{}) []byte {
|
|
if x.b == nil {
|
|
panic("BytesExt.WriteExt is not supported")
|
|
}
|
|
return x.b.WriteExt(v)
|
|
}
|
|
|
|
func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) {
|
|
if x.b == nil {
|
|
panic("BytesExt.WriteExt is not supported")
|
|
|
|
}
|
|
x.b.ReadExt(v, bs)
|
|
}
|
|
|
|
func (x *setExtWrapper) ConvertExt(v interface{}) interface{} {
|
|
if x.i == nil {
|
|
panic("InterfaceExt.ConvertExt is not supported")
|
|
|
|
}
|
|
return x.i.ConvertExt(v)
|
|
}
|
|
|
|
func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) {
|
|
if x.i == nil {
|
|
panic("InterfaceExxt.UpdateExt is not supported")
|
|
|
|
}
|
|
x.i.UpdateExt(dest, v)
|
|
}
|
|
|
|
// type errorString string
|
|
// func (x errorString) Error() string { return string(x) }
|
|
|
|
type binaryEncodingType struct{}
|
|
|
|
func (_ binaryEncodingType) isBinary() bool { return true }
|
|
|
|
type textEncodingType struct{}
|
|
|
|
func (_ textEncodingType) isBinary() bool { return false }
|
|
|
|
// noBuiltInTypes is embedded into many types which do not support builtins
|
|
// e.g. msgpack, simple, cbor.
|
|
type noBuiltInTypes struct{}
|
|
|
|
func (_ noBuiltInTypes) IsBuiltinType(rt uintptr) bool { return false }
|
|
func (_ noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
|
|
func (_ noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
|
|
|
|
type noStreamingCodec struct{}
|
|
|
|
func (_ noStreamingCodec) CheckBreak() bool { return false }
|
|
|
|
// bigenHelper.
|
|
// Users must already slice the x completely, because we will not reslice.
|
|
type bigenHelper struct {
|
|
x []byte // must be correctly sliced to appropriate len. slicing is a cost.
|
|
w encWriter
|
|
}
|
|
|
|
func (z bigenHelper) writeUint16(v uint16) {
|
|
bigen.PutUint16(z.x, v)
|
|
z.w.writeb(z.x)
|
|
}
|
|
|
|
func (z bigenHelper) writeUint32(v uint32) {
|
|
bigen.PutUint32(z.x, v)
|
|
z.w.writeb(z.x)
|
|
}
|
|
|
|
func (z bigenHelper) writeUint64(v uint64) {
|
|
bigen.PutUint64(z.x, v)
|
|
z.w.writeb(z.x)
|
|
}
|
|
|
|
type extTypeTagFn struct {
|
|
rtid uintptr
|
|
rt reflect.Type
|
|
tag uint64
|
|
ext Ext
|
|
}
|
|
|
|
type extHandle []extTypeTagFn
|
|
|
|
// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
|
//
|
|
// AddExt registes an encode and decode function for a reflect.Type.
|
|
// AddExt internally calls SetExt.
|
|
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
|
|
func (o *extHandle) AddExt(
|
|
rt reflect.Type, tag byte,
|
|
encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error,
|
|
) (err error) {
|
|
if encfn == nil || decfn == nil {
|
|
return o.SetExt(rt, uint64(tag), nil)
|
|
}
|
|
return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
|
|
}
|
|
|
|
// DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead.
|
|
//
|
|
// Note that the type must be a named type, and specifically not
|
|
// a pointer or Interface. An error is returned if that is not honored.
|
|
//
|
|
// To Deregister an ext, call SetExt with nil Ext
|
|
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
|
|
// o is a pointer, because we may need to initialize it
|
|
if rt.PkgPath() == "" || rt.Kind() == reflect.Interface {
|
|
err = fmt.Errorf("codec.Handle.AddExt: Takes named type, especially not a pointer or interface: %T",
|
|
reflect.Zero(rt).Interface())
|
|
return
|
|
}
|
|
|
|
rtid := reflect.ValueOf(rt).Pointer()
|
|
for _, v := range *o {
|
|
if v.rtid == rtid {
|
|
v.tag, v.ext = tag, ext
|
|
return
|
|
}
|
|
}
|
|
|
|
if *o == nil {
|
|
*o = make([]extTypeTagFn, 0, 4)
|
|
}
|
|
*o = append(*o, extTypeTagFn{rtid, rt, tag, ext})
|
|
return
|
|
}
|
|
|
|
func (o extHandle) getExt(rtid uintptr) *extTypeTagFn {
|
|
var v *extTypeTagFn
|
|
for i := range o {
|
|
v = &o[i]
|
|
if v.rtid == rtid {
|
|
return v
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn {
|
|
var v *extTypeTagFn
|
|
for i := range o {
|
|
v = &o[i]
|
|
if v.tag == tag {
|
|
return v
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type structFieldInfo struct {
|
|
encName string // encode name
|
|
|
|
// only one of 'i' or 'is' can be set. If 'i' is -1, then 'is' has been set.
|
|
|
|
is []int // (recursive/embedded) field index in struct
|
|
i int16 // field index in struct
|
|
omitEmpty bool
|
|
toArray bool // if field is _struct, is the toArray set?
|
|
}
|
|
|
|
// func (si *structFieldInfo) isZero() bool {
|
|
// return si.encName == "" && len(si.is) == 0 && si.i == 0 && !si.omitEmpty && !si.toArray
|
|
// }
|
|
|
|
// rv returns the field of the struct.
|
|
// If anonymous, it returns an Invalid
|
|
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value) {
|
|
if si.i != -1 {
|
|
v = v.Field(int(si.i))
|
|
return v
|
|
}
|
|
// replicate FieldByIndex
|
|
for _, x := range si.is {
|
|
for v.Kind() == reflect.Ptr {
|
|
if v.IsNil() {
|
|
if !update {
|
|
return
|
|
}
|
|
v.Set(reflect.New(v.Type().Elem()))
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
v = v.Field(x)
|
|
}
|
|
return v
|
|
}
|
|
|
|
func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
|
|
if si.i != -1 {
|
|
v = v.Field(int(si.i))
|
|
v.Set(reflect.Zero(v.Type()))
|
|
// v.Set(reflect.New(v.Type()).Elem())
|
|
// v.Set(reflect.New(v.Type()))
|
|
} else {
|
|
// replicate FieldByIndex
|
|
for _, x := range si.is {
|
|
for v.Kind() == reflect.Ptr {
|
|
if v.IsNil() {
|
|
return
|
|
}
|
|
v = v.Elem()
|
|
}
|
|
v = v.Field(x)
|
|
}
|
|
v.Set(reflect.Zero(v.Type()))
|
|
}
|
|
}
|
|
|
|
func parseStructFieldInfo(fname string, stag string) *structFieldInfo {
|
|
// if fname == "" {
|
|
// panic(noFieldNameToStructFieldInfoErr)
|
|
// }
|
|
si := structFieldInfo{
|
|
encName: fname,
|
|
}
|
|
|
|
if stag != "" {
|
|
for i, s := range strings.Split(stag, ",") {
|
|
if i == 0 {
|
|
if s != "" {
|
|
si.encName = s
|
|
}
|
|
} else {
|
|
if s == "omitempty" {
|
|
si.omitEmpty = true
|
|
} else if s == "toarray" {
|
|
si.toArray = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// si.encNameBs = []byte(si.encName)
|
|
return &si
|
|
}
|
|
|
|
type sfiSortedByEncName []*structFieldInfo
|
|
|
|
func (p sfiSortedByEncName) Len() int {
|
|
return len(p)
|
|
}
|
|
|
|
func (p sfiSortedByEncName) Less(i, j int) bool {
|
|
return p[i].encName < p[j].encName
|
|
}
|
|
|
|
func (p sfiSortedByEncName) Swap(i, j int) {
|
|
p[i], p[j] = p[j], p[i]
|
|
}
|
|
|
|
// typeInfo keeps information about each type referenced in the encode/decode sequence.
|
|
//
|
|
// During an encode/decode sequence, we work as below:
|
|
// - If base is a built in type, en/decode base value
|
|
// - If base is registered as an extension, en/decode base value
|
|
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
|
|
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
|
|
// - Else decode appropriately based on the reflect.Kind
|
|
type typeInfo struct {
|
|
sfi []*structFieldInfo // sorted. Used when enc/dec struct to map.
|
|
sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array.
|
|
|
|
rt reflect.Type
|
|
rtid uintptr
|
|
|
|
numMeth uint16 // number of methods
|
|
|
|
// baseId gives pointer to the base reflect.Type, after deferencing
|
|
// the pointers. E.g. base type of ***time.Time is time.Time.
|
|
base reflect.Type
|
|
baseId uintptr
|
|
baseIndir int8 // number of indirections to get to base
|
|
|
|
mbs bool // base type (T or *T) is a MapBySlice
|
|
|
|
bm bool // base type (T or *T) is a binaryMarshaler
|
|
bunm bool // base type (T or *T) is a binaryUnmarshaler
|
|
bmIndir int8 // number of indirections to get to binaryMarshaler type
|
|
bunmIndir int8 // number of indirections to get to binaryUnmarshaler type
|
|
|
|
tm bool // base type (T or *T) is a textMarshaler
|
|
tunm bool // base type (T or *T) is a textUnmarshaler
|
|
tmIndir int8 // number of indirections to get to textMarshaler type
|
|
tunmIndir int8 // number of indirections to get to textUnmarshaler type
|
|
|
|
jm bool // base type (T or *T) is a jsonMarshaler
|
|
junm bool // base type (T or *T) is a jsonUnmarshaler
|
|
jmIndir int8 // number of indirections to get to jsonMarshaler type
|
|
junmIndir int8 // number of indirections to get to jsonUnmarshaler type
|
|
|
|
cs bool // base type (T or *T) is a Selfer
|
|
csIndir int8 // number of indirections to get to Selfer type
|
|
|
|
toArray bool // whether this (struct) type should be encoded as an array
|
|
}
|
|
|
|
func (ti *typeInfo) indexForEncName(name string) int {
|
|
// NOTE: name may be a stringView, so don't pass it to another function.
|
|
//tisfi := ti.sfi
|
|
const binarySearchThreshold = 16
|
|
if sfilen := len(ti.sfi); sfilen < binarySearchThreshold {
|
|
// linear search. faster than binary search in my testing up to 16-field structs.
|
|
for i, si := range ti.sfi {
|
|
if si.encName == name {
|
|
return i
|
|
}
|
|
}
|
|
} else {
|
|
// binary search. adapted from sort/search.go.
|
|
h, i, j := 0, 0, sfilen
|
|
for i < j {
|
|
h = i + (j-i)/2
|
|
if ti.sfi[h].encName < name {
|
|
i = h + 1
|
|
} else {
|
|
j = h
|
|
}
|
|
}
|
|
if i < sfilen && ti.sfi[i].encName == name {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// TypeInfos caches typeInfo for each type on first inspection.
|
|
//
|
|
// It is configured with a set of tag keys, which are used to get
|
|
// configuration for the type.
|
|
type TypeInfos struct {
|
|
infos map[uintptr]*typeInfo
|
|
mu sync.RWMutex
|
|
tags []string
|
|
}
|
|
|
|
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
|
|
//
|
|
// This allows users customize the struct tag keys which contain configuration
|
|
// of their types.
|
|
func NewTypeInfos(tags []string) *TypeInfos {
|
|
return &TypeInfos{tags: tags, infos: make(map[uintptr]*typeInfo, 64)}
|
|
}
|
|
|
|
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
|
|
// check for tags: codec, json, in that order.
|
|
// this allows seamless support for many configured structs.
|
|
for _, x := range x.tags {
|
|
s = t.Get(x)
|
|
if s != "" {
|
|
return s
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
|
|
var ok bool
|
|
x.mu.RLock()
|
|
pti, ok = x.infos[rtid]
|
|
x.mu.RUnlock()
|
|
if ok {
|
|
return
|
|
}
|
|
|
|
// do not hold lock while computing this.
|
|
// it may lead to duplication, but that's ok.
|
|
ti := typeInfo{rt: rt, rtid: rtid}
|
|
ti.numMeth = uint16(rt.NumMethod())
|
|
|
|
var indir int8
|
|
if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok {
|
|
ti.bm, ti.bmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok {
|
|
ti.bunm, ti.bunmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, textMarshalerTyp); ok {
|
|
ti.tm, ti.tmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, textUnmarshalerTyp); ok {
|
|
ti.tunm, ti.tunmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, jsonMarshalerTyp); ok {
|
|
ti.jm, ti.jmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, jsonUnmarshalerTyp); ok {
|
|
ti.junm, ti.junmIndir = true, indir
|
|
}
|
|
if ok, indir = implementsIntf(rt, selferTyp); ok {
|
|
ti.cs, ti.csIndir = true, indir
|
|
}
|
|
if ok, _ = implementsIntf(rt, mapBySliceTyp); ok {
|
|
ti.mbs = true
|
|
}
|
|
|
|
pt := rt
|
|
var ptIndir int8
|
|
// for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { }
|
|
for pt.Kind() == reflect.Ptr {
|
|
pt = pt.Elem()
|
|
ptIndir++
|
|
}
|
|
if ptIndir == 0 {
|
|
ti.base = rt
|
|
ti.baseId = rtid
|
|
} else {
|
|
ti.base = pt
|
|
ti.baseId = reflect.ValueOf(pt).Pointer()
|
|
ti.baseIndir = ptIndir
|
|
}
|
|
|
|
if rt.Kind() == reflect.Struct {
|
|
var siInfo *structFieldInfo
|
|
if f, ok := rt.FieldByName(structInfoFieldName); ok {
|
|
siInfo = parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag))
|
|
ti.toArray = siInfo.toArray
|
|
}
|
|
pi := rgetPool.Get()
|
|
pv := pi.(*rgetPoolT)
|
|
pv.etypes[0] = ti.baseId
|
|
vv := rgetT{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
|
|
x.rget(rt, rtid, nil, &vv, siInfo)
|
|
ti.sfip = make([]*structFieldInfo, len(vv.sfis))
|
|
ti.sfi = make([]*structFieldInfo, len(vv.sfis))
|
|
copy(ti.sfip, vv.sfis)
|
|
sort.Sort(sfiSortedByEncName(vv.sfis))
|
|
copy(ti.sfi, vv.sfis)
|
|
rgetPool.Put(pi)
|
|
}
|
|
// sfi = sfip
|
|
|
|
x.mu.Lock()
|
|
if pti, ok = x.infos[rtid]; !ok {
|
|
pti = &ti
|
|
x.infos[rtid] = pti
|
|
}
|
|
x.mu.Unlock()
|
|
return
|
|
}
|
|
|
|
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
|
|
indexstack []int, pv *rgetT, siInfo *structFieldInfo,
|
|
) {
|
|
// This will read up the fields and store how to access the value.
|
|
// It uses the go language's rules for embedding, as below:
|
|
// - if a field has been seen while traversing, skip it
|
|
// - if an encName has been seen while traversing, skip it
|
|
// - if an embedded type has been seen, skip it
|
|
//
|
|
// Also, per Go's rules, embedded fields must be analyzed AFTER all top-level fields.
|
|
//
|
|
// Note: we consciously use slices, not a map, to simulate a set.
|
|
// Typically, types have < 16 fields, and iteration using equals is faster than maps there
|
|
|
|
type anonField struct {
|
|
ft reflect.Type
|
|
idx int
|
|
}
|
|
|
|
var anonFields []anonField
|
|
|
|
LOOP:
|
|
for j, jlen := 0, rt.NumField(); j < jlen; j++ {
|
|
f := rt.Field(j)
|
|
fkind := f.Type.Kind()
|
|
// skip if a func type, or is unexported, or structTag value == "-"
|
|
switch fkind {
|
|
case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
|
|
continue LOOP
|
|
}
|
|
|
|
// if r1, _ := utf8.DecodeRuneInString(f.Name); r1 == utf8.RuneError || !unicode.IsUpper(r1) {
|
|
if f.PkgPath != "" && !f.Anonymous { // unexported, not embedded
|
|
continue
|
|
}
|
|
stag := x.structTag(f.Tag)
|
|
if stag == "-" {
|
|
continue
|
|
}
|
|
var si *structFieldInfo
|
|
// if anonymous and no struct tag (or it's blank), and a struct (or pointer to struct), inline it.
|
|
if f.Anonymous && fkind != reflect.Interface {
|
|
doInline := stag == ""
|
|
if !doInline {
|
|
si = parseStructFieldInfo("", stag)
|
|
doInline = si.encName == ""
|
|
// doInline = si.isZero()
|
|
}
|
|
if doInline {
|
|
ft := f.Type
|
|
for ft.Kind() == reflect.Ptr {
|
|
ft = ft.Elem()
|
|
}
|
|
if ft.Kind() == reflect.Struct {
|
|
// handle anonymous fields after handling all the non-anon fields
|
|
anonFields = append(anonFields, anonField{ft, j})
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// after the anonymous dance: if an unexported field, skip
|
|
if f.PkgPath != "" { // unexported
|
|
continue
|
|
}
|
|
|
|
if f.Name == "" {
|
|
panic(noFieldNameToStructFieldInfoErr)
|
|
}
|
|
|
|
for _, k := range pv.fNames {
|
|
if k == f.Name {
|
|
continue LOOP
|
|
}
|
|
}
|
|
pv.fNames = append(pv.fNames, f.Name)
|
|
|
|
if si == nil {
|
|
si = parseStructFieldInfo(f.Name, stag)
|
|
} else if si.encName == "" {
|
|
si.encName = f.Name
|
|
}
|
|
|
|
for _, k := range pv.encNames {
|
|
if k == si.encName {
|
|
continue LOOP
|
|
}
|
|
}
|
|
pv.encNames = append(pv.encNames, si.encName)
|
|
|
|
// si.ikind = int(f.Type.Kind())
|
|
if len(indexstack) == 0 {
|
|
si.i = int16(j)
|
|
} else {
|
|
si.i = -1
|
|
si.is = make([]int, len(indexstack)+1)
|
|
copy(si.is, indexstack)
|
|
si.is[len(indexstack)] = j
|
|
// si.is = append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
|
|
}
|
|
|
|
if siInfo != nil {
|
|
if siInfo.omitEmpty {
|
|
si.omitEmpty = true
|
|
}
|
|
}
|
|
pv.sfis = append(pv.sfis, si)
|
|
}
|
|
|
|
// now handle anonymous fields
|
|
LOOP2:
|
|
for _, af := range anonFields {
|
|
// if etypes contains this, then do not call rget again (as the fields are already seen here)
|
|
ftid := reflect.ValueOf(af.ft).Pointer()
|
|
for _, k := range pv.etypes {
|
|
if k == ftid {
|
|
continue LOOP2
|
|
}
|
|
}
|
|
pv.etypes = append(pv.etypes, ftid)
|
|
|
|
indexstack2 := make([]int, len(indexstack)+1)
|
|
copy(indexstack2, indexstack)
|
|
indexstack2[len(indexstack)] = af.idx
|
|
// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
|
|
x.rget(af.ft, ftid, indexstack2, pv, siInfo)
|
|
}
|
|
}
|
|
|
|
func panicToErr(err *error) {
|
|
if recoverPanicToErr {
|
|
if x := recover(); x != nil {
|
|
//debug.PrintStack()
|
|
panicValToErr(x, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// func doPanic(tag string, format string, params ...interface{}) {
|
|
// params2 := make([]interface{}, len(params)+1)
|
|
// params2[0] = tag
|
|
// copy(params2[1:], params)
|
|
// panic(fmt.Errorf("%s: "+format, params2...))
|
|
// }
|
|
|
|
func isImmutableKind(k reflect.Kind) (v bool) {
|
|
return false ||
|
|
k == reflect.Int ||
|
|
k == reflect.Int8 ||
|
|
k == reflect.Int16 ||
|
|
k == reflect.Int32 ||
|
|
k == reflect.Int64 ||
|
|
k == reflect.Uint ||
|
|
k == reflect.Uint8 ||
|
|
k == reflect.Uint16 ||
|
|
k == reflect.Uint32 ||
|
|
k == reflect.Uint64 ||
|
|
k == reflect.Uintptr ||
|
|
k == reflect.Float32 ||
|
|
k == reflect.Float64 ||
|
|
k == reflect.Bool ||
|
|
k == reflect.String
|
|
}
|
|
|
|
// these functions must be inlinable, and not call anybody
|
|
type checkOverflow struct{}
|
|
|
|
func (_ checkOverflow) Float32(f float64) (overflow bool) {
|
|
if f < 0 {
|
|
f = -f
|
|
}
|
|
return math.MaxFloat32 < f && f <= math.MaxFloat64
|
|
}
|
|
|
|
func (_ checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
|
|
if bitsize == 0 || bitsize >= 64 || v == 0 {
|
|
return
|
|
}
|
|
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
|
|
overflow = true
|
|
}
|
|
return
|
|
}
|
|
|
|
func (_ checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
|
|
if bitsize == 0 || bitsize >= 64 || v == 0 {
|
|
return
|
|
}
|
|
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
|
|
overflow = true
|
|
}
|
|
return
|
|
}
|
|
|
|
func (_ checkOverflow) SignedInt(v uint64) (i int64, overflow bool) {
|
|
//e.g. -127 to 128 for int8
|
|
pos := (v >> 63) == 0
|
|
ui2 := v & 0x7fffffffffffffff
|
|
if pos {
|
|
if ui2 > math.MaxInt64 {
|
|
overflow = true
|
|
return
|
|
}
|
|
} else {
|
|
if ui2 > math.MaxInt64-1 {
|
|
overflow = true
|
|
return
|
|
}
|
|
}
|
|
i = int64(v)
|
|
return
|
|
}
|
|
|
|
// ------------------ SORT -----------------
|
|
|
|
func isNaN(f float64) bool { return f != f }
|
|
|
|
// -----------------------
|
|
|
|
type intSlice []int64
|
|
type uintSlice []uint64
|
|
type floatSlice []float64
|
|
type boolSlice []bool
|
|
type stringSlice []string
|
|
type bytesSlice [][]byte
|
|
|
|
func (p intSlice) Len() int { return len(p) }
|
|
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p intSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p uintSlice) Len() int { return len(p) }
|
|
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p uintSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p floatSlice) Len() int { return len(p) }
|
|
func (p floatSlice) Less(i, j int) bool {
|
|
return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
|
|
}
|
|
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p stringSlice) Len() int { return len(p) }
|
|
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p stringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p bytesSlice) Len() int { return len(p) }
|
|
func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
|
|
func (p bytesSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p boolSlice) Len() int { return len(p) }
|
|
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
|
|
func (p boolSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// ---------------------
|
|
|
|
type intRv struct {
|
|
v int64
|
|
r reflect.Value
|
|
}
|
|
type intRvSlice []intRv
|
|
type uintRv struct {
|
|
v uint64
|
|
r reflect.Value
|
|
}
|
|
type uintRvSlice []uintRv
|
|
type floatRv struct {
|
|
v float64
|
|
r reflect.Value
|
|
}
|
|
type floatRvSlice []floatRv
|
|
type boolRv struct {
|
|
v bool
|
|
r reflect.Value
|
|
}
|
|
type boolRvSlice []boolRv
|
|
type stringRv struct {
|
|
v string
|
|
r reflect.Value
|
|
}
|
|
type stringRvSlice []stringRv
|
|
type bytesRv struct {
|
|
v []byte
|
|
r reflect.Value
|
|
}
|
|
type bytesRvSlice []bytesRv
|
|
|
|
func (p intRvSlice) Len() int { return len(p) }
|
|
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
|
func (p intRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p uintRvSlice) Len() int { return len(p) }
|
|
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
|
func (p uintRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p floatRvSlice) Len() int { return len(p) }
|
|
func (p floatRvSlice) Less(i, j int) bool {
|
|
return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
|
|
}
|
|
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p stringRvSlice) Len() int { return len(p) }
|
|
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
|
|
func (p stringRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p bytesRvSlice) Len() int { return len(p) }
|
|
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
|
|
func (p bytesRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func (p boolRvSlice) Len() int { return len(p) }
|
|
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
|
|
func (p boolRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// -----------------
|
|
|
|
type bytesI struct {
|
|
v []byte
|
|
i interface{}
|
|
}
|
|
|
|
type bytesISlice []bytesI
|
|
|
|
func (p bytesISlice) Len() int { return len(p) }
|
|
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
|
|
func (p bytesISlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// -----------------
|
|
|
|
type set []uintptr
|
|
|
|
func (s *set) add(v uintptr) (exists bool) {
|
|
// e.ci is always nil, or len >= 1
|
|
// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Add: %v, exists: %v\n", v, exists) }()
|
|
x := *s
|
|
if x == nil {
|
|
x = make([]uintptr, 1, 8)
|
|
x[0] = v
|
|
*s = x
|
|
return
|
|
}
|
|
// typically, length will be 1. make this perform.
|
|
if len(x) == 1 {
|
|
if j := x[0]; j == 0 {
|
|
x[0] = v
|
|
} else if j == v {
|
|
exists = true
|
|
} else {
|
|
x = append(x, v)
|
|
*s = x
|
|
}
|
|
return
|
|
}
|
|
// check if it exists
|
|
for _, j := range x {
|
|
if j == v {
|
|
exists = true
|
|
return
|
|
}
|
|
}
|
|
// try to replace a "deleted" slot
|
|
for i, j := range x {
|
|
if j == 0 {
|
|
x[i] = v
|
|
return
|
|
}
|
|
}
|
|
// if unable to replace deleted slot, just append it.
|
|
x = append(x, v)
|
|
*s = x
|
|
return
|
|
}
|
|
|
|
func (s *set) remove(v uintptr) (exists bool) {
|
|
// defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Rm: %v, exists: %v\n", v, exists) }()
|
|
x := *s
|
|
if len(x) == 0 {
|
|
return
|
|
}
|
|
if len(x) == 1 {
|
|
if x[0] == v {
|
|
x[0] = 0
|
|
}
|
|
return
|
|
}
|
|
for i, j := range x {
|
|
if j == v {
|
|
exists = true
|
|
x[i] = 0 // set it to 0, as way to delete it.
|
|
// copy(x[i:], x[i+1:])
|
|
// x = x[:len(x)-1]
|
|
return
|
|
}
|
|
}
|
|
return
|
|
}
|