1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2025-01-17 16:34:15 -05:00
forgejo/models/gpg_key.go
zeripath 90919bb37e
Show Signer in commit lists and add basic trust (#10425)
* Show Signer in commit lists and add basic trust

Show the avatar of the signer in the commit list pages as we do not
enforce that the signer is an author or committer. This makes it
clearer who has signed the commit.

Also display commits signed by non-members differently from
members and in particular make it clear when a non-member signer
is different from the committer to help reduce the risk of
spoofing.

Signed-off-by: Andrew Thornton <art27@cantab.net>

* ensure orange text and background is available

Signed-off-by: Andrew Thornton <art27@cantab.net>

* Update gpg_key.go

* Update models/gpg_key.go

* Apply suggestions from code review

* Require team collaborators to have access to UnitTypeCode

* as per @6543

* fix position of sha as per @silverwind

* as per @guillep2k
2020-02-27 16:20:55 -03:00

813 lines
23 KiB
Go

// Copyright 2017 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package models
import (
"bytes"
"container/list"
"crypto"
"encoding/base64"
"fmt"
"hash"
"io"
"strings"
"time"
"code.gitea.io/gitea/modules/git"
"code.gitea.io/gitea/modules/log"
"code.gitea.io/gitea/modules/setting"
"code.gitea.io/gitea/modules/timeutil"
"github.com/keybase/go-crypto/openpgp"
"github.com/keybase/go-crypto/openpgp/armor"
"github.com/keybase/go-crypto/openpgp/packet"
"xorm.io/xorm"
)
// GPGKey represents a GPG key.
type GPGKey struct {
ID int64 `xorm:"pk autoincr"`
OwnerID int64 `xorm:"INDEX NOT NULL"`
KeyID string `xorm:"INDEX CHAR(16) NOT NULL"`
PrimaryKeyID string `xorm:"CHAR(16)"`
Content string `xorm:"TEXT NOT NULL"`
CreatedUnix timeutil.TimeStamp `xorm:"created"`
ExpiredUnix timeutil.TimeStamp
AddedUnix timeutil.TimeStamp
SubsKey []*GPGKey `xorm:"-"`
Emails []*EmailAddress
CanSign bool
CanEncryptComms bool
CanEncryptStorage bool
CanCertify bool
}
//GPGKeyImport the original import of key
type GPGKeyImport struct {
KeyID string `xorm:"pk CHAR(16) NOT NULL"`
Content string `xorm:"TEXT NOT NULL"`
}
// BeforeInsert will be invoked by XORM before inserting a record
func (key *GPGKey) BeforeInsert() {
key.AddedUnix = timeutil.TimeStampNow()
}
// AfterLoad is invoked from XORM after setting the values of all fields of this object.
func (key *GPGKey) AfterLoad(session *xorm.Session) {
err := session.Where("primary_key_id=?", key.KeyID).Find(&key.SubsKey)
if err != nil {
log.Error("Find Sub GPGkeys[%s]: %v", key.KeyID, err)
}
}
// ListGPGKeys returns a list of public keys belongs to given user.
func ListGPGKeys(uid int64, listOptions ListOptions) ([]*GPGKey, error) {
sess := x.Where("owner_id=? AND primary_key_id=''", uid)
if listOptions.Page != 0 {
sess = listOptions.setSessionPagination(sess)
}
keys := make([]*GPGKey, 0, 2)
return keys, sess.Find(&keys)
}
// GetGPGKeyByID returns public key by given ID.
func GetGPGKeyByID(keyID int64) (*GPGKey, error) {
key := new(GPGKey)
has, err := x.ID(keyID).Get(key)
if err != nil {
return nil, err
} else if !has {
return nil, ErrGPGKeyNotExist{keyID}
}
return key, nil
}
// GetGPGKeysByKeyID returns public key by given ID.
func GetGPGKeysByKeyID(keyID string) ([]*GPGKey, error) {
keys := make([]*GPGKey, 0, 1)
return keys, x.Where("key_id=?", keyID).Find(&keys)
}
// GetGPGImportByKeyID returns the import public armored key by given KeyID.
func GetGPGImportByKeyID(keyID string) (*GPGKeyImport, error) {
key := new(GPGKeyImport)
has, err := x.ID(keyID).Get(key)
if err != nil {
return nil, err
} else if !has {
return nil, ErrGPGKeyImportNotExist{keyID}
}
return key, nil
}
// checkArmoredGPGKeyString checks if the given key string is a valid GPG armored key.
// The function returns the actual public key on success
func checkArmoredGPGKeyString(content string) (*openpgp.Entity, error) {
list, err := openpgp.ReadArmoredKeyRing(strings.NewReader(content))
if err != nil {
return nil, ErrGPGKeyParsing{err}
}
return list[0], nil
}
//addGPGKey add key, import and subkeys to database
func addGPGKey(e Engine, key *GPGKey, content string) (err error) {
//Add GPGKeyImport
if _, err = e.Insert(GPGKeyImport{
KeyID: key.KeyID,
Content: content,
}); err != nil {
return err
}
// Save GPG primary key.
if _, err = e.Insert(key); err != nil {
return err
}
// Save GPG subs key.
for _, subkey := range key.SubsKey {
if err := addGPGSubKey(e, subkey); err != nil {
return err
}
}
return nil
}
//addGPGSubKey add subkeys to database
func addGPGSubKey(e Engine, key *GPGKey) (err error) {
// Save GPG primary key.
if _, err = e.Insert(key); err != nil {
return err
}
// Save GPG subs key.
for _, subkey := range key.SubsKey {
if err := addGPGSubKey(e, subkey); err != nil {
return err
}
}
return nil
}
// AddGPGKey adds new public key to database.
func AddGPGKey(ownerID int64, content string) (*GPGKey, error) {
ekey, err := checkArmoredGPGKeyString(content)
if err != nil {
return nil, err
}
// Key ID cannot be duplicated.
has, err := x.Where("key_id=?", ekey.PrimaryKey.KeyIdString()).
Get(new(GPGKey))
if err != nil {
return nil, err
} else if has {
return nil, ErrGPGKeyIDAlreadyUsed{ekey.PrimaryKey.KeyIdString()}
}
//Get DB session
sess := x.NewSession()
defer sess.Close()
if err = sess.Begin(); err != nil {
return nil, err
}
key, err := parseGPGKey(ownerID, ekey)
if err != nil {
return nil, err
}
if err = addGPGKey(sess, key, content); err != nil {
return nil, err
}
return key, sess.Commit()
}
//base64EncPubKey encode public key content to base 64
func base64EncPubKey(pubkey *packet.PublicKey) (string, error) {
var w bytes.Buffer
err := pubkey.Serialize(&w)
if err != nil {
return "", err
}
return base64.StdEncoding.EncodeToString(w.Bytes()), nil
}
//base64DecPubKey decode public key content from base 64
func base64DecPubKey(content string) (*packet.PublicKey, error) {
b, err := readerFromBase64(content)
if err != nil {
return nil, err
}
//Read key
p, err := packet.Read(b)
if err != nil {
return nil, err
}
//Check type
pkey, ok := p.(*packet.PublicKey)
if !ok {
return nil, fmt.Errorf("key is not a public key")
}
return pkey, nil
}
//GPGKeyToEntity retrieve the imported key and the traducted entity
func GPGKeyToEntity(k *GPGKey) (*openpgp.Entity, error) {
impKey, err := GetGPGImportByKeyID(k.KeyID)
if err != nil {
return nil, err
}
return checkArmoredGPGKeyString(impKey.Content)
}
//parseSubGPGKey parse a sub Key
func parseSubGPGKey(ownerID int64, primaryID string, pubkey *packet.PublicKey, expiry time.Time) (*GPGKey, error) {
content, err := base64EncPubKey(pubkey)
if err != nil {
return nil, err
}
return &GPGKey{
OwnerID: ownerID,
KeyID: pubkey.KeyIdString(),
PrimaryKeyID: primaryID,
Content: content,
CreatedUnix: timeutil.TimeStamp(pubkey.CreationTime.Unix()),
ExpiredUnix: timeutil.TimeStamp(expiry.Unix()),
CanSign: pubkey.CanSign(),
CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(),
CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(),
CanCertify: pubkey.PubKeyAlgo.CanSign(),
}, nil
}
//getExpiryTime extract the expire time of primary key based on sig
func getExpiryTime(e *openpgp.Entity) time.Time {
expiry := time.Time{}
//Extract self-sign for expire date based on : https://github.com/golang/crypto/blob/master/openpgp/keys.go#L165
var selfSig *packet.Signature
for _, ident := range e.Identities {
if selfSig == nil {
selfSig = ident.SelfSignature
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
selfSig = ident.SelfSignature
break
}
}
if selfSig.KeyLifetimeSecs != nil {
expiry = e.PrimaryKey.CreationTime.Add(time.Duration(*selfSig.KeyLifetimeSecs) * time.Second)
}
return expiry
}
//parseGPGKey parse a PrimaryKey entity (primary key + subs keys + self-signature)
func parseGPGKey(ownerID int64, e *openpgp.Entity) (*GPGKey, error) {
pubkey := e.PrimaryKey
expiry := getExpiryTime(e)
//Parse Subkeys
subkeys := make([]*GPGKey, len(e.Subkeys))
for i, k := range e.Subkeys {
subs, err := parseSubGPGKey(ownerID, pubkey.KeyIdString(), k.PublicKey, expiry)
if err != nil {
return nil, err
}
subkeys[i] = subs
}
//Check emails
userEmails, err := GetEmailAddresses(ownerID)
if err != nil {
return nil, err
}
emails := make([]*EmailAddress, 0, len(e.Identities))
for _, ident := range e.Identities {
email := strings.ToLower(strings.TrimSpace(ident.UserId.Email))
for _, e := range userEmails {
if e.Email == email {
emails = append(emails, e)
break
}
}
}
//In the case no email as been found
if len(emails) == 0 {
failedEmails := make([]string, 0, len(e.Identities))
for _, ident := range e.Identities {
failedEmails = append(failedEmails, ident.UserId.Email)
}
return nil, ErrGPGNoEmailFound{failedEmails}
}
content, err := base64EncPubKey(pubkey)
if err != nil {
return nil, err
}
return &GPGKey{
OwnerID: ownerID,
KeyID: pubkey.KeyIdString(),
PrimaryKeyID: "",
Content: content,
CreatedUnix: timeutil.TimeStamp(pubkey.CreationTime.Unix()),
ExpiredUnix: timeutil.TimeStamp(expiry.Unix()),
Emails: emails,
SubsKey: subkeys,
CanSign: pubkey.CanSign(),
CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(),
CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(),
CanCertify: pubkey.PubKeyAlgo.CanSign(),
}, nil
}
// deleteGPGKey does the actual key deletion
func deleteGPGKey(e *xorm.Session, keyID string) (int64, error) {
if keyID == "" {
return 0, fmt.Errorf("empty KeyId forbidden") //Should never happen but just to be sure
}
//Delete imported key
n, err := e.Where("key_id=?", keyID).Delete(new(GPGKeyImport))
if err != nil {
return n, err
}
return e.Where("key_id=?", keyID).Or("primary_key_id=?", keyID).Delete(new(GPGKey))
}
// DeleteGPGKey deletes GPG key information in database.
func DeleteGPGKey(doer *User, id int64) (err error) {
key, err := GetGPGKeyByID(id)
if err != nil {
if IsErrGPGKeyNotExist(err) {
return nil
}
return fmt.Errorf("GetPublicKeyByID: %v", err)
}
// Check if user has access to delete this key.
if !doer.IsAdmin && doer.ID != key.OwnerID {
return ErrGPGKeyAccessDenied{doer.ID, key.ID}
}
sess := x.NewSession()
defer sess.Close()
if err = sess.Begin(); err != nil {
return err
}
if _, err = deleteGPGKey(sess, key.KeyID); err != nil {
return err
}
return sess.Commit()
}
// CommitVerification represents a commit validation of signature
type CommitVerification struct {
Verified bool
Warning bool
Reason string
SigningUser *User
CommittingUser *User
SigningEmail string
SigningKey *GPGKey
TrustStatus string
}
// SignCommit represents a commit with validation of signature.
type SignCommit struct {
Verification *CommitVerification
*UserCommit
}
const (
// BadSignature is used as the reason when the signature has a KeyID that is in the db
// but no key that has that ID verifies the signature. This is a suspicious failure.
BadSignature = "gpg.error.probable_bad_signature"
// BadDefaultSignature is used as the reason when the signature has a KeyID that matches the
// default Key but is not verified by the default key. This is a suspicious failure.
BadDefaultSignature = "gpg.error.probable_bad_default_signature"
// NoKeyFound is used as the reason when no key can be found to verify the signature.
NoKeyFound = "gpg.error.no_gpg_keys_found"
)
func readerFromBase64(s string) (io.Reader, error) {
bs, err := base64.StdEncoding.DecodeString(s)
if err != nil {
return nil, err
}
return bytes.NewBuffer(bs), nil
}
func populateHash(hashFunc crypto.Hash, msg []byte) (hash.Hash, error) {
h := hashFunc.New()
if _, err := h.Write(msg); err != nil {
return nil, err
}
return h, nil
}
// readArmoredSign read an armored signature block with the given type. https://sourcegraph.com/github.com/golang/crypto/-/blob/openpgp/read.go#L24:6-24:17
func readArmoredSign(r io.Reader) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != openpgp.SignatureType {
return nil, fmt.Errorf("expected '" + openpgp.SignatureType + "', got: " + block.Type)
}
return block.Body, nil
}
func extractSignature(s string) (*packet.Signature, error) {
r, err := readArmoredSign(strings.NewReader(s))
if err != nil {
return nil, fmt.Errorf("Failed to read signature armor")
}
p, err := packet.Read(r)
if err != nil {
return nil, fmt.Errorf("Failed to read signature packet")
}
sig, ok := p.(*packet.Signature)
if !ok {
return nil, fmt.Errorf("Packet is not a signature")
}
return sig, nil
}
func verifySign(s *packet.Signature, h hash.Hash, k *GPGKey) error {
//Check if key can sign
if !k.CanSign {
return fmt.Errorf("key can not sign")
}
//Decode key
pkey, err := base64DecPubKey(k.Content)
if err != nil {
return err
}
return pkey.VerifySignature(h, s)
}
func hashAndVerify(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification {
//Generating hash of commit
hash, err := populateHash(sig.Hash, []byte(payload))
if err != nil { //Skipping failed to generate hash
log.Error("PopulateHash: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
if err := verifySign(sig, hash, k); err == nil {
return &CommitVerification{ //Everything is ok
CommittingUser: committer,
Verified: true,
Reason: fmt.Sprintf("%s <%s> / %s", signer.Name, signer.Email, k.KeyID),
SigningUser: signer,
SigningKey: k,
SigningEmail: email,
}
}
return nil
}
func hashAndVerifyWithSubKeys(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification {
commitVerification := hashAndVerify(sig, payload, k, committer, signer, email)
if commitVerification != nil {
return commitVerification
}
//And test also SubsKey
for _, sk := range k.SubsKey {
commitVerification := hashAndVerify(sig, payload, sk, committer, signer, email)
if commitVerification != nil {
return commitVerification
}
}
return nil
}
func hashAndVerifyForKeyID(sig *packet.Signature, payload string, committer *User, keyID, name, email string) *CommitVerification {
if keyID == "" {
return nil
}
keys, err := GetGPGKeysByKeyID(keyID)
if err != nil {
log.Error("GetGPGKeysByKeyID: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.failed_retrieval_gpg_keys",
}
}
if len(keys) == 0 {
return nil
}
for _, key := range keys {
activated := false
if len(email) != 0 {
for _, e := range key.Emails {
if e.IsActivated && strings.EqualFold(e.Email, email) {
activated = true
email = e.Email
break
}
}
} else {
for _, e := range key.Emails {
if e.IsActivated {
activated = true
email = e.Email
break
}
}
}
if !activated {
continue
}
signer := &User{
Name: name,
Email: email,
}
if key.OwnerID != 0 {
owner, err := GetUserByID(key.OwnerID)
if err == nil {
signer = owner
} else if !IsErrUserNotExist(err) {
log.Error("Failed to GetUserByID: %d for key ID: %d (%s) %v", key.OwnerID, key.ID, key.KeyID, err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.no_committer_account",
}
}
}
commitVerification := hashAndVerifyWithSubKeys(sig, payload, key, committer, signer, email)
if commitVerification != nil {
return commitVerification
}
}
// This is a bad situation ... We have a key id that is in our database but the signature doesn't match.
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Warning: true,
Reason: BadSignature,
}
}
// ParseCommitWithSignature check if signature is good against keystore.
func ParseCommitWithSignature(c *git.Commit) *CommitVerification {
var committer *User
if c.Committer != nil {
var err error
//Find Committer account
committer, err = GetUserByEmail(c.Committer.Email) //This finds the user by primary email or activated email so commit will not be valid if email is not
if err != nil { //Skipping not user for commiter
committer = &User{
Name: c.Committer.Name,
Email: c.Committer.Email,
}
// We can expect this to often be an ErrUserNotExist. in the case
// it is not, however, it is important to log it.
if !IsErrUserNotExist(err) {
log.Error("GetUserByEmail: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.no_committer_account",
}
}
}
}
// If no signature just report the committer
if c.Signature == nil {
return &CommitVerification{
CommittingUser: committer,
Verified: false, //Default value
Reason: "gpg.error.not_signed_commit", //Default value
}
}
//Parsing signature
sig, err := extractSignature(c.Signature.Signature)
if err != nil { //Skipping failed to extract sign
log.Error("SignatureRead err: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.extract_sign",
}
}
keyID := ""
if sig.IssuerKeyId != nil && (*sig.IssuerKeyId) != 0 {
keyID = fmt.Sprintf("%X", *sig.IssuerKeyId)
}
if keyID == "" && sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) > 0 {
keyID = fmt.Sprintf("%X", sig.IssuerFingerprint[12:20])
}
defaultReason := NoKeyFound
// First check if the sig has a keyID and if so just look at that
if commitVerification := hashAndVerifyForKeyID(
sig,
c.Signature.Payload,
committer,
keyID,
setting.AppName,
""); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
// Now try to associate the signature with the committer, if present
if committer.ID != 0 {
keys, err := ListGPGKeys(committer.ID, ListOptions{})
if err != nil { //Skipping failed to get gpg keys of user
log.Error("ListGPGKeys: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.failed_retrieval_gpg_keys",
}
}
for _, k := range keys {
//Pre-check (& optimization) that emails attached to key can be attached to the commiter email and can validate
canValidate := false
email := ""
for _, e := range k.Emails {
if e.IsActivated && strings.EqualFold(e.Email, c.Committer.Email) {
canValidate = true
email = e.Email
break
}
}
if !canValidate {
continue //Skip this key
}
commitVerification := hashAndVerifyWithSubKeys(sig, c.Signature.Payload, k, committer, committer, email)
if commitVerification != nil {
return commitVerification
}
}
}
if setting.Repository.Signing.SigningKey != "" && setting.Repository.Signing.SigningKey != "default" && setting.Repository.Signing.SigningKey != "none" {
// OK we should try the default key
gpgSettings := git.GPGSettings{
Sign: true,
KeyID: setting.Repository.Signing.SigningKey,
Name: setting.Repository.Signing.SigningName,
Email: setting.Repository.Signing.SigningEmail,
}
if err := gpgSettings.LoadPublicKeyContent(); err != nil {
log.Error("Error getting default signing key: %s %v", gpgSettings.KeyID, err)
} else if commitVerification := verifyWithGPGSettings(&gpgSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
}
defaultGPGSettings, err := c.GetRepositoryDefaultPublicGPGKey(false)
if err != nil {
log.Error("Error getting default public gpg key: %v", err)
} else if defaultGPGSettings == nil {
log.Warn("Unable to get defaultGPGSettings for unattached commit: %s", c.ID.String())
} else if defaultGPGSettings.Sign {
if commitVerification := verifyWithGPGSettings(defaultGPGSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
}
return &CommitVerification{ //Default at this stage
CommittingUser: committer,
Verified: false,
Warning: defaultReason != NoKeyFound,
Reason: defaultReason,
SigningKey: &GPGKey{
KeyID: keyID,
},
}
}
func verifyWithGPGSettings(gpgSettings *git.GPGSettings, sig *packet.Signature, payload string, committer *User, keyID string) *CommitVerification {
// First try to find the key in the db
if commitVerification := hashAndVerifyForKeyID(sig, payload, committer, gpgSettings.KeyID, gpgSettings.Name, gpgSettings.Email); commitVerification != nil {
return commitVerification
}
// Otherwise we have to parse the key
ekey, err := checkArmoredGPGKeyString(gpgSettings.PublicKeyContent)
if err != nil {
log.Error("Unable to get default signing key: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
pubkey := ekey.PrimaryKey
content, err := base64EncPubKey(pubkey)
if err != nil {
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
k := &GPGKey{
Content: content,
CanSign: pubkey.CanSign(),
KeyID: pubkey.KeyIdString(),
}
if commitVerification := hashAndVerifyWithSubKeys(sig, payload, k, committer, &User{
Name: gpgSettings.Name,
Email: gpgSettings.Email,
}, gpgSettings.Email); commitVerification != nil {
return commitVerification
}
if keyID == k.KeyID {
// This is a bad situation ... We have a key id that matches our default key but the signature doesn't match.
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Warning: true,
Reason: BadSignature,
}
}
return nil
}
// ParseCommitsWithSignature checks if signaute of commits are corresponding to users gpg keys.
func ParseCommitsWithSignature(oldCommits *list.List, repository *Repository) *list.List {
var (
newCommits = list.New()
e = oldCommits.Front()
)
memberMap := map[int64]bool{}
for e != nil {
c := e.Value.(UserCommit)
signCommit := SignCommit{
UserCommit: &c,
Verification: ParseCommitWithSignature(c.Commit),
}
_ = CalculateTrustStatus(signCommit.Verification, repository, &memberMap)
newCommits.PushBack(signCommit)
e = e.Next()
}
return newCommits
}
// CalculateTrustStatus will calculate the TrustStatus for a commit verification within a repository
func CalculateTrustStatus(verification *CommitVerification, repository *Repository, memberMap *map[int64]bool) (err error) {
if verification.Verified {
verification.TrustStatus = "trusted"
if verification.SigningUser.ID != 0 {
var isMember bool
if memberMap != nil {
var has bool
isMember, has = (*memberMap)[verification.SigningUser.ID]
if !has {
isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
(*memberMap)[verification.SigningUser.ID] = isMember
}
} else {
isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
}
if !isMember {
verification.TrustStatus = "untrusted"
if verification.CommittingUser.ID != verification.SigningUser.ID {
// The committing user and the signing user are not the same and are not the default key
// This should be marked as questionable unless the signing user is a collaborator/team member etc.
verification.TrustStatus = "unmatched"
}
}
}
}
return
}