1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo.git synced 2025-01-11 15:41:19 -05:00
forgejo/models/gpg_key_commit_verification.go
KN4CK3R d9ef43a712
Replace list.List with slices (#16311)
* Replaced list with slice.

* Fixed usage of pointer to temporary variable.

* Replaced LIFO list with slice.

* Lint

* Removed type check.

* Removed duplicated code.

* Lint

* Fixed merge.

Co-authored-by: 6543 <6543@obermui.de>
2021-08-09 14:08:51 -04:00

514 lines
16 KiB
Go

// Copyright 2021 The Gitea Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
package models
import (
"fmt"
"hash"
"strings"
"code.gitea.io/gitea/modules/git"
"code.gitea.io/gitea/modules/log"
"code.gitea.io/gitea/modules/setting"
"github.com/keybase/go-crypto/openpgp/packet"
)
// __________________ ________ ____ __.
// / _____/\______ \/ _____/ | |/ _|____ ___.__.
// / \ ___ | ___/ \ ___ | <_/ __ < | |
// \ \_\ \| | \ \_\ \ | | \ ___/\___ |
// \______ /|____| \______ / |____|__ \___ > ____|
// \/ \/ \/ \/\/
// _________ .__ __
// \_ ___ \ ____ _____ _____ |__|/ |_
// / \ \/ / _ \ / \ / \| \ __\
// \ \___( <_> ) Y Y \ Y Y \ || |
// \______ /\____/|__|_| /__|_| /__||__|
// \/ \/ \/
// ____ ____ .__ _____.__ __ .__
// \ \ / /___________|__|/ ____\__| ____ _____ _/ |_|__| ____ ____
// \ Y // __ \_ __ \ \ __\| |/ ___\\__ \\ __\ |/ _ \ / \
// \ /\ ___/| | \/ || | | \ \___ / __ \| | | ( <_> ) | \
// \___/ \___ >__| |__||__| |__|\___ >____ /__| |__|\____/|___| /
// \/ \/ \/ \/
// This file provides functions relating commit verification
// CommitVerification represents a commit validation of signature
type CommitVerification struct {
Verified bool
Warning bool
Reason string
SigningUser *User
CommittingUser *User
SigningEmail string
SigningKey *GPGKey
TrustStatus string
}
// SignCommit represents a commit with validation of signature.
type SignCommit struct {
Verification *CommitVerification
*UserCommit
}
const (
// BadSignature is used as the reason when the signature has a KeyID that is in the db
// but no key that has that ID verifies the signature. This is a suspicious failure.
BadSignature = "gpg.error.probable_bad_signature"
// BadDefaultSignature is used as the reason when the signature has a KeyID that matches the
// default Key but is not verified by the default key. This is a suspicious failure.
BadDefaultSignature = "gpg.error.probable_bad_default_signature"
// NoKeyFound is used as the reason when no key can be found to verify the signature.
NoKeyFound = "gpg.error.no_gpg_keys_found"
)
// ParseCommitsWithSignature checks if signaute of commits are corresponding to users gpg keys.
func ParseCommitsWithSignature(oldCommits []*UserCommit, repository *Repository) []*SignCommit {
newCommits := make([]*SignCommit, 0, len(oldCommits))
keyMap := map[string]bool{}
for _, c := range oldCommits {
signCommit := &SignCommit{
UserCommit: c,
Verification: ParseCommitWithSignature(c.Commit),
}
_ = CalculateTrustStatus(signCommit.Verification, repository, &keyMap)
newCommits = append(newCommits, signCommit)
}
return newCommits
}
// ParseCommitWithSignature check if signature is good against keystore.
func ParseCommitWithSignature(c *git.Commit) *CommitVerification {
var committer *User
if c.Committer != nil {
var err error
// Find Committer account
committer, err = GetUserByEmail(c.Committer.Email) // This finds the user by primary email or activated email so commit will not be valid if email is not
if err != nil { // Skipping not user for committer
committer = &User{
Name: c.Committer.Name,
Email: c.Committer.Email,
}
// We can expect this to often be an ErrUserNotExist. in the case
// it is not, however, it is important to log it.
if !IsErrUserNotExist(err) {
log.Error("GetUserByEmail: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.no_committer_account",
}
}
}
}
// If no signature just report the committer
if c.Signature == nil {
return &CommitVerification{
CommittingUser: committer,
Verified: false, // Default value
Reason: "gpg.error.not_signed_commit", // Default value
}
}
// Parsing signature
sig, err := extractSignature(c.Signature.Signature)
if err != nil { // Skipping failed to extract sign
log.Error("SignatureRead err: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.extract_sign",
}
}
keyID := ""
if sig.IssuerKeyId != nil && (*sig.IssuerKeyId) != 0 {
keyID = fmt.Sprintf("%X", *sig.IssuerKeyId)
}
if keyID == "" && sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) > 0 {
keyID = fmt.Sprintf("%X", sig.IssuerFingerprint[12:20])
}
defaultReason := NoKeyFound
// First check if the sig has a keyID and if so just look at that
if commitVerification := hashAndVerifyForKeyID(
sig,
c.Signature.Payload,
committer,
keyID,
setting.AppName,
""); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
// Now try to associate the signature with the committer, if present
if committer.ID != 0 {
keys, err := ListGPGKeys(committer.ID, ListOptions{})
if err != nil { // Skipping failed to get gpg keys of user
log.Error("ListGPGKeys: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.failed_retrieval_gpg_keys",
}
}
committerEmailAddresses, _ := GetEmailAddresses(committer.ID)
activated := false
for _, e := range committerEmailAddresses {
if e.IsActivated && strings.EqualFold(e.Email, c.Committer.Email) {
activated = true
break
}
}
for _, k := range keys {
// Pre-check (& optimization) that emails attached to key can be attached to the committer email and can validate
canValidate := false
email := ""
if k.Verified && activated {
canValidate = true
email = c.Committer.Email
}
if !canValidate {
for _, e := range k.Emails {
if e.IsActivated && strings.EqualFold(e.Email, c.Committer.Email) {
canValidate = true
email = e.Email
break
}
}
}
if !canValidate {
continue // Skip this key
}
commitVerification := hashAndVerifyWithSubKeysCommitVerification(sig, c.Signature.Payload, k, committer, committer, email)
if commitVerification != nil {
return commitVerification
}
}
}
if setting.Repository.Signing.SigningKey != "" && setting.Repository.Signing.SigningKey != "default" && setting.Repository.Signing.SigningKey != "none" {
// OK we should try the default key
gpgSettings := git.GPGSettings{
Sign: true,
KeyID: setting.Repository.Signing.SigningKey,
Name: setting.Repository.Signing.SigningName,
Email: setting.Repository.Signing.SigningEmail,
}
if err := gpgSettings.LoadPublicKeyContent(); err != nil {
log.Error("Error getting default signing key: %s %v", gpgSettings.KeyID, err)
} else if commitVerification := verifyWithGPGSettings(&gpgSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
}
defaultGPGSettings, err := c.GetRepositoryDefaultPublicGPGKey(false)
if err != nil {
log.Error("Error getting default public gpg key: %v", err)
} else if defaultGPGSettings == nil {
log.Warn("Unable to get defaultGPGSettings for unattached commit: %s", c.ID.String())
} else if defaultGPGSettings.Sign {
if commitVerification := verifyWithGPGSettings(defaultGPGSettings, sig, c.Signature.Payload, committer, keyID); commitVerification != nil {
if commitVerification.Reason == BadSignature {
defaultReason = BadSignature
} else {
return commitVerification
}
}
}
return &CommitVerification{ // Default at this stage
CommittingUser: committer,
Verified: false,
Warning: defaultReason != NoKeyFound,
Reason: defaultReason,
SigningKey: &GPGKey{
KeyID: keyID,
},
}
}
func verifyWithGPGSettings(gpgSettings *git.GPGSettings, sig *packet.Signature, payload string, committer *User, keyID string) *CommitVerification {
// First try to find the key in the db
if commitVerification := hashAndVerifyForKeyID(sig, payload, committer, gpgSettings.KeyID, gpgSettings.Name, gpgSettings.Email); commitVerification != nil {
return commitVerification
}
// Otherwise we have to parse the key
ekeys, err := checkArmoredGPGKeyString(gpgSettings.PublicKeyContent)
if err != nil {
log.Error("Unable to get default signing key: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
for _, ekey := range ekeys {
pubkey := ekey.PrimaryKey
content, err := base64EncPubKey(pubkey)
if err != nil {
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
k := &GPGKey{
Content: content,
CanSign: pubkey.CanSign(),
KeyID: pubkey.KeyIdString(),
}
for _, subKey := range ekey.Subkeys {
content, err := base64EncPubKey(subKey.PublicKey)
if err != nil {
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
k.SubsKey = append(k.SubsKey, &GPGKey{
Content: content,
CanSign: subKey.PublicKey.CanSign(),
KeyID: subKey.PublicKey.KeyIdString(),
})
}
if commitVerification := hashAndVerifyWithSubKeysCommitVerification(sig, payload, k, committer, &User{
Name: gpgSettings.Name,
Email: gpgSettings.Email,
}, gpgSettings.Email); commitVerification != nil {
return commitVerification
}
if keyID == k.KeyID {
// This is a bad situation ... We have a key id that matches our default key but the signature doesn't match.
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Warning: true,
Reason: BadSignature,
}
}
}
return nil
}
func verifySign(s *packet.Signature, h hash.Hash, k *GPGKey) error {
// Check if key can sign
if !k.CanSign {
return fmt.Errorf("key can not sign")
}
// Decode key
pkey, err := base64DecPubKey(k.Content)
if err != nil {
return err
}
return pkey.VerifySignature(h, s)
}
func hashAndVerify(sig *packet.Signature, payload string, k *GPGKey) (*GPGKey, error) {
// Generating hash of commit
hash, err := populateHash(sig.Hash, []byte(payload))
if err != nil { // Skipping as failed to generate hash
log.Error("PopulateHash: %v", err)
return nil, err
}
// We will ignore errors in verification as they don't need to be propagated up
err = verifySign(sig, hash, k)
if err != nil {
return nil, nil
}
return k, nil
}
func hashAndVerifyWithSubKeys(sig *packet.Signature, payload string, k *GPGKey) (*GPGKey, error) {
verified, err := hashAndVerify(sig, payload, k)
if err != nil || verified != nil {
return verified, err
}
for _, sk := range k.SubsKey {
verified, err := hashAndVerify(sig, payload, sk)
if err != nil || verified != nil {
return verified, err
}
}
return nil, nil
}
func hashAndVerifyWithSubKeysCommitVerification(sig *packet.Signature, payload string, k *GPGKey, committer, signer *User, email string) *CommitVerification {
key, err := hashAndVerifyWithSubKeys(sig, payload, k)
if err != nil { // Skipping failed to generate hash
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.generate_hash",
}
}
if key != nil {
return &CommitVerification{ // Everything is ok
CommittingUser: committer,
Verified: true,
Reason: fmt.Sprintf("%s / %s", signer.Name, key.KeyID),
SigningUser: signer,
SigningKey: key,
SigningEmail: email,
}
}
return nil
}
func hashAndVerifyForKeyID(sig *packet.Signature, payload string, committer *User, keyID, name, email string) *CommitVerification {
if keyID == "" {
return nil
}
keys, err := GetGPGKeysByKeyID(keyID)
if err != nil {
log.Error("GetGPGKeysByKeyID: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.failed_retrieval_gpg_keys",
}
}
if len(keys) == 0 {
return nil
}
for _, key := range keys {
var primaryKeys []*GPGKey
if key.PrimaryKeyID != "" {
primaryKeys, err = GetGPGKeysByKeyID(key.PrimaryKeyID)
if err != nil {
log.Error("GetGPGKeysByKeyID: %v", err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.failed_retrieval_gpg_keys",
}
}
}
activated, email := checkKeyEmails(email, append([]*GPGKey{key}, primaryKeys...)...)
if !activated {
continue
}
signer := &User{
Name: name,
Email: email,
}
if key.OwnerID != 0 {
owner, err := GetUserByID(key.OwnerID)
if err == nil {
signer = owner
} else if !IsErrUserNotExist(err) {
log.Error("Failed to GetUserByID: %d for key ID: %d (%s) %v", key.OwnerID, key.ID, key.KeyID, err)
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Reason: "gpg.error.no_committer_account",
}
}
}
commitVerification := hashAndVerifyWithSubKeysCommitVerification(sig, payload, key, committer, signer, email)
if commitVerification != nil {
return commitVerification
}
}
// This is a bad situation ... We have a key id that is in our database but the signature doesn't match.
return &CommitVerification{
CommittingUser: committer,
Verified: false,
Warning: true,
Reason: BadSignature,
}
}
// CalculateTrustStatus will calculate the TrustStatus for a commit verification within a repository
func CalculateTrustStatus(verification *CommitVerification, repository *Repository, keyMap *map[string]bool) (err error) {
if !verification.Verified {
return
}
// There are several trust models in Gitea
trustModel := repository.GetTrustModel()
// In the Committer trust model a signature is trusted if it matches the committer
// - it doesn't matter if they're a collaborator, the owner, Gitea or Github
// NB: This model is commit verification only
if trustModel == CommitterTrustModel {
// default to "unmatched"
verification.TrustStatus = "unmatched"
// We can only verify against users in our database but the default key will match
// against by email if it is not in the db.
if (verification.SigningUser.ID != 0 &&
verification.CommittingUser.ID == verification.SigningUser.ID) ||
(verification.SigningUser.ID == 0 && verification.CommittingUser.ID == 0 &&
verification.SigningUser.Email == verification.CommittingUser.Email) {
verification.TrustStatus = "trusted"
}
return
}
// Now we drop to the more nuanced trust models...
verification.TrustStatus = "trusted"
if verification.SigningUser.ID == 0 {
// This commit is signed by the default key - but this key is not assigned to a user in the DB.
// However in the CollaboratorCommitterTrustModel we cannot mark this as trusted
// unless the default key matches the email of a non-user.
if trustModel == CollaboratorCommitterTrustModel && (verification.CommittingUser.ID != 0 ||
verification.SigningUser.Email != verification.CommittingUser.Email) {
verification.TrustStatus = "untrusted"
}
return
}
var isMember bool
if keyMap != nil {
var has bool
isMember, has = (*keyMap)[verification.SigningKey.KeyID]
if !has {
isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
(*keyMap)[verification.SigningKey.KeyID] = isMember
}
} else {
isMember, err = repository.IsOwnerMemberCollaborator(verification.SigningUser.ID)
}
if !isMember {
verification.TrustStatus = "untrusted"
if verification.CommittingUser.ID != verification.SigningUser.ID {
// The committing user and the signing user are not the same
// This should be marked as questionable unless the signing user is a collaborator/team member etc.
verification.TrustStatus = "unmatched"
}
} else if trustModel == CollaboratorCommitterTrustModel && verification.CommittingUser.ID != verification.SigningUser.ID {
// The committing user and the signing user are not the same and our trustmodel states that they must match
verification.TrustStatus = "unmatched"
}
return
}