Adds error event dispatching for queueMicrotask(). Consequently unhandled errors are now reported with Deno.core.terminate(), which is immune to the existing quirk with plainly thrown errors (#14158).
Welcome to better optimised op calls! Currently opSync is called with parameters of every type and count. This most definitely makes the call megamorphic. Additionally, it seems that spread params leads to V8 not being able to optimise the calls quite as well (apparently Fast Calls cannot be used with spread params).
Monomorphising op calls should lead to some improved performance. Now that unwrapping of sync ops results is done on Rust side, this is pretty simple:
```
opSync("op_foo", param1, param2);
// -> turns to
ops.op_foo(param1, param2);
```
This means sync op calls are now just directly calling the native binding function. When V8 Fast API Calls are enabled, this will enable those to be called on the optimised path.
Monomorphising async ops likely requires using callbacks and is left as an exercise to the reader.
Pull request #14019 enabled initial support for realms, but it did not
include support for async ops anywhere other than the main realm. The
main issue was that the `js_recv_cb` callback, which resolves promises
corresponding to async ops, was only set for the main realm, so async
ops in other realms would never resolve. Furthermore, promise ID's are
specific to each realm, which meant that async ops from other realms
would result in a wrong promise from the main realm being resolved.
This change creates a `ContextState` struct, similar to
`JsRuntimeState` but stored in a slot of each `v8::Context`, which
contains a `js_recv_cb` callback for each realm. Combined with a new
list of known realms, which stores them as `v8::Weak<v8::Context>`,
and a change in the `#[op]` macro to pass the current context to
`queue_async_op`, this makes it possible to send the results of
promises for different realms to their realm, and prevent the ID's
from getting mixed up.
Additionally, since promise ID's are no longer unique to the isolate,
having a single set of unrefed ops doesn't work. This change therefore
also moves `unrefed_ops` from `JsRuntimeState` to `ContextState`, and
adds the lengths of the unrefed op sets for all known realms to get
the total number of unrefed ops to compare in the event loop.
Co-authored-by: Luis Malheiro <luismalheiro@gmail.com>
This commit adds new "import.meta.resolve()" API which
allows to resolve specifiers relative to the module the API
is called in. This API supports resolving using import maps.
Relanding #12994
This commit adds support for "unhandledrejection" event.
This event will trigger event listeners registered using:
"globalThis.addEventListener("unhandledrejection")
"globalThis.onunhandledrejection"
This is done by registering a default handler using
"Deno.core.setPromiseRejectCallback" that allows to
handle rejected promises in JavaScript instead of Rust.
This commit will make it possible to polyfill
"process.on("unhandledRejection")" in the Node compat
layer.
Co-authored-by: Colin Ihrig <cjihrig@gmail.com>
Update "deno_core" to not forward rejection of top level module
if it was already handled by appropriate handlers.
Co-authored-by: Colin Ihrig cjihrig@gmail.com
This commit uses `DetachedBuffer` instead of `ZeroCopyBuf` in the ops
that back `Worker.prototype.postMessage` and
`MessagePort.prototype.postMessage`. This is done because the
serialized buffer is then copied to the destination isolate, even
though it is internal to runtime code and not used for anything else,
so detaching it and transferring it instead saves an unnecessary copy.
The `op_event_loop_has_more_work` op, introduced in #14830, duplicates
code from `JsRuntime::poll_event_loop`. That PR also added the unused
method `JsRuntime::event_loop_has_work`, which is another duplication
of that same code, and which isn't used anywhere.
This change deduplicates this by renaming
`JsRuntime::event_loop_has_work` to `event_loop_pending_state`, and
making it the single place to determine what in the event loop is
pending. This result is then returned in a struct which is used both
in the event loop and in the `op_event_loop_has_more_work` op.
Currently almost every `JsRealm` method has a `&mut JsRuntime`
argument. This argument, however, is only used to get the runtime's
corresponding isolate. Given that a mutable reference to the
corresponding `v8::Isolate` can be reached from many more places than
a mutable reference to the `JsRuntime` (for example, by derefing a V8
scope), changing that will make `JsRealm` usable from many more places
than it currently is.
This commit adds support for "unhandledrejection" event.
This event will trigger event listeners registered using:
"globalThis.addEventListener("unhandledrejection")
"globalThis.onunhandledrejection"
This is done by registering a default handler using
"Deno.core.setPromiseRejectCallback" that allows to
handle rejected promises in JavaScript instead of Rust.
This commit will make it possible to polyfill
"process.on("unhandledRejection")" in the Node compat
layer.
Co-authored-by: Colin Ihrig <cjihrig@gmail.com>
When a dynamically imported module gets resolved, any code that comes after an
await import() to that module will continue running. However, if that is the
last code in the evaluation of another dynamically imported module, that second
module will not resolve until the next iteration of the event loop, even though
it does not depend on the event loop at all.
When the event loop is being blocked by a long-running operation, such as a
long-running timer, or by an async op that might never end, such as with workers
or BroadcastChannels, that will result in the second dynamically imported module
not being resolved for a while, or ever.
This change fixes this by running the dynamic module loading steps in a loop
until no more dynamic modules can be resolved.
Keep a cache for source maps and source lines.
We sort of already had a cache argument for source map lookup
functions but we just passed an empty map instead of storing it.
Extended it to cache source line lookups as well and plugged it
into runtime state.
This commit adds "Deno.core.setFormatExceptionCallback" which
can be used to provide custom formatting for errors. It is useful
in cases when user throws something that is non-Error (eg.
a string, plain object, etc).
- Introduced optional callback for Deno.core.serialize API, that returns
cloning error if there is one.
- Removed try/catch in seralize structured clone function and throw error from
callback.
- Removed "Object with a getter that throws" assertion from WPT.
This reverts commit 10e50a1207
Alternative to #13217, IMO the tradeoffs made by #10786 aren't worth it.
It breaks abstractions (crates being self-contained, deno_core without snapshotting etc...) and causes pain points / gotchas for both embedders & devs for a relatively minimal gain in incremental build time ...
Closes #11030
This commit moves "op_format_location" to "core/ops_builtin.rs"
and removes "Deno.core.createPrepareStackTrace" in favor of
"Deno.core.prepareStackTrace".
Co-authored-by: Aaron O'Mullan <aaron.omullan@gmail.com>
This commit:
- removes "fmt_errors::PrettyJsError" in favor of "format_js_error" fn
- removes "deno_core::JsError::create" and
"deno_core::RuntimeOptions::js_error_create_fn"
- adds new option to "deno_runtime::ops::worker_host::init"
This commit adds tentative support for multiple realms in "deno_core".
It adds the "JsRealm" API that adds methods like "JsRuntime"'s
"handle_scope", "global_object" and "execute_script" specific to the realm.
This commit adds "aggregated" field to "deno_core::JsError" that stores
instances of "JsError" recursively to properly handle "AggregateError"
formatting. Appropriate logics was added to "PrettyJsError" and
"console" API to format AggregateErrors.
Co-authored-by: Nayeem Rahman <nayeemrmn99@gmail.com>
The following transformations gradually faced by "JsError" have all been
moved up front to "JsError::from_v8_exception()":
- finding the first non-"deno:" source line;
- moving "JsError::script_resource_name" etc. into the first error stack
in case of syntax errors;
- source mapping "JsError::script_resource_name" etc. when wrapping
the error even though the frame locations are source mapped earlier;
- removing "JsError::{script_resource_name,line_number,start_column,end_column}"
entirely in favour of "js_error.frames.get(0)".
We also no longer pass a js-side callback to "core/02_error.js" from cli.
I avoided doing this on previous occasions because the source map lookups
were in an awkward place.
This commit changes "deno test" to better denote user output coming
from test cases.
This is done by printing "---- output ----" and "---- output end ----"
markers if an output is produced. The output from "console" and
"Deno.core.print" is captured, as well as direct writes to "Deno.stdout"
and "Deno.stderr".
To achieve that new APIs were added to "deno_core" crate, that allow
to replace an existing resource with a different one (while keeping resource
ids intact). Resources for stdout and stderr are replaced by pipes.
Co-authored-by: David Sherret <dsherret@gmail.com>
This note about how `v8::SnapshotCreator::create_blob` must not be
called from a `HandleScope` stopped being relevant in #6801, and was
now attached to code that had nothing to do with `HandleScope`s.
Streamlines a common middleware pattern and provides foundations for avoiding variably sized v8::ExternalReferences & enabling fully monomorphic op callpaths
When an exception is thrown during the processing of streaming WebAssembly,
`op_wasm_streaming_abort` is called. This op calls into V8, which synchronously
rejects the promise and calls into the promise rejection handler, if applicable.
But calling an op borrows the isolate's `JsRuntimeState` for the duration of the
op, which means it is borrowed when V8 calls into `promise_reject_callback`,
which tries to borrow it again, panicking.
This change changes `op_wasm_streaming_abort` from an op to a binding
(`Deno.core.abortWasmStreaming`). Although that binding must borrow the
`JsRuntimeState` in order to access the `WasmStreamingResource` stored in the
`OpTable`, it also takes ownership of that `WasmStreamingResource` instance,
which means it can drop any borrows of the `JsRuntimeState` before calling into
V8.
In the implementation of structured serialization in
`Deno.core.serialize`, whenever there is a serialization error, an
exception will be thrown with the message "Failed to serialize
response", even though V8 provides a message to use in such cases.
This change instead throws an exception with the V8-provided message,
if there is one.
This commit adds "--trace-ops" flag to "deno test" subcommand.
This flag enables saving of stack traces for async ops, that before were always
saved. While the feature proved to be very useful it comes with a significant performance
hit, it's caused by excessive source mapping of stack frames.
This commit improves the error messages for the `deno test` async op
sanitizer. It does this in two ways:
- it uses handwritten error messages for each op that could be leaking
- it includes traces showing where each op was started
This "async op tracing" functionality is a new feature in deno_core.
It likely has a significant performance impact, which is why it is only
enabled in tests.
This commit rewrites "InspectorSession" to no longer implement "Future"
trait but instead implement "Stream" trait. "Stream" trait is implemented
by yielding a raw pointer to the "v8::inspector::V8InspectorSession" and
received message. In effect received messages are no longer dispatched
from within the future, but are explicitly dispatched by the caller.
This change should allow us to dispatch a message to the session when
another message is being dispatched, ie.
"V8InspectorSesssion::dispatch_protocol_message" is already on the
call stack.
This commit changes flow in inspector code to no longer require
"Runtime.runIfWaitingForDebugger" message to complete a handshake.
Even though clients like Chrome DevTools always send this message on startup,
it is against the protocol to require this message to start an inspector
session.
Instead "Runtime.runIfWaitingForDebugger" is required only when running with
"--inspect-brk" flag, which matches behavior of Node.js.
`CrossIsolateStore`, `ExtensionBuilder` and `InMemoryChannelResource`
are private types which are referred to by other public APIs, and so
don't show up as links in the rustdoc. This is especially confusing for
`ExtensionBuilder`, since there is nothing in the docs that explains how
to build an extension.
Exposing these three types doesn't add any new capabilities:
`ExtensionBuilder` can be created from `Extension::builder()`,
`SharedArrayBufferStore` and `CompiledWasmModuleStore` already enable
doing anything that `CrossIsolateStore` can do by itself, and
`InMemoryChannelResource` isn't constructable.
This commit adds proper support for import assertions and JSON modules.
Implementation of "core/modules.rs" was changed to account for multiple possible
module types, instead of always assuming that the code is an "ES module". In
effect "ModuleMap" now has knowledge about each modules' type (stored via
"ModuleType" enum). Module loading pipeline now stores information about
expected module type for each request and validates that expected type matches
discovered module type based on file's "MediaType".
Relevant tests were added to "core/modules.rs" and integration tests,
additionally multiple WPT tests were enabled.
There are still some rough edges in the implementation and not all WPT were
enabled, due to:
a) unclear BOM handling in source code by "FileFetcher"
b) design limitation of Deno's "FileFetcher" that doesn't download the same
module multiple times in a single run
Co-authored-by: Kitson Kelly <me@kitsonkelly.com>
Provide a programmatic means of intercepting rejected promises without a
.catch() handler. Needed for Node compat mode.
Also do a first pass at uncaughtException support because they're
closely intertwined in Node. It's like that Frank Sinatra song:
you can't have one without the other.
Stepping stone for #7013.
This commit adds an ability to "ref" or "unref" pending ops.
Up to this point Deno had a notion of "async ops" and "unref async ops";
the former keep event loop alive, while the latter do not block event loop
from finishing. It was not possible to change between op types after
dispatching, one had to decide which type to use before dispatch.
Instead of storing ops in two separate "FuturesUnordered" collections,
now ops are stored in a single collection, with supplemental "HashSet"
storing ids of promises that were "unrefed".
Two APIs were added to "Deno.core":
"Deno.core.refOp(promiseId)" which allows to mark promise id
to be "refed" and keep event loop alive (the default behavior)
"Deno.core.unrefOp(promiseId)" which allows to mark promise
id as "unrefed" which won't block event loop from exiting
This commit adds several new "Deno.core" bindings:
* "setNextTickCallback"
* "hasScheduledTick"
* "setHasScheduledTick"
* "runMicrotasks"
Additionally it changes "Deno.core.setMacrotaskCallback" to
allow registering multiple callbacks. All these changes were necessary
to polyfill "process.nextTick" in Node compat layer.
Co-authored-by: Ben Noordhuis <info@bnoordhuis.nl>
This allows resources to be "streams" by implementing read/write/shutdown. These streams are implicit since their nature (read/write/duplex) isn't known until called, but we could easily add another method to explicitly tag resources as streams.
`op_read/op_write/op_shutdown` are now builtin ops provided by `deno_core`
Note: this current implementation is simple & straightforward but it results in an additional alloc per read/write call
Closes #12556
This adds `.code` attributes to errors returned by the op-layer, facilitating classifying OS errors and helping node-compat.
Similar to Node, these `.code` attributes are stringified names of unix ERRNOs, the mapping tables are generated by [tools/codegen_error_codes.js](https://gist.github.com/AaronO/dfa1106cc6c7e2a6ebe4dba9d5248858) and derived from libuv and rust's std internals
Currently all async ops are polled lazily, which means that op
initialization code is postponed until control is yielded to the event
loop. This has some weird consequences, e.g.
```js
let listener = Deno.listen(...);
let conn_promise = listener.accept();
listener.close();
// `BadResource` is thrown. A reasonable error would be `Interrupted`.
let conn = await conn_promise;
```
JavaScript promises are expected to be eagerly evaluated. This patch
makes ops actually do that.
WebAssembly modules compiled through `WebAssembly.compile()` and similar
non-streaming APIs don't have a URL associated to them, because they
have been compiled from a buffer source. In stack traces, V8 will use
a URL such as `wasm://wasm/d1c677ea`, with a hash of the module.
However, wasm modules compiled through streaming APIs, like
`WebAssembly.compileStreaming()`, do have a known URL, which can be
obtained from the `Response` object passed into the streaming APIs. And
as per the developer-facing display conventions in the WebAssembly
Web API spec, this URL should be used in stack traces. This change
implements that.
Decouple JsRuntime::sync_ops_cache() from the availability of the Deno.* namespace in the global scope
This avoids crashes when calling sync_ops_cache() on a bootstrapped WebWorker who has dropped its Deno.* namespace
It's also just cleaner and more robust ...
This commit fixes a problem where loading and executing multiple
modules leads to all of the having "import.meta.main" set to true.
Following Rust APIs were deprecated:
- deno_core::JsRuntime::load_module
- deno_runtime::Worker::execute_module
- deno_runtime::WebWorker::execute_module
Following Rust APIs were added:
- deno_core::JsRuntime::load_main_module
- deno_core::JsRuntime::load_side_module
- deno_runtime::Worker::execute_main_module
- deno_runtime::Worker::execute_side_module
- deno_runtime::WebWorker::execute_main_module
Trying to load multiple "main" modules into the runtime now results in an
error. If user needs to load additional "non-main" modules they should use
APIs for "side" module.
Async WebAssembly compilation was implemented by adding two
bindings: `set_wasm_streaming_callback`, which registered a callback to
be called whenever a streaming wasm compilation was started, and
`wasm_streaming_feed`, which let the JS callback modify the state of the
v8 wasm compiler.
`set_wasm_streaming_callback` cannot currently be implemented as
anything other than a binding, but `wasm_streaming_feed` does not really
need to use anything specific to bindings, and could indeed be
implemented as one or more ops. This PR does that, resulting in a
simplification of the relevant code.
There are three operations on the state of the v8 wasm compiler that
`wasm_streaming_feed` allowed: feeding new bytes into the compiler,
letting it know that there are no more bytes coming from the network,
and aborting the compilation. This PR provides `op_wasm_streaming_feed`
to feed new bytes into the compiler, and `op_wasm_streaming_abort` to
abort the compilation. It doesn't provide an op to let v8 know that the
response is finished, but closing the resource with `Deno.core.close()`
will achieve that.
Because it was possible to disable those with a runtime flag, they were
not available through primordials. The flag has since been removed
upstream.
Refs: d59db06bf5
* refactor(ops): return BadResource errors in ResourceTable calls
Instead of relying on callers to map Options to Results via `.ok_or_else(bad_resource_id)` at over 176 different call sites ...
Oneshot is more appropriate because mod_evaluate() only sends a single
value.
It also makes it easier to use it correctly. As an embedder, I wasn't
sure if I'm expected to drain the channel or not.
This commit changes return type of JsRuntime::execute_script to include
v8::Value returned from evaluation.
When embedding deno_core it is sometimes useful to be able to inspect
script evaluation value without the hoops of adding ops to store the
value on the OpState.
v8::Global<v8::Value> is used so consumers don't have to pass
scope themselves.
The WebAssembly streaming APIs used to be enabled, but used to take
buffer sources as their first argument (see #6154 and #7259). This
change re-enables them, requiring a Promise<Response> instead, as well as
enabling asynchronous compilation of WebAssembly modules.
This commit introduces primordials to deno_core. Primordials are a
frozen set of all intrinsic objects in the runtime. They are not
vulnerable to prototype pollution.