mirror of
https://github.com/denoland/deno.git
synced 2024-11-27 16:10:57 -05:00
256 lines
9 KiB
Markdown
256 lines
9 KiB
Markdown
## HTTP Server APIs
|
||
|
||
As of Deno 1.9 and later, _native_ HTTP server APIs were introduced which allow
|
||
users to create robust and performant web servers in Deno.
|
||
|
||
The API tries to leverage as much of the web standards as is possible as well as
|
||
tries to be simple and straight forward.
|
||
|
||
> ℹ️ The APIs are currently unstable, meaning they can change in the future in
|
||
> breaking ways and should be carefully considered before using in production
|
||
> code. They require the `--unstable` flag to make them available.
|
||
|
||
### Listening for a connection
|
||
|
||
In order to accept requests, first you need to listen for a connection on a
|
||
network port. To do this in Deno, you use `Deno.listen()`:
|
||
|
||
```ts
|
||
const server = Deno.listen({ port: 8080 });
|
||
```
|
||
|
||
> ℹ️ When supplying a port, Deno assumes you are going to listen on a TCP socket
|
||
> as well as bind to the localhost. You can specify `transport: "tcp"` to be
|
||
> more explicit as well as provide an IP address or hostname in the `hostname`
|
||
> property as well.
|
||
|
||
If there is an issue with opening the network port, `Deno.listen()` will throw,
|
||
so often in a server sense, you will want to wrap it in the `try ... catch`
|
||
block in order to handle exceptions, like the port already being in use.
|
||
|
||
You can also listen for a TLS connection (e.g. HTTPS) using `Deno.listenTls()`:
|
||
|
||
```ts
|
||
const server = Deno.listenTls({
|
||
port: 8443,
|
||
certFile: "localhost.crt",
|
||
keyFile: "localhost.key",
|
||
alpnProtocols: ["h2", "http/1.1"],
|
||
});
|
||
```
|
||
|
||
The `certFile` and `keyFile` options are required and point to the appropriate
|
||
certificate and key files for the server. They are relative to the CWD for Deno.
|
||
The `alpnProtocols` property is optional, but if you want to be able to support
|
||
HTTP/2 on the server, you add the protocols here, as the protocol negotiation
|
||
happens during the TLS negotiation with the client and server.
|
||
|
||
> ℹ️ Generating SSL certificates is outside of the scope of this documentation.
|
||
> There are many resources on the web which address this.
|
||
|
||
### Handling connections
|
||
|
||
Once we are listening for a connection, we need to handle the connection. The
|
||
return value of `Deno.listen()` or `Deno.listenTls()` is a `Deno.Listener` which
|
||
is an async iterable which yields up `Deno.Conn` connections as well as provide
|
||
a couple methods for handling connections.
|
||
|
||
To use it as an async iterable we would do something like this:
|
||
|
||
```ts
|
||
const server = Deno.listen({ port: 8080 });
|
||
|
||
for await (const conn of server) {
|
||
// ...handle the connection...
|
||
}
|
||
```
|
||
|
||
Every connection made would yielded up a `Deno.Conn` assigned to `conn`. Then
|
||
further processing can be applied to the connection.
|
||
|
||
There is also the `.accept()` method on the listener which can be used:
|
||
|
||
```ts
|
||
const server = Deno.listen({ port: 8080 });
|
||
|
||
while (true) {
|
||
try {
|
||
const conn = await server.accept();
|
||
// ... handle the connection ...
|
||
} catch (err) {
|
||
// The listener has closed
|
||
break;
|
||
}
|
||
}
|
||
```
|
||
|
||
Whether using the async iterator or the `.accept()` method, exceptions can be
|
||
thrown and robust production code should handle these using `try ... catch`
|
||
blocks. Especially when it comes to accepting TLS connections, there can be many
|
||
conditions, like invalid or unknown certificates which can be surfaced on the
|
||
listener and might need handling in the user code.
|
||
|
||
A listener also has a `.close()` method which can be used to close the listener.
|
||
|
||
### Serving HTTP
|
||
|
||
Once a connection is accepted, you can use `Deno.serveHttp()` to handle HTTP
|
||
requests and responses on the connection. `Deno.serveHttp()` returns a
|
||
`Deno.HttpConn`. A `Deno.HttpConn` is like a `Deno.Listener` in that requests
|
||
the connection receives from the client are asynchronously yielded up as a
|
||
`Deno.RequestEvent`.
|
||
|
||
To deal with HTTP requests as async iterable it would look something like this:
|
||
|
||
```ts
|
||
const server = Deno.listen({ port: 8080 });
|
||
|
||
for await (const conn of server) {
|
||
(async () => {
|
||
const httpConn = Deno.serveHttp(conn);
|
||
for await (const requestEvent of httpConn) {
|
||
// ... handle requestEvent ...
|
||
}
|
||
})();
|
||
}
|
||
```
|
||
|
||
The `Deno.HttpConn` also has the method `.nextRequest()` which can be used to
|
||
await the next request. It would look something like this:
|
||
|
||
```ts
|
||
const server = Deno.listen({ port: 8080 });
|
||
|
||
while (true) {
|
||
try {
|
||
const conn = await server.accept();
|
||
(async () => {
|
||
const httpConn = Deno.serveHttp(conn);
|
||
while (true) {
|
||
const requestEvent = await httpConn.nextRequest();
|
||
if (requestEvent) {
|
||
// ... handle requestEvent ...
|
||
} else {
|
||
// the connection has finished
|
||
break;
|
||
}
|
||
}
|
||
})();
|
||
} catch (err) {
|
||
// The listener has closed
|
||
break;
|
||
}
|
||
}
|
||
```
|
||
|
||
Note that in both cases we are using an IIFE to create an inner function to deal
|
||
with each connection. If we awaited the HTTP requests in the same function scope
|
||
as the one we were receiving the connections, we would be blocking accepting
|
||
additional connections, which would make it seem that our server was "frozen".
|
||
In practice, it might make more sense to have a separate function all together:
|
||
|
||
```ts
|
||
async function handle(conn: Deno.Conn) {
|
||
const httpConn = Deno.serveHttp(conn);
|
||
for await (const requestEvent of httpConn) {
|
||
// ... handle requestEvent
|
||
}
|
||
}
|
||
|
||
const server = Deno.listen({ port: 8080 });
|
||
|
||
for await (const conn of server) {
|
||
handle(conn);
|
||
}
|
||
```
|
||
|
||
In the examples from this point on, we will focus on what would occur within an
|
||
example `handle()` function and remove the listening and connection
|
||
"boilerplate".
|
||
|
||
### HTTP Requests and Responses
|
||
|
||
HTTP requests and responses in Deno are essentially the inverse of web standard
|
||
[Fetch API](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API). The
|
||
Deno HTTP Server API and the Fetch API leverage the
|
||
[`Request`](https://developer.mozilla.org/en-US/docs/Web/API/Request) and
|
||
[`Response`](https://developer.mozilla.org/en-US/docs/Web/API/Response) object
|
||
classes. So if you are familiar with the Fetch API you just need to flip them
|
||
around in your mind and now it is a server API.
|
||
|
||
As mentioned above, a `Deno.HttpConn` asynchronously yields up
|
||
`Deno.RequestEvent`s. These request events contain a `.request` property and a
|
||
`.respondWith()` method.
|
||
|
||
The `.request` property is an instance of the `Request` class with the
|
||
information about the request. For example, if we wanted to know what URL path
|
||
was being requested, we would do something like this:
|
||
|
||
```ts
|
||
async function handle(conn: Deno.Conn) {
|
||
const httpConn = Deno.serveHttp(conn);
|
||
for await (const requestEvent of httpConn) {
|
||
const url = new URL(requestEvent.request.url);
|
||
console.log(`path: ${url.path}`);
|
||
}
|
||
}
|
||
```
|
||
|
||
The `.respondWith()` method is how we complete a request. The method takes
|
||
either a `Response` object or a `Promise` which resolves with a `Response`
|
||
object. Responding with a basic "hello world" would look like this:
|
||
|
||
```ts
|
||
async function handle(conn: Deno.Conn) {
|
||
const httpConn = Deno.serveHttp(conn);
|
||
for await (const requestEvent of httpConn) {
|
||
await requestEvent.respondWith(new Response("hello world"), {
|
||
status: 200,
|
||
});
|
||
}
|
||
}
|
||
```
|
||
|
||
Note that we awaited the `.respondWith()` method. It isn't required, but in
|
||
practice any errors in processing the response will cause the promise returned
|
||
from the method to be rejected, like if the client disconnected before all the
|
||
response could be sent. While there may not be anything your application needs
|
||
to do, not handling the rejection will cause an "unhandled rejection" to occur
|
||
which will terminate the Deno process, which isn't so good for a server. In
|
||
addition, you might want to await the promise returned in order to determine
|
||
when to do any cleanup from for the request/response cycle.
|
||
|
||
The web standard `Response` object is pretty powerful, allowing easy creation of
|
||
complex and rich responses to a client, and Deno strives to provide a `Response`
|
||
object that as closely matches the web standard as possible, so if you are
|
||
wondering how to send a particular response, checkout out the documentation for
|
||
the web standard
|
||
[`Response`](https://developer.mozilla.org/en-US/docs/Web/API/Response).
|
||
|
||
### HTTP/2 Support
|
||
|
||
HTTP/2 support is effectively transparent within the Deno runtime. Typically
|
||
HTTP/2 is negotiated between a client and a server during the TLS connection
|
||
setup via
|
||
[ALPN](https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation). To
|
||
enable this, you need to provide the protocols you want to support when you
|
||
start listening via the `alpnProtocols` property. This will enable the
|
||
negotiation to occur when the connection is made. For example:
|
||
|
||
```ts
|
||
const server = Deno.listenTls({
|
||
port: 8443,
|
||
certFile: "localhost.crt",
|
||
keyFile: "localhost.key",
|
||
alpnProtocols: ["h2", "http/1.1"],
|
||
});
|
||
```
|
||
|
||
The protocols are provided in order of preference. In practice, the only two
|
||
protocols that are supported currently are HTTP/2 and HTTP/1.1 which are
|
||
expressed as `h2` and `http/1.1`.
|
||
|
||
Currently Deno does not support upgrading a plain-text HTTP/1.1 connection to an
|
||
HTTP/2 cleartext connection via the `Upgrade` header (see:
|
||
[#10275](https://github.com/denoland/deno/issues/10275)), so therefore HTTP/2
|
||
support is only available via a TLS/HTTPS connection.
|